Handling OOV Words In Arabic ASR Via Flexible Morphological Constraints

Nguyen Bach, Mohamed Noamany, Ian Lane, and Tanja Schultz

Overview

One key problem in ASR is the detection and recognition of out-of-vocabulary (OOV) words. We propose a novel framework where OOV-words are detected by applying a hybrid language model (HLM) during ASR. Recognition of OOV-words is performed using a combination of three methods: dictionary look-up, morphological composition, and direct phoneme-to-grapheme conversion.

Motivation

- OOV words often contain key information and are vital to realize effective information extraction and retrieval of multimedia data.
- OOV words recognition errors induce errors in neighboring words.

Problem

- Explicitly modeling OOV words during ASR as a sequence of subword models depends heavily on accuracy of phone recognizers.
- Correcting ASR errors using offline monolingual corpora heavily relies on confident scores, and minimal errors in 1-best ASR hypothesis.

Proposed Framework

Apply a HLM during ASR. OOV words expressed as a sequence of subwords units.

	Ely AlmqAs AlAmryky
HLM	Ely [A] [I] [m] [q] [A] [s] AlAmryky

OOV words recognized via a flexible back-off scheme. External knowledge sources apply an increasingly weaker constraints.

System Overview

Perform ASR decoding to obtain the 1-best hybrid hypothesis.

Reference	bMnh <mark>syHAkm</mark> <i>gyAbyA</i>
Baseline	bMnh <u>syHAsb</u> gyAbyp
Hybrid Hyp.	bMnh [s] [y] [H] [A] [k] [m] gyAbyA

Carnegie Mellon

If phone sequence detected in the ASR hypothesis we use three different methods applied to recognize OOV words.

1. Dictionary Lookup

If length(phone sequence) > 1, convert sequence into a word via P2G, retain OOV-word hypothesis if contained in very large (2M entries) dictionary, discard otherwise.

Reference: ... bMnh syHAkm gyAbyA ...

Baseline: ... bMnh syHAsb gyAbyp ...

Proposed Approach: ... bMnh [s] [y] [H] [A] [k] [m] gyAbyA ...

bMnh syHAkm gyAbyA

3. Direct Phoneme-to-Grapheme Conversion (P2G)

If length(phone sequence) > 2, convert the sequence into a word.

2. Morphological Composition

OOV words could be morphological variants of entry within recognition vocabulary.

Compose OOV-word by appending phone to

neighboring words.

If $P_{prefix}(x) > \delta$, append phone to the following word, else if $P_{suffix}(x) > \gamma$ else discard where x is a phone sequence with length = 1.

Reference: ... AlmTArAt wmdrjAt AlhbwT ...

Baseline: ... AlmTArAt wmdrkp AlhbwT ...

Proposed Approach: ... AlmTArAt [w] mdrjAt AlhbwT ...

AlmTArAt wmdriAt AlhbwT

WER in Small Vocabulary (30K) System WER in Large Vocabulary (220K) System

Significant reduction in WER, 5% truly novel OOV words recognized (large system), recognition accuracy in neighboring words improved.

Conclusion

- Proposed a novel framework for OOV word detection and recognition in Arabic ASR.
- Extended the HLM to estimate OOV words via subword units, and incorporated three methods to recognize OOV words via morphological constraints.