15-823
Advanced Topics in Database Systems Performance

Concurrency Control
(based on David DeWitt’'s notes)

Definitions

o Database
o a fixed set of named resources (entities)
o Consistency constraints
o must be true for DB to be considered consistent
o Example:
S(ACCT-BALS) = S(ASSETS)
ACCT-BAL >=0
o Key point

consistent transaction T consistent
database |— > | database

S1 S2

©2001 David J. DeWitt and Anast ilamaki

Carnegic

Statement of Problem

o Concurrent execution of independent transactions
a utilization/throughput (“hide” waiting for 1/0s.)
o response time

o fairness
o Example: 1 T2
t0: | tmpl :=read(X)
tl: tmp2 := read(X)
t2:| tmpl:=tmpl-20
t3: tmp2 := tmp2 + 10

t4:| writetmplinto X
t5: write tmp2 into X

© 2001 David). DewWitt and Anast "

o Arbitrary interleaving can lead to
o “Permanent” inconsistency

o Need correctness criteria:

consistent view of DB

Cosnegic

©2001 David). Dewitt and

Statement of problem (cont.)

o Temporary inconsistency (ok, unavoidable)

o schedule: a particular action sequencing for a set of
transactions

o consistent schedule: each transaction sees

Serializability

o Dependencies:

o T1reads X, ..., T2 writes X --- RW
o T1 writes X, ..., T2 reads X --- WR
o T1 writes X, ..., T2 writes X --- WW
o Serialization graph

o Nodes are Transactions T1, T2, ...

o suggests (bad) technique for CC:
build SG(S), topological sort, see if it works

©2001 David J. DeWittand

Assumption: all serial schedules are consistent

o Edges: Ti - Tj if there is RW, WR, or WW from Ti to Tj
Theorem: schedule S serializable = SG(S) acyclic

Locking

o Basic idea: lock <entity>/ unlock <entity>

o Well-formed Xact: lock, action, unlock, lock...
o Two-phased Xact: <lock> <actions> <unlock>
begin + acquire locks |

release locks
growing phase l

hrinking ph.
shrink s g phase
point

avoid
cascading
aborts

Theorem:

Carnegic

all Xacts well-formed or 2-phased O any S is serializable

©2001 David). Dewitt and

nd

Gray et al. paper

o Goal: correctness and performance
o Granularity tradeoff
o small granularity O high concurrency / high overhead
o large granularity O low overhead / low concurrency
o Possible granularities for CC:
o DB
o Areas
o Files/Relations
o Pages
o Records/Tuples
o Record Fields
o Large xacts set coarse locks, small xacts set fine locks

Cosnegic

©2001 David J. Dewitt and Anast "

Solution: Hierarchical Locking

o Shared locks S for reading
o Exclusive locks X for writing
Problem:
T1 locks (S) a record in a file, then T2 locks (X) whole file
How can T2 discover that T1 has locked the record?
Solution: Intention locks: IS and IX
Example: T1 IS file, then T1 S record
T2 cannot X file — however, T3 can IS or S file
o For more concurrency: SIX (e.g., read all — lock parts)
o More concurrency than X lock

o Write permission (unlike S lock)
o Low overhead (when compared to IX lock)

©2001 David J. DeWitt and Anast ilamaki

How Does This Work?

o Let’s build the lock compatibility matrix.
o Transactions lock top-down; unlock bottom-up
o Exactrules:
o SorlS(Q) O have IS or IX on ancestors (Q)
o X, SIX, or IX (Q) O SIX or IX on ancestors (Q)
o Release locks bottom-up
o Tricky special case: update index field
o Examples?

Carnegic
Mo

© 2001 David). DewWitt and Anast "

Consistency

o “Dirty” writes
o Until committed at end of transaction
o Levels
Degree 0: short write locks on updated items
Degree 1: long write locks on updated items
("long" means to hold until the transaction finishes)
Degree 2: long write locks on updated items, and
short read locks on items read
Degree 3: long write locks on updated items, and
long read locks on items read

Cosnegic

© 2001 David J. DeWitt and Anast; ld 10

Prevention of Inconsistency (0/1)

o Garbage reads
T1: update(X); T2: update(X)
a Who knows what value X will wind up holding?
o Solution: set short write locks. (— degree 0)

o Lost Updates
T1: update(X);
T2: update(X);
T1: abort (restoring X to pre-T1 value)
o At this point the update due to T2 is lost.
(note: log contains (T1, X, [oldval, newval])
o Solution: set long write locks. (— degree 1)

Carnegic

2001 David J. DeWitt and t lamaki 11

Prevention of Inconsistency (2)

a Dirty Reads
T1: update(X)
T2: read(X)
T1: abort

o Now T2’s read is bogus

o Solution: long exclusive locks + short read locks
(— degree 2)

o Systems often run long queries at level 2

©2001 David J. DeWitt and Anast; i 12

Prevention of Inconsistency (3)

o Unrepeatable Reads
T1: update(X)
T1: complete transaction
T2: read(X)
T3: update(X)
T3: complete transaction
T2: read(X)

o Now T2 has read two different values for X
o Solution: long read locks. (—degree 3)

2-phase well-formed - degree 3 consistent

Cosnegic

©2001 David J. Dewitt and Anast "

Pragmatics

o Maintain lock table as a hashed data structure
o Preferably in main memory

o Lock/unlock must be atomic (critical section)

o Typically lock/unlock cost is 100s of instructions

o Getting this right on an SMP is a real challenge!

©2001 David J. DeWitt and Anast ilamaki

Lock Compatibility

Suppose
a T1 has a share lock on P
o T2 is waiting to gain exclusive access to P
o T3 wants shared access to P

Do we grant T3 an S lock? No! So...

Carnegic

© 2001 David). DewWitt and Anast "

Lock Queue

o For each locked Q with outstanding requests: FCFS queue
o compatible group = {adjacent Xacts w/ compatible modes}

@—{ 11-s|T21sH T3-x |H T4-xH T5-5 | T6-S [T7-5 |

o Granted group: front compatible group

o Mode of granted group = most restrictive mode
amongst members (e.g., S for S and IS or X for
SIX, IX, and X)

Cosnegic
Mielon

©2001 David J. Dewitt and Anast K

Lock Upgrades

Often want to convert
E.g., T1 does a “test-and-then-modify” action

(@ Hrrs[rzisHTsx]

Should T1's request go at the end of the queue?

@—{ T1-s|T21sH T3-x HT1-x}-

Deadlock! Instead, put upgrades after granted group

@—{ T1-s[T21s H T1-XH T3-x |-

©2001 David J. DeWitt and Anast ilamaki

Deadlock

o In OS world, usually due to errors or overloads
o In DB system with 2PL, inherent!!!

o Common cause: Lock mode upgrades
(1) TL: Slock Q (2) T2: Slock Q
(3) T1: convert S(Q) to X-lock (4) T2: convert S(Q) to X-lock

@—{ T1-s|T2-s|{ Ti-xHT2-x |-

o Deadlock!

© 2001 David). DewWitt and Anast i

Another deadlock

u Differing access orderings.

T1: X-lock P
T2: X-lock Q
T1: X-lock Q /* block, waiting for T2 */
T2: X-lock P /* block, waiting for T1 */

o Deadlock!

Cosnegic

© 2001 David J. DeWitt and Anast; i 19

Deadlock Detection

o Use “waits-for” graph and look for cycles.

o Empirically, in actual systems, in waits-for graph:
o Cycles fairly rare.
a Cycle length usually 2, sometimes 3, virtually never > 3.
a Use DFS to find cycles.

o When should we look for cycles? Options:
o Whenever a transaction blocks
o Periodically
o Never (use timeouts)

Carnegic

© 2001 David J. DeWitt and Anast; lamaki 20

Deadlock Detection (cont.)

o Centralized systems: deadlock detection upon blocking

(Cheap — most recently blocked transaction (T) must be the one
that caused the deadlock, so just DFS starting from T)

o Distributed systems: periodic detection
Cost

%%”’sa

Optimal points
for detections

1 » Period of detection

© 2001 David). DewWitt and Anast " 21

Victim Selection Criteria

o Goals
o minimize wasted work
o minimize time to get back to point of restart

o Selecting a victim
o current blocker
o youngest XACT
o least resources used
o fewest locks held (commonly used)
o fewest number of restarts

Cosnegic

© 2001 David J. DeWitt and Anast; ld 22

Optimistic CC (Kung&Robinson)

o Assumption: conflicts are rare
o Optimize for the no-conflict case.

o All transactions consist of three phases
o Read: Here, all writes are to private storage.
o Validation: Make sure no conflicts have occurred.

a Write: If Validation was successful, make writes
public. (If not, abort!)

All writes private | Check for conflicts | Make local writes public R

Read Phase I Validation I Write Phase

2001 David J. DeWitt and t lamaki 23

Why Might this Make Sense?

o All transactions are readers
o The system will be setting and releasing locks for no reason at all

o Lots of transactions, each accessing/modifying only a small
amount of data, large total amount of data
o Low probability of conflict, so again locking is wasted

o Fraction of transaction execution in which conflicts “really
take place” is small compared to total path length
o Locks until of transaction are way too restrictive most of the time

Carnegic

©2001 David J. DeWitt and Anast; i 24

Validation Phase (1)

o Goal: guarantee only serializable schedules result.
o Technique:

o Assign each transaction a TN (transaction number)

o Require TN order to be the serialization order

If TN(Ti) < TN(Tj) = ONE of the following must hold:

a

1. Ti completes W before Tj starts R

T—t+—
RV W o .
T W

Cosnegic

©2001 David J. DeWit

Validation Phase (2)

2. WS(Ti) n RS(Tj) = & and Ti completes W
before Tj starts W

i—t—t—

Ti—T W
j—t——t—
T w

Comments:
o No problem with Tj reading values previous to Ti's

writes (nothing in common there)
a No problem with Ti overwriting Tj's writes (no overlap

in time)

©2001 David J. DeWitt and Anast ilamaki

Validation Phase (3)

3. WS(Ti) n RS(Tj) =@ and
WS(Ti) n WS(Tj) = & and
Ti completes its R before Tj completes its W

Comments:
o No problem with Tj getting (or missing) input from
as there is nothing that Ti writes that Tj touches

read any output from Tj either
o No overwrite problems as write-sets are disjoint

© 2001 David J. DeWitt and "

o Since Ti finishes its R before Tj finishes its R, Ti won't

Ti,

Correctness

All of conflict types (WR, RW, WW) go one way
o Condition 1: true serial execution
o Condition 2

o No W-R conflicts since WS(Ti) intersect RS(Tj) = NULL

o In R-W conflicts, Ti precedes Tj, since Ti's W (and hence R) of Ti
precedes that of Tj

u In W-W conflicts, Ti precedes Tj by definition
o Condition 3
o No W-R conflicts since WS(Ti) intersect RS(Tj) = NULL
a No W-W conflicts since WS(Ti) intersect WS(Tj) = NULL
o In all R-W conflicts, Ti precedes Tj, since the Ti's R precedes Tj's W

Cosnegic

©2001 David J. Dewitt and Anast "

Observations

o Better assign TN’s at beginning of validation phase
o T with very long R: check ALL T's within its lifetime
o Requires unbounded buffer space

o Solution: bound buffer, toss out when full, abort possibly
affected T's

o Starvation!

o Serial/Parallel validation — Pros & cons?

o [To be continued...]

©2001 David J. DeWitt and Anast ilamaki

10

