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Abstract
We propose a statistical sentence simplifica-
tion system with log-linear models. In contrast
to state-of-the-art methods that drive sentence
simplification process by hand-written linguis-
tic rules, our method used a margin-based dis-
criminative learning algorithm operates on a
feature set. The feature set is defined on statis-
tics of surface form as well as syntactic and de-
pendency structures of the sentences. A stack
decoding algorithm is used which allows us to
efficiently generate and search simplification
hypotheses. Experimental results show that
the simplified text produced by the proposed
system reduces 1.7 Flesch-Kincaid grade level
when compared with the original text. We
will show that a comparison of a state-of-
the-art rule-based system (Heilman and Smith,
2010) to the proposed system demonstrates an
improvement of 0.2, 0.6, and 4.5 points in
ROUGE-2, ROUGE-4, and AveF10, respec-
tively.

1 Introduction
Complicated sentences impose difficulties on reading
comprehension. For instance, a person in 5th grade can
comprehend a comic book easily but will struggle to
understand New York Times articles which require at
least 12th grade average reading level (Flesch, 1981).
Complicated sentences also challenge natural language
processing applications including, but not limited to,
text summarization, question answering, information
extraction, and machine translation (Chandrasekar et
al., 1996). An example of this is syntactic parsing in
which long and complicated sentences will generate a
large number of hypotheses and usually fail in disam-
biguating the attachments. Therefore, it is desirable to
pre-process complicated sentences and generate sim-
pler counter parts. There are direct applications of sen-
tence simplification. Dalemans et al. (2004) applied
sentence simplification so that the automatically gen-
erated closed caption can fit into limited display area.
The Facilita system generates accessible content from
Brazilian Portuguese web pages for low literacy readers
using both summarization and simplification technolo-
gies (Watanabe et al., 2009).

This paper tackles sentence-level factual simplifica-
tion (SLFS). The objective of SLFS is twofold. First,
SLFS will process the syntactically complicated sen-
tences. Second, while preserving the content meaning,
SLFS outputs a sequence of simple sentences. SLFS is
an instance of the broader spectrum of text-to-text gen-
eration problems, which includes summarization, sen-
tence compression, paraphrasing, and sentence fusion.
Comparing to sentence compression, sentence simplifi-
cation requires the conversion to be lossless in sense of
semantics. It is also different from paraphrasing in that
it generates multiple sentences instead of one sentence
with different constructions.

There are certain specific characteristics that compli-
cate a sentence, which include length, syntactic struc-
ture, syntactic and lexical ambiguity, and an abundance
of complex words. As suggested by its objective, sen-
tence simplification outputs “simple sentences”. Intu-
itively, a simple sentence is easy to read and under-
stand, and arguably easily processed by computers. A
more fine-tuned definition on a simple sentence is sug-
gested in Klebanov et al. (2004), and is termed Easy
Access Sentences (EAS). EAS in English is defined as
1) EAS is a grammatical sentence; 2) EAS has one fi-
nite verb; 3) EAS does not make any claims that were
not present, explicitly or implicitly; 4) An EAS should
contain as many named entities as possible.

While the last two requirements are difficult to quan-
tify, the first two provide a practical guideline for sen-
tence simplification. In this paper, we treat the sen-
tence simplification process as a process of statistical
machine translation. Given the input of a syntactically
complicated sentence, we translate it into a set of EAS
that preserves as much information as possible from the
original sentence. We develop the algorithm that can
generate a set of EAS from the original sentence and
a model to incorporate features that indicate the merit
of the simplified candidates. The model is discrimina-
tively trained on a data set of manually simplified sen-
tences.

We briefly review related work in the area of text-to-
text generation in Section 2. The proposed model for
statistical sentence simplification is presented in Sec-
tion 3. In Section 4 we introduce the decoding algo-
rithm. Section 5 and 6 describe the discriminative train-
ing method we use and the feature functions. Experi-



ments and analysis are present in Section 7, followed
by the conclusion in Section 8.

2 Related Work
Given the problematic nature of text-to-text generation
that takes a sentence or a document as the input and op-
timizes the output toward a certain objective, we briefly
review state-of-art approaches of text-to-text genera-
tion methods.

Early approaches in summarization focus on extrac-
tion methods which try to isolate and then summarize
the most significant sentences or paragraphs of the text.
However, this has been found to be insufficient because
it usually generates incoherent summaries. Barzilay
and McKeown (2005) proposed sentence fusion for
multi-document summarization, which produces a sen-
tence that conveys common information of multiple
sentences based upon dependency tree structures and
lexical similarity.

Sentence compression generates a summary of a sin-
gle sentence with minimal information loss, which can
also be treated as sentence-level summarization. This
approach applies word deletion, in which non informa-
tive words will be removed from the original sentence.
A variety of models were developed based on this per-
spective, ranging from generative models (Knight and
Marcu, 2002; Turner and Charniak, 2005) to discrim-
inative models (McDonald, 2006) and Integer Linear
Programming (Clarke, 2008). Another line of research
treats sentence compression as machine translation, in
which tree-based translation models have been devel-
oped (Galley and McKeown, 2007; Cohn and Lapata,
2008; Zhu et al., 2010). Recently, Woodsend and La-
pata (2011) proposed a framework to combine tree-
based simplification with ILP.

In contrast to sentence compression, sentence sim-
plification generates multiple sentences from one input
sentence and tries to preserve the meaning of the orig-
inal sentence. The major objective is to transform sen-
tences in complicated structures to a set of easy-to-read
sentences, which will be easier for human to compre-
hend, and hopefully easier for computers to deal with.

Numerous attempts have been made to tackle the
sentence simplification problem. One line of research
has explored simplification with linguistic rules. Jon-
nalagadda (2006) developed a rule-based system that
take into account the discourse information. This
method is applied on simplification of biomedical text
(Jonnalagadda et al., 2009) and protein-protein infor-
mation extraction (Jonnalagadda and Gonzalez, 2010).
Chandrasekar and Srinivas (1997) automatically in-
duced simplification rules based on dependency trees.
Additionally, Klebanov et al. (2004) develop a set of
rules that generate a set of EAS from syntactically com-
plicated sentences. Heilman and Smith (2010) pro-
posed an algorithm for extracting simplified declarative
sentences from syntactically complex sentences.

The rule-based systems performs well on English.

However, in order to develop a more generic frame-
work for other languages, a statistical framework is
preferable. In this work, we follow this direction to
treat the whole process as a statistical machine trans-
lation task with an online large-margin learning frame-
work. The method is generalizable to other languages
given labeled data. To ensure the information is pre-
served, we build a table of EAS for each object, and use
stack decoding to search for the optimal combination
of EAS. A feature vector is assigned to each combina-
tion and we use an end-to-end discriminative training
framework to tune the parameters given a set of train-
ing data. Our method is different from Klebanov et al.
(2004) in the way that we applied statistical model to
rank the generated sentences. And the difference be-
tween our method and Heilman and Smith (2010) is
that we integrate linguistic rules into the decoding pro-
cess as soft constraints in order to explore a much larger
search space.

3 Statistical Sentence Simplification with
Log-linear Models

Assume that we are given an English sentence e, which
is to be simplified into a set S of k simple sentences
{s1, ..., si, ..., sk}. Among all possible simplified sets,
we will select the set with the highest probability
Ŝ(e) = argmax∀S Pr(S|e). As the true probability
distribution of Pr(S|e) is unknown, we have to ap-
proximate Pr(S|e) by developing a log-linear model
p(S|e). In contrast to noisy-channel models (Knight
and Marcu, 2002; Turner and Charniak, 2005) we di-
rectly compute simplification probability by a condi-
tional exponential model as follow:

p(S|e) =
exp[

∑M
m=1 wmfm(S, e)]∑

S′ exp[
∑M

m=1 wmfm(S ′, e)]
(1)

where fm(S, e),m = 1, ...,M are feature functions on
each sentence; there exists a model parameter wm are
feature weights to be learned.

In this framework, we need to solve decoding, learn-
ing, and modeling problems. The decoding prob-
lem, also known as the search problem, is denoted by
the argmax operation which finds the optimal S that
maximize model probabilities. The learning problem
amounts to obtaining suitable parameter values wM

1

subject to a loss function on training samples. Finally,
the modeling problem amounts to developing suitable
feature functions that capture the relevant properties
of the sentence simplification task. Our sentence sim-
plification model can be viewed as English-to-English
log-linear translation models. The defining character-
istic that makes the problem difficult is that we need to
translate from one syntactically complicated sentence
to k simple sentences, and k is not predetermined.
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Figure 1: Constructing simple sentences

4 Decoding
This section presents a solution to the decoding prob-
lem. The solution is based on a stack decoding algo-
rithm that finds the best S given an English sentence
e. Our decoding algorithm is inspired by the decoding
algorithms in speech recognition and machine transla-
tion (Jelinek, 1998; Koehn et al., 2007). For example,
with a sentence e “John comes from England, works
for IMF, and is an active hiker”, the stack decoding
algorithm tries to find S, which is a set of three sen-
tences: “John comes from England”, “John works for
IMF” and “John is an active hiker”. Note that S is a
set of k simple sentences S = {s1, ..., si, ..., sk}. We
can assume the items si are drawn from a finite set S
of grammatical sentences that can be derived from e.
Therefore, the first step is to construct the set S.

4.1 Constructing simple sentences
We define a simple English sentence as a sentence with
SVO structure, which has one subject, one verb and
one object. Our definition is similar to the definition
of EAS, mentioned in section 1. However, we only
focus on the SVO structure and other constraints are
relaxed. We assume both subjects (S) and objects (O)
are noun phrases (NP) in the parse tree. For a given
English sentence e, we extract a list SNP of NPs and
a list SV of verbs. SNP has an additional empty NP
in order to handle intransitive verbs. A straightforward
way to construct simple sentences is to enumerate all
possible sentences based on SNP and SV . That results
in |SNP |2|SV | simple sentences.

Figure 1 illustrates the constructions for “John
comes from England, works for IMF, and is an active
hiker”. The system extracts a noun phrase list SNP

{John, England, IMF, an active hiker} and a verb list
SV {comes from, works for, is}. Our model constructs
simple sentences such as “John comes from England” ,
“John comes from IMF” and “John comes from an ac-
tive hiker”. The total number of simple sentences, |S|,
is 48.

4.2 Decoding algorithm
Given a list of simple sentences S, the decoder’s ob-
jective is to construct and find the best simplification
candidate S ⊂ S. We call S a hypothesis in the con-
text of the decoder. The rationale behind our left-right
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John comes from an active hiker 

John is an active hiker 

IMF is an active hiker 

Figure 2: Left-right decoding by objects

stack decoding algorithm is to construct a hypothesis
that covers all noun phrases and verb phrases of the
original sentence.

The decoding task is to find the optimal solution over
all possible combinations of simple sentences, given
the feature values and learned feature weights. De-
pending on the number of simple sentences per hypoth-
esis, the search space grows exponentially. Since each
simple sentence contains an object, we can group the
candidate sentences by the object noun phrase. As a
result, it is not necessary to evaluate all combinations;
we can look at one object at a time from left to right.
Figure 2 demonstrates the idea of decoding via objects.
We have three objects “England”, “IMF” and “an ac-
tive hiker”. The algorithm first finds potential simple
sentences which have “England” as object. After fin-
ishing “England”, the algorithm expands to “IMF” and
“an active hiker”. In this example the optimal path is
the path with bold arrows.

Algorithm 1 : K-Best Stack Decoding

1: Initialize an empty hypothesis list HypList
2: Initialize HYPS is a stack of 1-simple-sentence hy-

potheses
3: for i = 0 to |SV | do
4: Initialize stack expandh
5: while HYPS is not empty do
6: pop h from HYPS
7: expandh ← Expand-Hypothesis(h)
8: end while
9: expandh← Prune-Hypothesis(expandh, stack-

size)
10: HYPS← expandh
11: Store hypotheses of expandd into HypList
12: end for
13: SortedHypList← Sort-Hypothesis(HypList)
14: Return K-best hypotheses in SortedHypList

Algorithm 1 is a version of stack decoding for sen-
tence simplification. The decoding process advances
by extending a state that is equivalent to a stack of hy-
potheses. Line 1 and 2 initialize HYPS stack and Hy-
pList. A HYPS stack maintains a current search state,
meanwhile HypList stores potential hypotheses after
each state. HYPS is initialized with hypotheses con-
taining one simple sentence. Line 3 starts a loop over
states. The number of maximum states is equal to the



size of SV plus one. Lines 4-8 represent the hypothesis
expansion.
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Figure 3: A visualization for stack decoding

Figure 3a illustrates the pop-expand process of
HYPS stack with 1-simple-sentence hypotheses. The
expansion in this situation expands to a 2-simple-
sentence hypotheses-stack expandh. The size of
expandh will exponentially increase according to the
size of SV and SNP . Therefore, we prefer to main-
tain expandh within a limit number (stack-size) of hy-
potheses. Line 9 helps the decoder to control the size
of expandh by applying different pruning strategies:
word coverage, model score or both. Figure 3b illus-
trates the pruning process on expandh with 2-simple-
sentence hypotheses. Line 10 replaces the current state
with a new state of the expanded hypotheses. Before
moving to a new state, HypList is used to preserve po-
tential hypotheses of the current state. Line 13 sorts
hypotheses in HypList according to their model scores
and a K-best list is returned in line 14.

5 Learning
Since defining a log-linear sentence simplification
model and decoding algorithm has been completed,
this section describes a discriminative learning algo-
rithm for the learning problem. We learn optimized
weight vector w by using the Margin Infused Relaxed
Algorithm or MIRA (Crammer and Singer, 2003),
which is an online learner closely related to both the
support vector machine and perceptron learning frame-
work. In general, weights are updated at each step time

i according to:

wi+1 = argminwi+1
||wi+1 − wi||

s.t. score(S, e) ≥ score(S ′, e) + L(S,S ′)
(2)

where L(S,S ′) is a measure of the loss of using S ′
instead of the simplification reference S; score() is a
cost function of e and S and in this case is the decoder
score.

Algorithm 2 : MIRA training for Sentence Simplifier

training set τ = {ft, et}Tt=1 has T original English
sentences with the feature vector ft of et.
ε is the simplification reference set.
m-oracle set O = {}.
The current weight vector wi.

1: i=0
2: for j = 1 to Q do
3: for t = 1 to T do
4: H ← get K Best(St ; wi)
5: O← get m Oracle(H ; εt)

6: γ =
m∑
o=1

K∑
h=1

α(eo, eh; εt)(feo − feh)

7: wi+1 = wi + γ
8: i = i+ 1
9: end for

10: end for
11: Return

∑Q∗T
i=1 wi

Q∗T

Algorithm 2 is a version of MIRA for training the
weights of our sentence simplification model. On each
iteration, MIRA considers a single instance from the
training set (St, et) and updates the weights so that the
score of the correct simplification εt is greater than the
score of all other simplifications by a margin propor-
tional to their loss. However, given a sentence there are
an exponential amount of possible simplification can-
didates. Therefore, the optimizer has to deal with an
exponentially large number of constraints. To tackle
this, we only consider K-best hypotheses and choose
m-oracle hypotheses to support the weight update de-
cision. This idea is similar to the way MIRA has been
used in dependency parsing and machine translation
(McDonald et al., 2005; Liang et al., 2006; Watanabe
et al., 2007).

On each update, MIRA attempts to keep the new
weight vector as close as possible to the old weight vec-
tor. Subject to margin constraints keep the score of the
correct output above the score of the guessed output
by updating an amount given by the loss of the incor-
rect output. In line 6, α can be interpreted as an up-
date step size; when α is a large number we want to
update our weights aggressively, otherwise weights are



updated conservatively. α is computed as follow:

α = max(0, δ)

δ = min

{
C, L(eo,eh;εt)−[score(eo)−score(eh)]

||Seo−feh ||
2
2

}
(3)

where C is a positive constant used to cap the maxi-
mum possible value of α; score() is the decoder score;
and L(eo, eh; εt) is the loss function.
L(eo, eh; εt) measures the difference between oracle

eo and hypothesis eh according to the gold reference εt.
L is crucial to guide the optimizer to learn optimized
weights. We defined L(eo, eh; εt) as follow

L(eo, eh; εt) = AveFN (eo, εt)−AveFN (eh, εt)
(4)

where AveFN (eo, εt) and AveFN (eh, εt) is the aver-
age n-gram (n=[2:N]) cooccurrence F-score of (eo, εt)
and (eh, εt), respectively. In this case, we optimize
the weights directly against the AveFN metric over the
training data. AveFN can be substituted by other eval-
uation metrics such as the ROUGE family metric (Lin,
2004). Similar to the perceptron method, the actual
weight vector during decoding is averaged across the
number of iterations and training instances; and it is
computed in line 11.

6 Modeling
We now turn to the modeling problem. Our fundamen-
tal question is: given the model in Equation 1 with
M feature functions, what linguistic features can be
leveraged to capture semantic information of the orig-
inal sentence? We address the question in this section
by describing features that cover different levels of lin-
guistic structures. Our model incorporates 177 features
based on information from the original English sen-
tence e which contains chunks, syntactic and depen-
dency parse trees (Ramshaw and Marcus, 1995; Marn-
effe et al., 2006).

6.1 Simple sentence level features
A simplification hypothesis s contains k simple sen-
tences. Therefore, it is crucial that our model chooses
reasonable simple sentences to form a hypothesis. For
each simple sentence si we incorporated the following
feature functions:

Word Count These features count the number
word in subject (S), verb (V) and object (O), also count-
ing the number of proper nouns in S and the number of
proper nouns in O.

Distance between NPs and Verbs These features
focus on the number of NPs and VPs in between S, V
and O. This feature group includes the number of NPs
between S and V, the number of NPs between V and
O, the number of VPs between S and V, the number of
VPs between V and O.

Dependency Structures It is possible that the
decoder constructs semantically incorrect simple sen-
tences, in which S, V, and O do not have any semantic

connection. One way to possibly reduce this kind of
mistake is analyze the dependency chain between S, V,
and O on the original dependency tree of e. Our de-
pendency structure features include the minimum and
maximum distances of (S:O), (S:V), and (V:O).

Syntactic Structures Another source of informa-
tion is the syntactic parse tree of e, which can be used to
extract syntactic features. The sentence-like boundary
feature considers the path from S to O along the syn-
tactic parse tree to see whether it crosses the sentence-
like boundary (e.g. relative clauses). For example in
the original sentence “John comes from England and
works for IMF which stands for International Mone-
tary Funds”, the simple sentence “IMF stands for In-
ternational Monetary Funds” has sentence-like bound-
ary feature is triggered since the path from “IMF” to
“International Monetary Funds” on the syntactic tree
of the original sentence contains an SBAR node.

Another feature is the PP attachment feature. This
checks if the O contains a prepositional phrase attach-
ment or not. Moreover, the single pronoun feature will
check if S and O are single pronoun or not. The last
feature is VO common ancestor, which looks at the syn-
tactic tree to see whether or not V and O share the same
VP tag as a common ancestor.

6.2 Interactive simple sentence features

A collection of grammatically sound simplified sen-
tences does not necessarily make a good hypothesis
Dropping words, unnecessary repetition, or even wrong
order can make the hypothesis unreadable. Therefore,
our model needs to be equipped with features that are
capable to measure the interactiveness across simple
sentences and are also able to represent s in the best
possible manner. We incorporated the following fea-
tures into our model:

Sentence Count This group of features consider
the number of sentences in the hypothesis. It consists
of an integral feature of sentence count sci = |S|, and
a group of binary features scbk = δ(|S|) = k where
k ∈ [1, 6] is the number of sentence.

NP and Verb Coverage The decoder’s objective
is to improve the chance of generating hypotheses that
cover all NP and verbs of the original sentence e. These
features count the number of NPs and verbs that have
been covered by the hypothesis, by the 1st and 2nd sim-
ple sentences. Similarly, these features also count the
number of missing NPs and verbs.

S and O cross sentences These features count how
many times S of the 1st simple sentence is repeated as
S of the 2nd simple sentence in a hypothesis. They also
count the number of times O of the 1st sentence is the
S of 2nd sentence.

Readability This group of features computes
statistics related to readability. It includes Flesch,
Gunning-Fog, SMOG, Flesch-Kincaid, automatic read-
ability index, and average all scores (Flesch, 1948;
Gunning, 1968; McLaughlin, 1969; Kincaid et al.,



1975). Also, we compute the edit-distance of hypothe-
sis against the original sentence, and the average word
per simple sentence.

Typed Dependency At simple sentence level we
examine dependency chains of S, V and O, while at
the hypothesis level we analyze the typed dependency
between words. Our model has 46 typed dependencies
which are represented by the 92 count features for the
1st and 2nd simple sentence.

7 Experiments and Analysis

7.1 Data

To enable the study of sentence simplification with our
statistical models, we search for parallel corpora, in
which the sources are original English sentences and
the target is its simplification reference. For example,
the source is “Lu is married to Lian Hsiang , who is
also a vajra master , and is referred as Grand Madam
Lu ”. The simplification reference contains 3 simple
sentences which are “Lu is married to Lian Hsiang”;
“Lian Hsiang is also a vajra master”; “Lu is referred
as Grand Madam Lu”. To the best of our knowledge,
there is no such publicly available corpora under these
conditions1.

Our first attempt is to collect data automatically from
original English and Simple English Wikipedia, based
on the suggestions of Napoles and Dredze (2010).
However, we found that the collected corpus is unsuit-
able for our model. For example, consider the origi-
nal sentence “Hawking was the Lucasian Professor of
Mathematics at the University of Cambridge for thirty
years, taking up the post in 1979 and retiring on 1 Oc-
tober 2009”. The Simple Wikipedia reads “Hawking
was a professor of mathematics at the University of
Cambridge (a position that Isaac Newton once had)”
and “He retired on October 1st 2009”. The problems
with this are that “(a position that Isaac Newton once
had)” did not appear in the original text, and the pro-
noun “He” requires our model to perform anaphora res-
olution which is out of scope of this work.

We finally decided to collect a set of sentences
for which we obtained one manual simplification
per sentence. The corpus contains 854 sentences,
among which 25% sentences are from the New York
Times and 75% sentences are from Wikipedia. The
average sentence length is 30.5 words. We reserved
100 sentences for the unseen test set and the rest
is for the development set and training data. The
annotators were given instructions that explained the
task and defined sentence simplification with the aid
of examples. They were encouraged not to introduce
new words and try to simplify by restructuring the
original sentence. They were asked to simplify while
preserving all important information and ensuring the

1 We are aware of data sets from (Cohn and Lapata, 2008;
Zhu et al., 2010), however, they are more suitable in sentence
compression task than in our task.

simplification sentences remained grammatically cor-
rect2. Some examples from our corpus are given below:

Original: “His name literally means Peach Taro ; as
Taro is a common Japanese boy ’s name , it is often
translated as Peach Boy .”
Simplification: “His name literally means Peach Taro”
; “Taro is a common Japanese boy ’s name” ; “Taro is
often translated as Peach Boy”

Original: “These rankings are likely to change thanks
to one player , Nokia , which has seen its market share
shrink in the United States .”
Simplification: “These rankings are likely to change
thanks to one player , Nokia” ; “Nokia has seen its mar-
ket share shrink in the United States”

7.2 Evaluation methods
Evaluating sentence simplification is a difficult prob-
lem. One possible way to overcome this is to use
readability tests. There have been readability tests
such as Flesch, Gunning-Fog, SMOG, Flesch-Kincaid,
etc. (Flesch, 1948; Gunning, 1968; McLaughlin, 1969;
Kincaid et al., 1975). In this work, we will use Flesch-
Kincaid grade level which can be interpret as the num-
ber of years of education generally required to under-
stand a text.

Furthermore, automatic evaluation of summaries has
also been explored recently. The work of Lin (2004)
on the ROUGE family metric is perhaps the best
known study of automatic summarization evaluation.
Other methods have been proposed such as Pyramid
(Nenkova et al., 2007). Recently, Aluisio et al. (2010)
proposed readability assessment for sentence simplifi-
cation.

Our models are optimized toward AveF10, which is
the average F-score of n-gram concurrence between
hypothesis and reference in which n is from 2 to 10.
Besides AveF10, we will report automatic evaluation
scores on the unseen test set in Flesch-Kincaid grade
level, ROUGE-2 and ROUGE-4. When we evaluate on
a test set, a score will be reported as the average score
per sentence.

7.3 Model behaviors
How well does our system learn from the labeled cor-
pus? To answer this question we investigate the interac-
tions of model and decoder hyper parameters over the
training data. We performed controlled experiments on
stack-size, K-best, C, and m-oracle parameters. For
each parameter, all other model and decoder values
are fixed, and the only change is with the parameter’s
value of interest. Figure 4 illustrates these experiments
with parameters over the training data during 15 MIRA
training iterations with AveF10 metric. The weight
vector w is initialized randomly.

2 Our corpus will be made publicly available for other
researchers.



Stack size 

46

46.5

47

47.5

48

48.5

49

49.5

1 2 3 4 5 6 7 8 9 101112131415

AveF10 

Iterations 

500 300

200 100

50

(a) stack-size

K-Best 

46

46.5

47

47.5

48

48.5

49

49.5

1 2 3 4 5 6 7 8 9 101112131415

AveF10 

Iterations 

100 200

300 400

500

(b) K-best

C 

46

46.5

47

47.5

48

48.5

49

49.5

1 2 3 4 5 6 7 8 9 101112131415

AveF10 

Iterations 

0.3 0.2

0.1 0.07

0.04

(c) Constant C

M-Oracle 

46

46.5

47

47.5

48

48.5

49

49.5

1 2 3 4 5 6 7 8 9 101112131415

AveF10 

Iterations 

1 2

3 4

5

(d) m-oracle

Figure 4: Performance of the sentence simplifier on training data over 15 iterations when optimized towardAveF10

metric and under various conditions.

In Figure 4a, we experimented with 5 different val-
ues from 100 to 500 hypotheses per stack. The ex-
pected outcome is when we use a larger stack-size the
decoder may has more chance to find better hypothe-
ses. However, a larger stack-size will obviously cost
more memory and run time is slower. Therefore, we
want to find a stack-size that compromises conditions.
These experiments show that with a stack-size of 200,
our model performed reasonably well in comparison
with 300 and 500. A stack-size of 100 is no better than
200, while a stack-size of 50 is much worse than 200.

In Figure 4b, we experimented with 5 different val-
ues of K-best list with K from 100 to 500. We ob-
served a K-best list of 300 hypotheses seems to perform
well compare to other values. In terms of stability, the
curve of 300-best list appears less fluctuation than other
curves over 15 iterations.

C is the hyper-parameter which is used in Equation 3
for weight updating in MIRA. Figure 4c shows experi-
ments with different constant C. If C is a large number,
it means our model prefers an aggressive weight up-
dating scheme, otherwise, our model updates weights
conservatively. When C is 0.3 or 0.2 the performance
is worse than 0.1 or 0.07 and 0.04.

The last controlled experiments are shown in Fig-
ure 4d, in which we test different values of m rang-
ing from 1 to 5. These experiments show that using
2 oracle hypotheses consistently leads to better perfor-
mances in comparison with other values.

7.4 Performance on the unseen test set

After exploring different model configurations we
trained the final model with stack-size = 200; K-best
= 300; C = 0.04; and m-oracle = 2. AveF10 score of
the final system on the training set is 50.69 which is
about one AveF10 point better than any system in Fig-
ure 4. We use the final system to evaluate on the unseen
test set. Also, we compare our system with the rule-
based system (henceforth H&S) proposed by Heilman

and Smith (2010).3,4

Original Reference H&S Our system
9.6 8.2 8.3 7.9

Table 1: Flesch-Kincaid grade level of original, refer-
ence, H&S, and our proposed simplification on the un-
seen test set.

System AveF10 ROUGE-2 ROUGE-4

H&S 51.0 82.2 72.3
Our system 55.5 82.4 72.9

Table 2: Results on the unseen test set with AveF10,
ROUGE-2 and ROUGE-4 scores. Our system outper-
forms the rule-based system proposed by Heilman and
Smith (2010).

We first compare our system with H&S in the Flesch-
Kincaid grade level, which indicates comprehension
difficulty when reading an English text. The higher the
number the more difficult the text. Table 1 shows the
original text requires a reader of grade level 9 or 10.
Both H&S and us provided simplification candidates,
which are easier to read compared to the original text.
Our model generated simpler hypotheses than the ref-
erence, while H&S outputs were slightly more difficult
to read than the reference.

Next, we compare our system with H&S in
ngram-based metrics such as AveF10, ROUGE-2 and
ROUGE-4 as shown in Table 2. Our results are
better than H&S by 0.2 and 0.6 point in ROUGE-2
and ROUGE-4, respectively. More interestingly, our
system outperformed H&S by 4.5 points in AveF10,
3 We thank Michael Heilman for providing us his code.
4 We could not reach the authors of (Zhu et al., 2010) in or-
der to obtain outputs. Kristian Woodsend kindly provided us
partial outputs of (Woodsend and Lapata, 2011), therefore
we did not include their outputs in this section.



Positive examples
O In 2011 , IBM gained worldwide attention for its artificial intelligence program Watson , which was exhibited on

Jeopardy against game show champions Ken Jennings and Brad Rutter .
S Watson was exhibited on Jeopardy against game show champions Ken Jennings and Brad Rutter .

In 2011 , IBM gained worldwide attention for its artificial intelligence program Watson .
R In 2011 , IBM gained worldwide attention for its artificial intelligence program Watson .

Watson was exhibited on Jeopardy against game show champions Ken Jennings and Brad Rutter .

O He told Radiozurnal that he was halting the campaign for Christmas and would restart it in the new year .
S He told Radiozurnal .

He was halting the campaign for Christmas .
He would restart it in the new year .

R He told Radiozurnal .
He was halting the campaign for Christmas .
He would restart it in the new year .

Negative examples
O He drives a 10-year-old Opel Corsa , but lives in a pleasant town house in the sleepy capital, Maseru, with wireless

Internet and a housekeeper who comes twice a week .
S He drives a 10-year-old Opel Corsa .

He lives in a pleasant town house in the sleepy capital, Maseru, with wireless Internet and a housekeeper who .
R He drives a 10-year-old Opel Corsa .

He lives in a pleasant town house in the sleepy capital, Maseru, with wireless Internet and a housekeeper .
a housekeeper comes twice a week .

O An elderly Georgian woman was scavenging for copper to sell as scrap when she accidentally sliced through an
underground cable and cut off Internet services to all of neighbouring Armenia , it emerged on Wednesday .

S An elderly Georgian woman was scavenging for copper to sell .
scrap cut off Internet services to all of neighbouring Armenia .

R An elderly Georgian woman was scavenging for copper to sell as scrap .
she accidentally sliced through an underground cable .
she cut off Internet services to all of neighbouring Armenia .
it emerged on Wednesday .

Table 3: We show the original sentence (O), our simplification (S), and simplification reference (R). Positive
examples are cases when our simplifications closely match with the reference. Meanwhile, negative examples
show cases when our model can not produce good simplifications.

which is a metric considering both precision and recall
up to 10-gram. Over 100 sentences of the unseen test
set, H&S outperforms us in 43 sentences, but is worse
than our system in 51 sentences.

Table 3 shows examples of our system on the unseen
test set. We present examples in cases where the pro-
posed model works well and does not work well.

7.5 Discussions
This work shares the same line of research with (Kle-
banov et al., 2004; Heilman and Smith, 2010) in
which we all focus on sentence-level factual simplifi-
cation. However, a major focus of our work is on log-
linear models which offer a new perspective for sen-
tence simplification on decoding, training, and model-
ing problems. To contrast, consider rule-based systems
(Klebanov et al., 2004; Daelemans et al., 2004; Sid-
dharthan, 2006; Heilman and Smith, 2010), in which
sentence simplification processes are driven by hand-
written linguistic rules. The linguistic rules represent
prior information about how each word and phrase can
be restructured. In our model, each linguistic rule is en-
coded as a feature function and we allow the model to
learn the optimized feature weights based on the nature
of training data.

A potential issue is the proposed model might be sus-

ceptible to the sparseness issue. We alleviated this is-
sue by using structure level and count feature functions
which are lexically independent.

There are some limitations in this work. First, the
proposed model does not introduce new words which
may lead to generate grammatically incorrect simple
sentences. Second, we focus on structure simplification
and not on lexical simplification. Finally, the proposed
model does not deal with anaphora resolution, which
means our model can generate repeatedly noun phrases
repeatedly in multiple simple sentences.

8 Conclusions

In this paper we proposed a novel method for sen-
tence simplification based on log-linear models. Our
major contributions are the stack decoding algorithm,
the discriminative training algorithm, and the 177 fea-
ture functions within the model. We have presented
insight the analyses of our model in controlled settings
to show the impact of different model hyper parame-
ters. We demonstrated that the proposed model outper-
forms a state-of-the-art rule-based system on ROUGE-
2, ROUGE-4, and AveF10 by 0.2, 0.6, and 4.5 points,
respectively.

Another way to improve our model is feature engi-



neering, which can be applied in future work. To ad-
dress the data sparsity issue, we plan to use crowd-
sourcing such as Amazon Mechanical Turk to collect
more training data. We plan to incorporate an n-gram
LM to improve the grammaticality of hypotheses.
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