

Carnegie Mellon Virtual Babel: Towards Context-Aware Machine Translation in Minter 1144 Translation in Virtual Worlds

Ying Zhang¹ Nguyen Bach² ¹CMU Silicon Valley ²Language Technologies Institute Carnegie Mellon University

- Virtual Worlds (VWs) such as Second Life are becoming increasingly popular for many interaction/collaboration activities.
- Just as in real world, language barriers exist VWs.
- We develop machine translation services to facilitate multilingual communication in VWs.
- Context plays an important role in disambiguation and generate correct translations.
- Context information is easier to capture in VWs than in real
- We study **context-aware machine translation** in VWs.

Virtual World Applications

Virtual Education 3d Reality Classes

Seminar and discussion

Sightseeing

Machine Translation for Virtual Worlds

- Intercept incoming/outgoing messages and redirect to translation server.
- Phrase-based Statistical Machine Translation system based on CMU's SMT project.

Context-aware Machine Translation

Example 1	Chinese sentence:	在这儿能买到歌剧的票/tickets, admission, votes/吗?
	Reference translation:	Can I buy tickets for the opera here?
	MT output:	Here's opera can buy votes?
Example 2	Chinese sentence:	有红/red/的吗?
	Reference translation :	Do you have red wine?
	MT output:	There are red it?
Example 3	Chinese sentence:	下一班是几点/points, hours, dots/?
	Reference translation:	When is the next one (flight/train/bus/ferry)?
	MT output:	The next is a few points?

Table 2: Examples of incorrect machine translations generated by Google's online MT system.

- · Current MT systems look at surface form only
- Correct meaning of a sentence depends also on non-verbal context information such as time/location/users' gender/social background ...
- Conversational speech tends to be more concise and more context-dependent.
- Context information is more accessible in VWs than in real world which requires physical sensors and sensing algorithms (GPS for location; accelerometers for gesture; gender?)

- Context-aware Language Model
 - · Max-Entropy language model framework
 - · Context feature serves as additional "knowledge source"
- Logged conversational data with context information is used to train the model
- Context-aware Translation Model
- Estimate P(f/e, C): probability of f as \underline{e} 's translation given context C
- Training context-aware models via conversation analysis
- · Bootstrap the MT system using context-independent model
- "What do you mean", "I don't understand you", and walk-away indicate that conversation failed and translation is bad
- Adjust model probabilities based on feedback from automatic conversation

Ongoing Work

- Improving translation service performance and robustness
- · More conversational data collection
- · Analyzing context information
- Compare context-independent MT vs. context-aware MT

