Source-side Dependency Tree Reordering Models with Subtree Movements and Constraints

Nguyen Bach, Qin Gao and Stephan Vogel Carnegie Mellon University

Overview

- We introduce source-side dependency tree reordering models
 - Inspired by lexicalized reordering model (Koehn et. al 2005), hierarchical dependency translation (Shen et. al, 2008) and cohesive decoding (Cherry, 2008)
- We model reordering events of phrases associated with source-side dependency trees
 - Inside/Outside subtree movements efficiently capture the statistical distribution of the subtree-to-subtree transitions in training data
 - Utilize subtree movements directly at the decoding time alongside with cohesive constraints to guide the search process
 - Improvements are shown in English-Spanish and English-Iraqi tasks

Outline

- Background & Motivations
- Source-side dependency tree reordering models
 - Modeling
 - Training
 - Decoding
- Experiments & Analysis
- Conclusions

Background of Reordering Models

What are the differences?

- Instead of using flat word structures to extract reordering events, utilize source-side dependency structures
 - Provide more linguistic cues for reordering events
- Instead of using pre-defined reordering patterns, learn reordering feature distributions from training data
 - Capture reordering events from real data
- Instead of preprocessing the data, discriminatively train the reordering model via MERT
 - Tighter integration with the decoder

Cohesive Decoding

- A cohesive decoding (Cherry, 08; Bach et. al., 09) is forcing the cohesive constraint:
 - When the decoder begins translation any part of a source subtree, it must cover all words under that subtree before it can translate anything outside.
- Source-side dependency tree reordering models
 - Efficiently capture the statistical distribution of the subtree-to-subtree transitions in training data.
 - Directly utilize it at the decoding time to guide the search process.

Outline

- Background of Reordering Models
- Source-side dependency tree reordering models
 - Modeling
 - Training
 - Decoding
- Experiments & Analysis
- Conclusions

Lexicalized Reordering Models (Tillmann, 2004; Koehn, et.al., 2005; Al-Onaizan & Papineni, 2006)

$$p(O | e, f) = \prod_{i=1}^{n} p(o_i | \overline{e}_i, \overline{f}_{a_i}, a_{i-1}, a_i)$$

where

f is the input sentence;

 $e = (\overline{e}_1, ..., \overline{e}_n)$ is the target language phrases;

 $a = (a_1, ..., a_n)$ is phrase alignments;

 \bar{f}_{a_i} is a source phrase which has a translated phrase \bar{e}_i defined by an alignment a_i ;

O is orientation phrase sequence; each o_i has a value over 3 possibles (M, S, D);

Pros & Cons of Lexicalized Reordering Models

Pros

- intuitively model flat word movements
- well-defined for phrase-based framework

Cons

- No linguistics structures
- Need alignment matrix to determine movements

Completed/Open subtrees

All words under a node have been translated then we call a **completed** subtree

Completed/Open subtrees

A subtree that has begun translation but not yet complete, an *open* subtree

Inside/Outside subtree movements

Inside/Outside subtree movements

A structure is moving **outside** a subtree if it leaves the subtree to be open

"d e" is moving <u>outside</u> a subtree rooted at "b"

Source-side Dependency Tree (SDT) Reordering Models

$$p(D | e, f) = \prod_{i=1}^{n} p(d_i | \overline{e}_i, \overline{f}_{a_i}, a_i, s_{i-1}, s_i)$$

```
where f is the input sentence; e=(\overline{e_1},...,\overline{e_n}) is the target language phrases; a=(a_1,...,a_n) is phrase alignments ; \overline{f}_{a_i} is a source phrase which has a translate d phrase \overline{e_i} defined by an alignment a_i;
```

 s_i and s_{i-1} are dependency structures of source phrases \bar{f}_{a_i} and $\bar{f}_{a_{i-1}}$; D represents the sequence of syntactic phrase movements over source dependency tree; each $d_i = \{I, O\}$;

Extended Source-side Dependency Tree (SDT) Reordering Models

$$p(D | e, f) = \prod_{i=1}^{n} p((o_d)_i | \overline{e}_i, \overline{f}_{a_i}, a_i, a_{i-1}, s_{i-1}, s_i)$$

```
where f is the input sentence; e=(\overline{e}_1,...,\overline{e}_n) is the target language phrases; a=(a_1,...,a_n) is phrase alignments ; \overline{f}_{\mathbf{a}_i} is a source phrase which has a translate d phrase \overline{e}_i defined by an alignment a_i; s_i and s_{i-1} are dependency structures of source phrases \overline{f}_{\mathbf{a}_i} and \overline{f}_{\mathbf{a}_{i-1}};
```

D represents the sequence of syntactic phrase movements over source dependency tree;

each
$$(o_d)_i = \{M_I, S_I, D_I, M_O, S_O, D_O\};$$

Extended Source-side Dependency Tree (SDT) Reordering Models

over source dependency tree;

each
$$(o_d)_i = \{M_I, S_I, D_I, M_O, S_O, D_O\};$$

Training

- Obtain dependency parse of the source side
- Given a sentence pair and the source side dependency tree
 - Phrase extraction: also extract source dependency structures of phrase pairs
 - Identify Inside/Outside movement by using
 Interruption Check Algorithms (Bach et.al., 2009)

Training

DO: a joint probability of subtree movements and lexicalized orientations

$$p((o_{j} - d_{k}) | \overline{e}_{i}, \overline{f}_{a_{i}}, o_{j}, d_{k}) = \frac{count (o_{j} - d_{k}) + \gamma}{\sum_{k} \sum_{j} (count (o_{j} - d_{k}) + \gamma)}$$

DOD: conditioned on subtree movements

$$p((o_{j} - d_{k}) | \overline{e_{i}}, \overline{f_{a_{i}}}, d_{k}) = \frac{count (o_{j} - d_{k}) + \gamma}{\sum_{k} (count (o_{j} - d_{k}) + \gamma)}$$

DOO: conditioned on lexicalized orientations

$$p((o_{j} - d_{k}) | \overline{e_{i}}, \overline{f_{a_{i}}}, o_{j}) = \frac{count (o_{j} - d_{k}) + \gamma}{\sum_{j} (count (o_{j} - d_{k}) + \gamma)}$$

Decoding

- Without cohesive constraints
 - Having no information about the source dependency tree information during the decoding time
 - Consider **both** subtree movements, and add them up to the translation model costs
- With cohesive constraints
 - The source dependency tree is available during the decoding time
 - Only consider either inside or outside movement, depending on the output of the interruption check algorithm

Outline

- Background of Reordering Models
- Source-side dependency tree reordering models
 - Modeling
 - Training
 - Decoding
- Experiments & Analysis
- Conclusion

Experiments setups

- Baseline: a phrase-based MT with lexicalized reordering model
- Coh: using cohesive constraints
- DO / DOD / DOO: using source-side dependency tree (SDT) reordering model with different parameter estimations
- DO+Coh / DOD+Coh / DOO+Coh: decoding with both SDT reordering model and cohesive constraints.

English-Spanish (Europarl)

English-Spanish: news-test2008

 Source-side dependency tree reordering models and cohesive constraints obtained improvements over the lexicalized reordering models.

English-Iraqi (TransTac)

 Decoding with both source-side dependency tree reordering models and cohesive constraints often obtain the best performance. Where are improvements coming from?

Test set breakdown

 Divide the test sets into three portions based on sentence-level TER of the baseline system

• μ and σ are mean and standard deviation of the whole test set

• Head, Tail and Mid as the sentence whose score is lower than μ -1/2 σ , higher than μ +1/2 σ and the rest

English-Spanish: nc-test2007

English-Spanish: news-test2008

English-Iraqi: june-2008

English-Iraqi: nov-2008

	june-08	nov-08	nc-test2007	news-test2008
Head	7.92	6.27	20.39	13.07
Mid	12.31	11.09	28.07	22.78
Tail	13.91	14.08	35.29	25.33

What is the most significant effect the sourcetree reordering models contribute?

Numbers of Reorderings

	nc-test2007	news-test2008	june-2008	nov-2008
Baseline	1507	1684	39	24
Coh	2045	2903	46	21
DO	2189	2113	97	58
DO+Coh	1929	1900	155	88
DOD	1735	2592	123	60
DOD+Coh	2070	2021	148	90
DOO	1735	1785	164	49
DOO+Coh	1818	1959	247	66

- More reorderings can be generated without losing performance.
- The source-tree reordering models provide a more discriminative mechanism to estimate reordering events.
- Reordering is more language-specific than general translation models, and the conditions for a reordering event to happen vary among languages.

Outline

- Background & Motivations
- Source-side dependency tree reordering models
 - Modeling
 - Training
 - Decoding
- Experiments & Analysis
- Conclusions

Conclusions & Future Work

Conclusions

- Source-side dependency tree reordering models are helpful
 - Model reordering event with **Inside/Outside** subtree movements
- The effectiveness was shown when comparing with a strong reordering model
- Obtained improvements with 2 language pairs and also covered a training corpus sizes, ranging from 500K up to 1.3M sentence pairs

Future work

- A hierarchical source side dependency reordering model: extend Galley&Manning (2008).
- Packed-forest dependency tree reordering models

Back up

What do you mean by introducing Inside/Outside notions?

 The movement of the subtree inside or outside a source subtree can be viewed as the decoder is leaving from the previous source state to the current source state.

Tracking facts about the subtree-to-subtree
transitions observed in the source side of wordaligned training data.

	Lexicalized	Source-tree
ask you # pedirle	dis swap	D_I *
ask you # pedirle	mono mono	M_I
ask you # pedirle	mono mono	M_O
once more # nuevamente	swap dis	S_O *
once more # nuevamente	dis swap	D_O
once more # nuevamente que	swap dis	S_O

inside and outside probabilities for phrase "ask you"- "pedirle" according to three parameter estimation methods

	M_I	S_I	D_I	M_O	S_O	D_O
DO	0.691	0.003	0.142	0.119	0.009	0.038
DOD	0.827	0.003	0.17	0.719	0.053	0.228
DOO	0.854	0.25	0.79	0.146	0.75	0.21

Distributions of Reordering Events

Observed **monotone** & **inside** (**M_I**) movements more often than other categories

Ney, 2006; Xiong, et.al., 2006; Chang, et. al., 2009)

