
�

Concurrency Control
(based on David DeWitt’s notes)

15-823
Advanced Topics in Database Systems Performance

2© 2001 David J. DeWitt and Anastassia Ailamaki

Definitions

� Database� a fixed set of named resources (entities)� Consistency constraints� must be true for DB to be considered consistent� Example:
Σ(ACCT-BALS) = Σ(ASSETS)
ACCT-BAL >= 0� Key point

consistent
database

S1

consistent
database

S2

transaction T

3© 2001 David J. DeWitt and Anastassia Ailamaki

� Concurrent execution of independent transactions� utilization/throughput (“hide” waiting for I/Os.)	 response time
 fairness� Example:

Statement of Problem

t0:
t1:
t2:
t3:
t4:
t5:

T1:
tmp1 := read(X)

tmp1 := tmp1 – 20

write tmp1 into X

T2:

tmp2 := read(X)

tmp2 := tmp2 + 10

write tmp2 into X

�

4© 2001 David J. DeWitt and Anastassia Ailamaki

Statement of problem (cont.)

 Arbitrary interleaving can lead to � Temporary inconsistency (ok, unavoidable)� “Permanent” inconsistency

� Need correctness criteria:� schedule: a particular action sequencing for a set of
transactions� consistent schedule: each transaction sees
consistent view of DB

5© 2001 David J. DeWitt and Anastassia Ailamaki

Serializability

Assumption: all serial schedules are consistent� Dependencies:� T1 reads X, …, T2 writes X --- RW� T1 writes X, …, T2 reads X --- WR� T1 writes X, …, T2 writes X --- WW� Serialization graph� Nodes are Transactions T1, T2, …� Edges: Ti → Tj if there is RW, WR, or WW from Ti to Tj

Theorem: schedule S serializable ⇔ SG(S) acyclic� suggests (bad) technique for CC:
build SG(S), topological sort, see if it works

6© 2001 David J. DeWitt and Anastassia Ailamaki

� Basic idea: lock <entity> / unlock <entity>� Well-formed Xact: lock, action, unlock, lock…� Two-phased Xact: <lock> <actions> <unlock>

Locking

Theorem:

all Xacts well-formed or 2-phased ⇒ any S is serializable

begin end
acquire locks release locks

shrinking phasegrowing phase
shrink
point � �"!"# $% �"& % �"$"# ')(�+*)!+, - &

.

7© 2001 David J. DeWitt and Anastassia Ailamaki

Gray et al. paper

/ Goal: correctness and performance0 Granularity tradeoff1 small granularity ⇒ high concurrency / high overhead2 large granularity ⇒ low overhead / low concurrency3 Possible granularities for CC:4 DB5 Areas6 Files/Relations7 Pages8 Records/Tuples9 Record Fields: Large xacts set coarse locks, small xacts set fine locks

8© 2001 David J. DeWitt and Anastassia Ailamaki

Solution: Hierarchical Locking
; Shared locks S for reading< Exclusive locks X for writing
Problem:

T1 locks (S) a record in a file, then T2 locks (X) whole file
How can T2 discover that T1 has locked the record?

Solution: Intention locks: IS and IX
Example: T1 IS file, then T1 S record

T2 cannot X file – however, T3 can IS or S file= For more concurrency: SIX (e.g., read all – lock parts)> More concurrency than X lock? Write permission (unlike S lock)@ Low overhead (when compared to IX lock)

9© 2001 David J. DeWitt and Anastassia Ailamaki

How Does This Work?

A Let’s build the lock compatibility matrix.B Transactions lock top-down; unlock bottom-upC Exact rules:D S or IS (Q) ⇐ have IS or IX on ancestors (Q)E X, SIX, or IX (Q) ⇐ SIX or IX on ancestors (Q)F Release locks bottom-upG Tricky special case: update index fieldH Examples?

I

10© 2001 David J. DeWitt and Anastassia Ailamaki

Consistency

J “Dirty” writesK Until committed at end of transactionL Levels
Degree 0: short write locks on updated items
Degree 1: long write locks on updated items

("long" means to hold until the transaction finishes)

Degree 2: long write locks on updated items, and
short read locks on items read

Degree 3: long write locks on updated items, and
long read locks on items read

11© 2001 David J. DeWitt and Anastassia Ailamaki

Prevention of Inconsistency (0/1)
M Garbage reads

T1: update(X); T2: update(X)N Who knows what value X will wind up holding?O Solution: set short write locks. (P degree 0)

Q Lost Updates
T1: update(X);
T2: update(X);
T1: abort (restoring X to pre-T1 value)R At this point the update due to T2 is lost.

(note: log contains (T1, X, [oldval, newval])S Solution: set long write locks. (T degree 1)

12© 2001 David J. DeWitt and Anastassia Ailamaki

Prevention of Inconsistency (2)

U Dirty Reads
T1: update(X)

T2: read(X)

T1: abort

V Now T2’s read is bogus W Solution: long exclusive locks + short read locks
(X degree 2)Y Systems often run long queries at level 2

Z

13© 2001 David J. DeWitt and Anastassia Ailamaki

Prevention of Inconsistency (3)
[Unrepeatable Reads

T1: update(X)
T1: complete transaction
T2: read(X)
T3: update(X)
T3: complete transaction
T2: read(X)

\ Now T2 has read two different values for X] Solution: long read locks. (^ degree 3)

2-phase well-formed → degree 3 consistent

14© 2001 David J. DeWitt and Anastassia Ailamaki

Pragmatics

_ Maintain lock table as a hashed data structure` Preferably in main memorya Lock/unlock must be atomic (critical section)b Typically lock/unlock cost is 100s of instructionsc Getting this right on an SMP is a real challenge!

15© 2001 David J. DeWitt and Anastassia Ailamaki

Lock Compatibility

Supposed T1 has a share lock on Pe T2 is waiting to gain exclusive access to Pf T3 wants shared access to P

Do we grant T3 an S lock? No! So…

g

16© 2001 David J. DeWitt and Anastassia Ailamaki

Lock Queue

h Granted group: front compatible groupi Mode of granted group = most restrictive mode
amongst members (e.g., S for S and IS or X for
SIX, IX, and X)

Q T2-IS T3-X T4-X T5-S T7-ST1-S T6-S

j For each locked Q with outstanding requests: FCFS queuek compatible group = {adjacent Xacts w/ compatible modes}

17© 2001 David J. DeWitt and Anastassia Ailamaki

Lock Upgrades

Q T2-IS T3-XT1-S

Often want to convert
E.g., T1 does a “test-and-then-modify” action

Q T2-IS T3-X T1-XT1-S

Should T1’s request go at the end of the queue?

Q T2-IS T1-X T3-XT1-S

Deadlock! Instead, put upgrades after granted group

18© 2001 David J. DeWitt and Anastassia Ailamaki

Deadlock

l In OS world, usually due to errors or overloadsm In DB system with 2PL, inherent!!!n Common cause: Lock mode upgrades
(1) T1: S-lock Q (2) T2: S-lock Q

(3) T1: convert S(Q) to X-lock (4) T2: convert S(Q) to X-lock

o Deadlock!

Q T2-S T1-X T2-XT1-S

p

19© 2001 David J. DeWitt and Anastassia Ailamaki

Another deadlock

q Differing access orderings.

T1: X-lock P
T2: X-lock Q
T1: X-lock Q /* block, waiting for T2 * /
T2: X-lock P /* block, waiting for T1 * /

r Deadlock!

20© 2001 David J. DeWitt and Anastassia Ailamaki

Deadlock Detection

s Use “waits-for” graph and look for cycles.t Empirically, in actual systems, in waits-for graph:u Cycles fairly rare.v Cycle length usually 2, sometimes 3, virtually never > 3.w Use DFS to find cycles.x When should we look for cycles? Options:y Whenever a transaction blocksz Periodically { Never (use timeouts)

21© 2001 David J. DeWitt and Anastassia Ailamaki

Deadlock Detection (cont.)

| Centralized systems: deadlock detection upon blocking
(Cheap – most recently blocked transaction (T) must be the one

that caused the deadlock, so just DFS starting from T)} Distributed systems: periodic detection

~�� � � ����� ����� � � �� �)� � � � � � � � ��� ���� � ��� � ��� �

����� �

� ��� � ����� ��� � � ��� � � �)�

�)� � � � � � � � � � � � ¡ �

¢ £ ¤ ¥ ¦ £ § ¨ ¥ © ª « ¬ ¤ © ¯® ° ± ² ³ ´ ³ µ ´ ¶ ® ° µ
® · ´

¸

22© 2001 David J. DeWitt and Anastassia Ailamaki

Victim Selection Criteria

¹ Goals º minimize wasted work » minimize time to get back to point of restart

¼ Selecting a victim½ current blocker¾ youngest XACT¿ least resources usedÀ fewest locks held (commonly used)Á fewest number of restarts

23© 2001 David J. DeWitt and Anastassia Ailamaki

Optimistic CC (Kung&Robinson)

Â Assumption: conflicts are rare Ã Optimize for the no-conflict case.Ä All transactions consist of three phasesÅ Read: Here, all writes are to private storage.Æ Validation: Make sure no conflicts have occurred.Ç Write: If Validation was successful, make writes
public. (If not, abort!)

È �"É # $)��- # !+'Ê¯Ë �"$ÍÌ Î �"& Ë Ï , # - Ë Ì Î��"& Ë
Ð É É ÑÒ, # - Ë &ÒÓ", # �)� - Ë Ô Î Ë %)Õ×Ö !Ø, % !"' Ö É # % - &ÚÙÛ� Õ Ë É ! % �+É ÑÛ, # - Ë &ÒÓ)Ü)*)É # %

24© 2001 David J. DeWitt and Anastassia Ailamaki

Why Might this Make Sense?

Ý All transactions are readersÞ The system will be setting and releasing locks for no reason at all

ß Lots of transactions, each accessing/modifying only a small
amount of data, large total amount of dataà Low probability of conflict, so again locking is wasted

á Fraction of transaction execution in which conflicts “really
take place” is small compared to total path lengthâ Locks until of transaction are way too restrictive most of the time

ã

25© 2001 David J. DeWitt and Anastassia Ailamaki

Validation Phase (1)
ä Goal: guarantee only serializable schedules result.å Technique: æ Assign each transaction a TN (transaction number) ç Require TN order to be the serialization order

è If TN(Ti) < TN(Tj) é ONE of the following must hold:

1. Ti completes W before Tj starts R

Ê È ÏTi Ê È ÏTj

26© 2001 David J. DeWitt and Anastassia Ailamaki

Validation Phase (2)

2. WS(Ti) ê RS(Tj) = ë and Ti completes W
before Tj starts W

Comments:ì No problem with Tj reading values previous to Ti’s
writes (nothing in common there)í No problem with Ti overwriting Tj’s writes (no overlap
in time)

Ê È ÏTi

Ê È ÏTj

27© 2001 David J. DeWitt and Anastassia Ailamaki

Validation Phase (3)

3. WS(Ti) î RS(Tj) = ï and
WS(Ti) ð WS(Tj) = ñ and
Ti completes its R before Tj completes its W

Comments:ò No problem with Tj getting (or missing) input from Ti,
as there is nothing that Ti writes that Tj touchesó Since Ti finishes its R before Tj finishes its R, Ti won’t
read any output from Tj eitherô No overwrite problems as write-sets are disjoint

Ê È ÏTi

Ê È ÏTj

õ÷ö

28© 2001 David J. DeWitt and Anastassia Ailamaki

Correctness

All of conflict types (WR, RW, WW) go one wayø Condition 1: true serial executionù Condition 2ú No W-R conflicts since WS(Ti) intersect RS(Tj) = NULLû In R-W conflicts, Ti precedes Tj, since Ti’s W (and hence R) of Ti
precedes that of Tjü In W-W conflicts, Ti precedes Tj by definitioný Condition 3þ No W-R conflicts since WS(Ti) intersect RS(Tj) = NULLÿ No W-W conflicts since WS(Ti) intersect WS(Tj) = NULL

� In all R-W conflicts, Ti precedes Tj, since the Ti’s R precedes Tj’s W

29© 2001 David J. DeWitt and Anastassia Ailamaki

Observations

� Better assign TN’s at beginning of validation phase
� T with very long R: check ALL T’s within its lifetime

� Requires unbounded buffer space
� Solution: bound buffer, toss out when full, abort possibly

affected T’s
� Starvation!

� Serial/Parallel validation – Pros & cons?

� [To be continued…]

