SIMULATING SENTENCE PAIRS SAMPLING VIA SOURCE AND TARGET LANGUAGE MODELS

Nguyen Bach

Joint work with Qin Gao and Stephan Vogel

Outline

- Motivations
- Proposed Approach
- Experiments

Motivations

Weighting Sentence Pairs

- Normal word alignment
 - Each sentence pair (e^k, f^k) is assigned an empirical probability $\hat{P}(e^k, f^k)$
 - □ IBM Model 1: lexicon probability of source word **f** given target **e**

$$p(\mathbf{f}|\mathbf{e}) = \frac{\sum_{k} c(\mathbf{f}|\mathbf{e}; e^{k}, f^{k})}{\sum_{k, \mathbf{f}} c(\mathbf{f}|\mathbf{e}; e^{k}, f^{k})}$$
(1)
$$c(\mathbf{f}|\mathbf{e}; e^{k}, f^{k}) = \sum_{e^{k}, f^{k}} \hat{P}(e^{k}, f^{k}) \sum_{a} P(a|e^{k}, f^{k}) \cdot (2)$$
$$\sum_{j} \delta(\mathbf{f}, f_{j}^{k}) \delta(\mathbf{e}, e_{a_{j}}^{k})$$

 $\hat{P}(e^k, f^k)$ is estimated by MLE on the full sentence pairs which would give most uniform probabilities (~ 1/S)

Motivation

- □ It's helpful if $\hat{P}(e^k, f^k)$ can approximate the true distribution $P(e^k, f^k)$
- \square $\hat{P}(e^k, f^k)$ is a prior
- Some sentences could be more valuable, reliable, appropriate, and should therefore have a higher weight in the training
- $lue{}$ Can we have better a approximation for $\hat{P}(e^k,f^k)$?

Proposed Approach

Proposed approach

- $\hat{P}(e^k, f^k) \sim \text{sentence pair confidence (sc)}$
 - Quality of sentence pair for training the alignment model
- $\hat{P}(e^k, f^k) \sim \text{genre-dependent sentence pair}$ confidence (*gdsc*)
 - Appropriateness of a sentence pair to train a system for a specific genre
- Sentence-dependent phrase alignment confidence (sdpc) scores
 - Which sentence pairs the phrase pair was extracted

Sentence pair confidence (sc)

- □ It's hard to compute $P(e^k, f^k)$ without knowing $P(e^k|f^k)$ which is estimated during the alignment process
- Assumption

$$\hat{P}(e^k, f^k) = P(e^k)P(f^k)$$

 P(e^k), P(f^k) can be estimated by source and target language models

Sentence pair confidence (sc)

Average log likelihood of each sentence pair

$$\mathcal{L}(e^k) = \frac{\sum_{e_i^k \in e^k} \log P(e_i^k | h)}{|e^k|}$$

$$\mathcal{L}(f^k) = \frac{\sum_{f_j^k \in f^k} \log P(f_j^k | h)}{|f^k|}$$

$$\mathcal{L}(e^k, f^k) = [\mathcal{L}(e^k) + \mathcal{L}(f^k)]/2$$
(3)

Sentence pair confidence score (sc)

$$sc(e^k, f^k) = \exp(\mathcal{L}(e^k, f^k))$$

$$= \sqrt{\left(\prod_{e_i^k \in e^k} P(e_i^k | h)\right)^{-|e^k|} \left(\prod_{f_j^k \in f^k} P(f_j^k | h)\right)^{-|f^k|}}$$
(4)

Genre-dependent sentence pair confidence (gdsc)

- Adopt training data toward a target genre.
- Use genre-dependent language models to assign sentence pair confidence
- □ Given genre g

$$gdsc(e^k, f^k) = sc(e^k, f^k|g)$$
(5)

 Average likelihood of each sentence is estimated by genre-specific language models

Sentence-dependent phrase alignment confidence (sdpc)

- □ We want to put sc into decoding process
 - Add a feature in phrase pairs
- Track from which sentence pairs the phrase pair was extracted
- Given a phrase pair (ep,fp), the sdpc score

$$sdpc(ep, fp) = \exp \frac{\sum_{(e^k, f^k) \in \mathcal{S}(ep, fp)} \log sc(e^k, f^k)}{|S(ep, fp)|}$$
$$S(ep, fp) = \{(e^k, f^k) | ep \in e^k, fp \in f^k\}$$
(6)

where S(ep, fp) is the set of sentences that the phrase pair come from

Experimental Results

Set-up

- \square EN \leftrightarrow ES
- Training & test data from 2 genres
 Europarl and News-Commentary (ACL'08-WMT)
- Standard toolkits
 Moses, SRILM,
 GIZA++ (multithreaded)

	English	Spanish		
Europarl (E)				
sentence pairs	sentence pairs 1,258,778			
unique sent. pairs	1,235,134			
avg. sentence length	27.9	29.0		
# words	35.14 M	36.54 M		
vocabulary	108.7 K	164.8 K		
News-Commentary (NC)				
sentence pairs	64,308			
unique sent. pairs	64,205			
avg. sentence length	24.0	27.4		
# words	1.54 M	1.76 M		
vocabulary	44.2 K	56.9 K		

Histogram of sc weights

- Calculated sc for the whole training data using NC, EP and NC+EP(NE) LMs.
- Many sentences
 get a much higher
 score in training
 than using MLE

Histogram of weight differences

- Calculated gdsc for Europal and News-Commentary training data using NC, EP and NC+EP(NE) LMs.
- □ For each sentence we computed the difference of gdsc between NC and EP LM, namely gdsc_{NC} gdsc_{EP} , and plot histogram.
- Similar analysis have been perform on NC-NE and NE-EP.

IBM Model 4 train perplexities when using Sentence Pair Confidence scores

IBM Model-4 train perplexities on train and test data

		None	EP+ NC	NC	EP
Train	$En \rightarrow Es$	46.76	42.36	42.97	44.47
	$Es \to En$	70.18	62.81	62.95	65.86
	$EP\;(En\toEs)$	91.13	90.89	91.84	90.77
Test	NC (En \rightarrow Es)	53.04	53.44	51.09	55.94
	$EP\;(Es\toEn)$	126.56	125.96	123.23	122.11
	NC (Es \rightarrow En)	81.39	81.28	78.23	80.33

- Perplexities drop significantly in training data of two translation directions.
- In test sets, perplexities also drop in genre which implied a better word alignment model had been learned.

Performance of sentence pair confidence scores (sc, gdsc)

	E06	E07	NCd	NCt1	NCt2
		ES —	→ EN		
None	33.26	33.23	36.06	35.56	35.64
NC+EP	33.23	32.29	36.12	35.47	35.97
NC	33.43	33.39	36.14	35.27	35.68
EP	33.36	33.39	36.16	35.63	36.17
		EN -	→ ES		
None	33.33	32.25	35.1	34.08	34.43
NC+EP	33.23	32.29	35.12	34.56	34.89
NC	33.3	32.27	34.91	34.07	34.29
EP	33.08	32.29	35.05	34.52	35.03

- The improvements on News-Commentary sets are obvious, especially on held-out evaluation sets NCt and NCt1; using EP obtained the best performance
- No evidence to show that using genre-dependent confidence will provide better result comparing with general confidence.

Performance of sentence-dependent phrase alignment confidence (sdpc)

	E06	E07	NCd	NCt1	NCt2
		ES —	→ EN		
None	33.26	33.23	36.06	35.56	35.64
NC+EP +sdpc	33.54	33.39	36.07	35.38	35.85
NC +sdpc	33.17	33.31	35.96	35.74	36.04
EP +sdpc	33.44	32.87	36.22	35.63	36.09
EN o ES					
None	33.33	32.25	35.1	34.08	34.43
NC+EP +sdpc	33.28	32.45	34.82	33.68	33.86
NC +sdpc	33.13	32.47	34.01	34.34	34.98
EP +sdpc	32.97	32.2	34.26	33.99	34.34

Across development and held-out sets the gains from sdpc are inconsistent

Conclusion

- We developed
 - sentence pair confidence (sc)
 - genre-dependent sentence pair confidence (gdsc)
 - sentence-dependent phrase alignement confidence (sdpc) scores.
- Using source and target language models to estimate scores.
- Experimental results shown that
 - Better approximation for empirical probability of sentence pairs. Improvements are obtained by using sentence pair confidence scores; using EP LM gain best scores.
 - No evidence to show that using gdsc will provide better result comparing with general confidence.
 - Test set model perplexities drop by using gsdc, but translation results are going against expectation
 - Did not observe consistent improvements by using sdpc

THANK YOU