The UKA/CMU translation system for IWSLT 2006

Matthias Eck, Ian Lane, Nguyen Bach, Sanjika Hewavitharana, Muntsin Kolss, Bing Zhao, Almut Silja Hildebrand, Stephan Vogel, and Alex Waibel

> InterACT Research Laboratories: University of Karlsruhe, Karlsruhe, Germany Carnegie Mellon University, Pittsburgh, USA

Overview

- SMT System components
 - Phrase Alignment Models
 - PESA
 - Log-Linear Phrase Alignment (LogLin)
 - Language Model
 - Decoder
- Experimental Results
- Analysis
- Conclusions

PESA Alignment

Given source phrase

source sentence

target sentence

PESA Alignment

source sentence

• What is the translation of the source phrase?

target sentence

Back to IBM-1 probabilities...

target sentence

source sentence

PESA Alignment

Probability for this split:

PESA Alignment

Probability for this split:

$$\prod_{j=j_1}^{j_2} (\sum_{i=i_1}^{i_2} p(f_j | e_i))$$

"Inside Alignment Probability"

Word Alignment Matrix

Probability for this split:

$$\begin{split} &\prod_{j=j_1}^{j_2} (\sum_{i=i_1}^{i_2} p(f_j \mid e_i)) \\ * &\prod_{j=1}^{j_1-1} (\sum_{i \notin (i_1 \dots i_2)} p(f_j \mid e_i)) \\ * &\prod_{j=j_2+1}^{J} (\sum_{i \notin (i_1 \dots i_2)} p(f_j \mid e_i)) \end{split}$$

"Outside Alignment Probability"

PESA Alignment

- Optimize over target boundaries to find optimal split
- Look from both directions

$$p(f_i | e_i) \quad p(e_i | f_j)$$

- Online phrase extraction
 - Phrases are extracted as needed during decoding process
 - No restriction on phrase length

General idea:

LogLin extends idea of PESA by adding multiple features

e.g.

- Word alignment
- Fertility (Phrase length)
- Relative position in sentence pair
- Lexical features (IBM-1)
- Some feature functions might overlap
- ⇒ Framework of Log Linear Model is applied

Log-linear model to combine more feature functions

Model parameters: weights of the feature functions

- (e,f) is a sentence pair
- X is a phrase pair extracted from (e,f)

2 Step approach:

- 1. Find candidates using simple heuristics
- 2. Score candidates using feature functions

- For each source word: Find "center of gravity" of IBM1 probabilities
- ⇒ Projected center for this source word

- For each source word: Find "center of gravity" of IBM1 probabilities
- ⇒ Projected center for this source word

- For each source word: Find "center of gravity" of IBM1 probabilities
- ⇒ Projected center for this source word

- For each source word: Find "center of gravity" of IBM1 probabilities
- ⇒ Projected center for this source word

Find projected center of target phrase

 Average of centers to get projected target center for source phrase

 Predict target length using IBM-4 fertilities

 Predict target length using IBM-4 fertilities

- Predict target length using IBM-4 fertilities
- Generate candidates using the predictions for center and target length
- Target phrase does not have to have the projected center in the middle but it has to contain it
- ⇒ First step generates a (relatively small) number of phrase translation candidates

13 Features for candidate scoring

- 4: Phrase-level length relevance
 - Source phrase generates target phrase of this length
 - "Rest of sentence" generates "Rest of sentence" of this length
 - + reverse direction
- 4: IBM Model-1 scores
 - similar to PESA
 - Source phrase generates target phrase
 - "Rest of sentence" generates "Rest of sentence"
 - + reverse direction

13 Features for candidate scoring

 4: Bracket the sentence pair diagonal and inverse diagonal (both directions)

- 1: average alignment links per source word
 - Every block should contain at least one word alignment from the Viterbi path

Feature weights

- Weights for each feature function are learned using human aligned "gold standard phrase pairs"
- Weights are adjusted to optimize accuracy on these phrases

Problems:

- For BTEC data no human word alignment available to extract gold-standard phrase pairs
- Used previously trained weights (Chinese – English newswire data)
- ⇒ Should work reasonably well on Chinese BTEC
- ⇒ Questionable on other language pairs
- Overfitting possible due to overlapping features

Language Model

2 Options:

- 3-gram SRI language model (Kneser-Ney discounting)
- 6-gram Suffix Array language model (Good-Turing discounting)
- 6-gram consistently gave better results
- Only used 6-gram LM

Decoding

2 stage decoding process

- Build translation lattice using the extracted phrase pairs
- Search for best path through lattice
- Word reordering possible within reordering window (best results at ~4-5)

ASR output translation:
 Only translated 1best

Italian – English results

Open Track

20k lines supplied data

- 55k lines "Full BTEC"
- 3k lines web data (travel phrases)

	Open Track		C-STAR Track	
	BLEU	NIST	BLEU	NIST
PESA	0.2388	6.20	0.2630	6.66
LogLin	0.2719	6.61	0.2912	7.08

Arabic – English results

Open Track

20k lines supplied data

- 20k lines supplied data
- 20k lines additional translated BTEC
- 31k lines typed travel books (English)

	Open Track		C-STAR Track	
	BLEU	NIST	BLEU	NIST
PESA	0.1908	5.38	0.1989	5.62
LogLin	0.1995	5.34	0.2123	5.87

Chinese – English results

Open Track

40k lines supplied data

- 163k lines Full BTEC
- 106k lines newswire data (gathered with IR technique)
- 31k lines typed travel books (English)

		Open Track		C-STAR Track	
		BLEU	NIST	BLEU	NIST
PESA	read	0.1501	4.87	0.1622	5.19
	spont	0.1654	5.08	0.1645	5.24
LogLin	read	0.1630	4.97	-	-
	spont	0.1710	5.08	-	-

Japanese – English results

Open Track

40k lines supplied data

- 163k lines Full BTEC
- 4k medical dialogs

	Open Track		C-STAR Track	
	BLEU	NIST	BLEU	NIST
PESA	0.1868	5.63	0.1841	5.40
LogLin	0.1830	5.93	-	-

Chinese – English

Influence of additional data

tested with PESA alignment:

	Supplied Data	Supplied Data + IR data	
spont.	0.1393	0.1501	+7.8%
read	0.1539	0.1654	+7.5%

	Full BTEC	Full BTEC + IR data + travel books	
spont.	0.1388	0.1622	+16.9%
read	0.1439	0.1645	+14.9%

Analysis

Chinese and Japanese:

No improvements
 Open Data Track ⇒ C-STAR Data track

Alignment problem with Full BTEC data for Chinese - English

Word segmentation problems:

- Provided segmentation could not be used for the C-STAR
 Data track ⇒ Re-segmentation was necessary
- Worse word segmentation quality especially on ASR output

Word segmentation - Japanese

Provided-segmentation

- ◆ ASR: 御 荷物 は に 持つ 引き取り と に ございます (3-errors)
- REF: 御 荷物 は 荷物 引き取り 所 に ございます
- 3-ASR errors ⇒ 3 segmentation errors

MeCab-segmentation (used on C-STAR track)

- ASR:御 荷物 は に 持つ 引き 取り と に ござい ます(5-errors)
- REF:御 荷物 は 荷物 引き取り 所 に ござい ます
- 3-ASR errors ⇒ 5 segmentation errors

	BLEU (% degradation)		
Word Segmentation	Provided MeCab		
Transcriptions	24.3	23.5	
ASR Output	21.1 (13%)	19.6 (17%)	

Analysis: Phrase alignments

- LogLin outperforms PESA on Chinese, Arabic
- Best improvements on Italian (+0.03 BLEU)
- Slight drop on Japanese

Analysis BLEU - WER

 Correlation BLEU degradation CRR ⇒ ASR with WER of ASR output

	CRR	ASR (read)		WER
Japanese	0.2030	0.1868	-8.0%	14.9%
Arabic	0.2208	0.1995	-9.6%	26.1%
Chinese	0.1996	0.1710	-14.3%	26.4%
Italian	0.3353	0.2719	-18.9%	29.1%

Future Work

- Use lattice/nbest information for translation of ASR output
- Provide LogLin with better hand-aligned data (in-domain) in different languages
- Limit influence of overfitting