Verifying Correct Usage of Atomic Blocks with Typestate

Nels E. Beckman, Jonathan Aldrich
School of Computer Science
Carnegie Mellon University
nbeckman@cs.cmu.edu

jonathan.aldrich@cs.cmu.edu

December 19, 2007

1 Proof of Soundness

Our soundness criterion is as follows: It is either the case that all of the threads in a program are values, or their exists
one thread such that the expression this thread is evaluating is well-types and can take a step to another well-typed
expression. If one of the threads in the thread-pool is currently executing within a transaction, then that thread must
step, and if no threads in the thread-pool are currently executing in within a transaction, then any threads that is not a
value must be able to step. The dynamic semantics track typestate and prohibit calls if method preconditions are not
met. In order to prove this, our store typing judgment requires the invariant that only one thread can pinpoint the state
of a share or pure object at a time.

The language of proof differs from the language used in the paper in a few ways. We have restored the original
effects system used by Bierhoff and Aldrich [1]. This system was removed from the paper for purposes of clarity.
The effects system keeps track of the fields that are modified in a subexpression to ensure that only the fields of the
unpacked object are modified, and no field permissions “escape” beyond the packing of that object. Otherwise, our
proof language resembles their proof languages in most ways. As it was for Bierhoff and Aldrich, we have simplified
the language of proof by removing linear disjunction (&) and additive conjunction (&). In the paper, an object is
known to be unpacked if there is an unpacked(k, s) permission inside of the linear context. In the system shown
here, we use a separate context u. One u appears on the left-hand side of the judgment. This shows us which object
is unpacked before the expression begins to execute. The other u appears on the right-hand side, and shows us which
object is unpacked after the expression has finished executing.

For the majority of the proof, things proceed much as they did in the proofs of soundness presented by Bierhoff and
Aldrich [1] with many of the multi-threaded features coming from Moore and Grossman [2]. Our system is different in
a few ways. In Bierhoff and Aldrich the stack permissions, that is the dynamic representation of permissions that are
currently available for use by the evaluating expression, were actually stored inside the heap. Because we have many
threads, we have a separate environment S), attached to each thread expression which holds these stack permissions.
Additionally, when typing a pool of threads, 1" (esentially a list of expressions and their stack permissions), we
associate each with their own linear context A and incoming unpacking flag u. We often must refer to the entire
collection of linear contexts and packing flags, and this will usually be written A and . Keep in mind that each linear
context and unpacking flag is associated with one specific thread. This would most accurately be written as a list of
tuples except that our A and u usually appear on the left-hand side of the rule, while the thread itself will appear on
the right-hand side, and so treating them as a tuple would be notationally awkward.

When type-checking the top-level thread pool, the members of A and 7 are tagged with an additional bit of
information, and are written A¢ and u€. At most one A and u pair are allowed to contain specific state information
about pure and share permissions. If this is the case, that A and u will be tagged with wt, whereas others may not
be. The fact that at most one linear context and unpacking flag is allowed to contain state information about share
and pure permissions is checked by the a; (A€ uf) ok judgment.

1.1 Proof Language

program
class decls.
methods
terms
expressions

expression types

atomic
states
Predicates

valid contexts
linear contexts
stores

heaps

E:?rmmbmﬂzeeﬁdco(thq

(CL,c)

classC{FIN M}

C,m(Cz): P, —oJresult: Cr.Py =¢
z,y,z | o

k-t|k-t.flti.f:=k- ta
newC(k-t) | k-tm(k-t)

inatomic (e)

letx=e1 ines

spawn (k-t.m(k-t)) | atomice
unpackgk -t@s ine|packttos ine
Jx: C.P

init(3f : C.P, s)

wt | ot | emp

s | unpacked(k) | unpacked(s)
k- rQ$ | P ®P

s|?
s=P

- Ty C
| A% P
-] X0:C

- | Hio— C(f=k-0)QS

full | pure | share | immutable | unique
— | k-tQs

O [{t-f} | wiUws

~;Z;F;ﬂl— H;ST, E;F;EI—T

correct-atomic(a,T) whereT = (e, Sp,)

Fa,H;T

Figure 1: Top-level typing rules

Auk-T

YA Esur e By \wlu A8 A ug, L u, F T
R E;Af,Ag,...,Ai;ul,u2,...,un F (e, Sp)1, T

Figure 2: Well-typed thread-pool

'S AFe P

E=otlemp T;Z;AFP
k-0Qs ¢ A, P where k = pure|share ;S AP
[Abe P IS ARw P

Figure 3: Transaction-aware linear judgement

k-oQs ¢ A

k-0Qs¢ P k-0Qs ¢ A
k-o0Qs ¢ - k-oQs ¢ A, P

(k£ Ko £ dls £ 5)
k-oQs ¢ k-0Q? k-o0Qs ¢k -oQs

a; (A€ uf) ok

not-wt((A€, u€),) not-wt((AE u€),) not-wt({AE,uf))
o; ((AZ, u5>1<AWt,th>, (A€ uf),) ok o) (A€, u®) ok

Figure 4: Well-formedness of all linear contexts.

| not-wt({AZ, u?)) |

not-wt((A%,u€)) not-wt((AZ, uf))
not-wt(-) not-wt((A€, u€), (A€, uf))

[not-wt({A%, u®)) |

not-wt(A¢) where & = share|pure
not-wt((A€, u®))

not-wt(A%)

k- 0Qs ¢ A where k = share|pure
not-wt(A¢)

not-active(e)

mbody(C,m) = T.e.,

not-active(e,,) not-active(k - t)
not-active(k - t.f) not-active(t;.f :=k - t2)
not-active(new C(k - t)) not-active(k - t.m(k - t))
not-active(e;) not-active(es) not-active(e)

not-active(let x = e; ineg) not-active(unpackgk - t@s in e)

not-active(e) not-active(e)

not-active(packgtto s ine) not-active(atomic (e))

Figure 5: Expressions with no active subexpressions.

active(e)

active(e;) not-active(es)
active(inatomic (e)) active(let z =e; ines)

Figure 6: Expressions with an active subexpression.

| forget(P)=P'|

k = immutable|unique|full k = pure|share
forget(k-0Qs) =k-0@Qs forget(k-o0Qs)=Fk-o0Q?

forget(P) = P] forget(FP) =P,
forget(P, ® P,) = P{ ® P,

Figure 7: The forget judgement.

| forgetg(P) =P’ |

£ =wt E#wt forget(P)=PF
forgetg(P)=P forgetg(P) =P’
writes(k)

writes(unique) writes(full) writes(share)

readonly (k)

readonly(pure) readonly(immutable)

unpacked(s) < s s < unpacked(s)

k<K

k-oQs= k' -0Qs k-o0Qs= k' 0Qs®k" o0Qs
k<K' k<K

AP P =P

T.PFP LINHYP T'AFP SUBST
AT EP Ty APy DAFP®@P, T5(APL,P)FP
T (AL A PLap T (A A) - P wE
A1 T:AFP
IS raayrp P
AR P & Py
DARP AR TTArp P
TAF P &P, rarpeR
S TARR TR
m T no T elimination
T;AF P I (A, P =P
m@h ;AP P, T;(AR)FP o
I AR Py T; (A, A F P
TArPRoR O F
ARO
no 0 introduction W 0E
(T,z:H);AFP ''th:H T;AFVz:HP
TSAFvz:HP ! T;AF [1/2]P vE
'Eh:H T;AF[h/z]P ;ARd2:HP (D,z:H),(A',P)F P’
IAR32:HP 3 L;(AA)E P B

Figure 8: Linear logic for permission reasoning

(0:C)eX 5;AFg P
S8 A Eub ko 3z Clz/o]P\ Olu

T-Loc

readonly(k,) implies readonly(k) -;3;AFg P localFields(C) = f: C

58 AE ky - 0QSy, F ko f; s 3x Tz fi] P\ 0|k, - 0Qs,, T-READ
localFields(C") = f:C (o' :C") e ¥ writes(k’)
X Abrek-o: 3w Ci.P XA e [0 fi /2| P’
T-ASSIGN

S AANE K Qs RO fl =k 0:30 : Ci.P' @ [0.fi/x]P \ {o0;. f}K - o'Qs

YA Re [0/fIP 0o:CCY init(C) = (3f: C.P,s)
53 A8 ut new C(k - o) : 3z : C.unique - zQs \ Plu

T-NEW

forgetg(k-0Qs) =k - 0Q$
k = immutable | pure implies s = s’ X; A k-0Q$;E;— e B\ 0]—
localFields(C) = f: C' (0:C) €X ;A ¢ [o/this]inva (s, k)
No temporary permissions for o.f in A\’

— T-PACK
53 (A A);E k- 0QsFpackotos ine E\ {of}|—
k = unique | full |immutable (0:C)e X X;Atbgek-0Qs
E =emplot - X; A [o/thislinve (s, k); E;k-0Qs F e+ B\ w]|—
T-UNPACK

555 (A A);E— Funpackg k-0Qs ine : E\ |-

(0:C)eX 5 Abwk-0Qs ;A [o/thislinve (s, k);wh k-0Qs e B\ w|—

%5 (A A');wt; — Funpacky k- 0@s ine : E\ 0]— T-UNPACK-WT

(0:C)ex 0:CCX
535 A kg [o/this][o/f|P mtype(C,m) =Vz:C.P — 3z : C.P,
forgetg(P,) =P

— T-CALL
SN E —Fk-om(k-o): Jx: C.P\ 0|—
0:CeX 0:CeX mtype(C,m)=Vz:C.P—-F
-3 A% ot [o/this][o] f]1 P
T-SPAWN

55 Aot — = spawn (k- o.m(k - 0)) : 3_: Cq.immutable - 0,@Qs, \ |-

: Ay, PlHe P’
XA Euber e TP \wilug x: Cy 8 P E us b ea : Ewslu/
No permissions for wy in Asg

23 (AL Ag);Esub let z=e; iney: B\ wy Uwslt/ T-LET
s Aswtiube:dx: C.P\wlu' forgetg(P)=PFP .
YA uk inatomic (e) : 3z : C.P \ w|u/ -INATOMIC
s Aswtube: 3z C.P\wly forgetg(P)= P
T-ATOMIC

5 YA u b atomic (e) s Jz: C.P\ wlu/

a; ;T —d';H; T

a;H;e —a';H'; €T
. . /. /. / !
a7 H’ Ta’e7 Tb - a ’H ’TG/?e ’Tb’T

Figure 9: Top-level Dynamic Semantics

k = pure |immutable o~ C(..., f; = k' - o’)Qunpacked(s”) € H
a; Hy(k-o.f;,Sp) = a;Hlo— C(..., fi= (kK —k)-0)];{k-0,(Sp +k-0));-

E-READ-R

kE<k o—C(..,fi=k - o)aunpacked(k”) e H
a;Hy(k-o.f;,Sp) — a;Hlo— C(..., fi = (K — k) - o')@Qunpacked(k")]; (k- o', (Sp + k- 0'));

: E-READ-RW

ki-o1€8, 0o1—C(...,f=Fk-0,...)Qunpacked(k") € H
ko - 09 € Sp 09 HC()@SQ cH
H' = Hloy — C(..., f =k-o02,...)Qunpacked(k")] S} = Sy[(k2 — k) - 02],k" - o

a; H;{o1.f := k- 02,8,) — a; H'; (K - o', S,)-

E-ASSIGN

H; S, [o/fIP init(C)=(3f:C.P,s) S, =S,—k-o o, ¢ dom(H)

p

a; H; (new C(k - 0),Sp) — a; H,0n, — C(f =k - 0)@s; (unique - on,, (S, unique - o,,)); -

E-NEwW

E=ot|emp k'-0eS, readonly(k) o— C(...)Q@Se H k<k
k = immutable > S = (unpacked(s)|s),k =pure D S =s

a; H; (unpackg k- 0QS in €', S,) — a; H[o — C(...)Qunpacked(s)]; (¢/, Sp[(k' — k) - o]);

) E-UNPACK-R

kK -0€S, readonly(k) o— C(...)QS € H k<K
k = immutable D S = (unpacked(s)|s),k =pure D S =s

o; H; (unpacky k- 0@s in €', S,) — o; H[o — C(...)@Qunpacked(s)]; (¢/, Sp[(k' — k) - o]);

E-UNPACK-R-WT

E=ot|emp k'-0€S, writes(k) o— C(...)0Qse H k<Fk
a; H; (unpackg k- 0Q@s in €', S,) — a; Hlo — C(...)Qunpacked(k)]; (¢/, Sp[(k' — k) - o]);

: E-UNPACK-RW

kK -0€S, writes(k) o— C(...)0Qse H k<Fk

o: H; (unpacke k -0@s in &, S,) — o; Hlo — C(...)@unpacked(k)]: (¢ Sp[(K — k) -o]);- = O NPACK-RW-WT

inve(s) satisfied by o's fields

ko-0€ S, o— C(f =k-o)Qunpacked(s) € H

— E-PACK-R
a; H; (packoto s ine€',Sy) — a;Hlo— C(f =k -0)Qs]; (¢/, Sp)
inve(s) satisfied by o's fields
ko-0€ S, o— C(f =k-o)@Qunpacked(k) € H
E-PACK-RW

a; H;(packotosine,S,) — a;Hlo— C(f =k-0)Qsl; (e, Spl(k + ko) - 0])

mbody(C,m) = Z.e,, mtype(C,m)=Vr:C.P — FE
H; Splk -0,k - o & [o/this|[o/Z] P

a; H; (k- o.m(k - 0),Sp) — a; H; {[0/this|[0/Z|em, Sp); -

E-CALL

mbody(C, m) = Z.e,, mtype(C,m)=Vz:C.P —FE
H; Sp, |k -0,k - ot [o/this])[o/T|P

— E-SPAWN
05 H; <spawn (k ' Om(k ' 0))’ (Spl) sz)>) H; <Od7 Sp1>; <[O/l‘/’ll‘S} [6/§]€ma Sp2>
a; H; (ex, 5p) — a's H'; (€1, 5,); T
. A=) . n E-LET-E
a;H;(let v =e; iney, Sp) — a/;H';(let v =€) iney, S,); T

K-0€e8, o—C(.)@SeH k<Fk
a; H;(let z =k-oineq,Sp) — a; H; ([o/z]ez, Sp);

: E-LET-V

E-ATOMIC-BEGI
o;H; (atomic (e),Sp) — &; H;(inatomic (e), Sp);- OMIC-BEGIN

o; H; (inatomic (k-0),S,) — o; H; (k- 0,5p);" E-ATOMIC-EXIT

a; H; (e, Sp) — a/; H'; (¢, §,); T

e; [;(inatomic (e),Sp) — o; H'; (inatomic (¢'), S)

E-INATOMI
T NATOMIC

10

1.2 Judgment Forms

Judgment Judgment form Explanation

Top-Level Evaluation a;H;T —ad;H;T Under transaction state a and heap H the thread-pool T’
evaluates to 7", which may modify an expression and add
a new expression, while possibly modifying the heap H’
and changing the transaction state a’.

Expr. Evaluation a; H; (e, Sp) — a's H'; (€', S,); T | Inheap H, with transaction state a and stack permissions
Sy, the expression e takes a step to s, potentially modify-
ing each and potentially adding a new thread.

Expression typing LA ube: B\ wi In variable context I, store X, linear context A, transac-
tion effect £, and unpacking flag u, expression e has type
E' and may assign to fields in w and and changes unpack-

ing to u/'.
Store typing (definition | X; A%;ué + H; S, In store context ¥ with lists of linear contexts A€ and
1.3.1) packing flags u€, each tagged with a transaction effect,
the heap H and the list of all stack permissions Sjj is well-
typed.
Linear logic entailment | I'; ;A F P In variable context I" and store X, linear context A proves
(figure 8) P.
Runtime property check | H;Splk-oF P Heap H with stack permissions .S, restricted to stack per-
(definition 1.3.2) missions k - o satisfies property P.

1.3 Preservation
1.3.1 Definition of Store Typing
> F; uwHH ; ST,
The above judgement is true if:

1. 3;A - S,

2. Z;F;Sip;uigl— H

S ASE S,

SiAS S, B AL AL Spy. . Spn
Z;A‘f,Ag,...,AfLFsp1,5p27...,sp" Z,F

{olk-0@$ € A} C{olk-0€S,} Vk-0€S,5;AFK -0Q8T DK <k
S,AES, Z;Agl—Sp

Where the above rule ignores permissions on fields.

E;F;E;UTFH

The above judgement is true if:
1. dom(X) = dom(H)

2. a; (A%, u®) ok

11

3. Vuf € uf,uf = k-0@s O & = wt|k = immutable|uniquelfull and 0 — C(...)QS € H, where S =
unpacked(s) if readonly(k) or S = unpacked(k) if writes(k). Also, o ¢ u D o is packed in H and
inve (o, unique).

4. Yo € dom(X),YA € A :ifo— C(f = k- 0)@QS € H then

(@ (0:0)eXx

(b) Either S = unpacked(k) or S = unpacked(s) and [o/zhis]invc (s, immutable) is satisfied by o’s fields,
or S = s and [o/this]inve (s, unique) is satisfied by o’s fields.

) If;X:;AFk-0Q$® T then S < §.

(d If s3A F K, -0.f,Q8 @ T, then k; < k; (and 0 = 0ypp) and 0; — C,(...)Qs, € H and either
S = unpacked(s), which implies readonly(k;), or S = unpacked(k’). If S = unpacked(s) then
$=s,0r$ ="

(e) unique - 0@s € A, u D k- 0@$ not in any other A or v in A or u. Also, full - 0@s € A, u D full - 0Q$
and k - 0@s not in any other A or u in A or .

(f) immutable - 0@s € A,u D (k- 0@$ € A, u D k = immutable&($ = s|$ =7))

(g) Where k; = unique implies &k - o; ¢ A, %, where k; = full implies full - 0;@$ and & - OZ'@SE A, 7 and
where k; = immutable and o — C(...)@QS, where S = s|unpacked(s) implies k&’ - 0;Qs’ ¢ A, 7w, where
k' # immutable|s’ # s.

1.3.2 Property Satisfied at Runtime
If

eo—C(..)@sCHandk'-0€ S,

e -Jo:Clk-0QsF P (aninstance of I'|X|A + P)
o k<K

then H; Splk-oF P

1.3.3 Lemma: Compositionality

If ;A% uf = H;S, and A; = A1, Ajp then ;A€ u€ + H; S, where A; is replaced with A;; and and
;A8 uf = H; S, where A, is replaced with Ajs.

Proof: Immediate from the definition of store typing. We are always allowed to know less statically about permissions
than what is true at run-time, so long as what we know statically is consistent with the run-time information.

1.3.4 Lemma: Packing Flag

IfFT; 3 A& u b e B\ wu then either (a) u = — and w = () or (b) u = k - t@s and w contains only fields of ¢.
Proof:(a) u = — is not a valid precondition for producing effects (using assignment or packing). (b) By induction on
typing derivations, using (a). Only one object can be unpacked at a time, permission for unpacked object is needed for
assignments and packing, and effect of unpack expression is §.

1.3.5 Object Weight
e w(o,A) = Xy oeak, ignoring fields.
e w(o,u) =k, if u=Fk-0Qs, and 0 otherwise.

® w(0,5)) = Xroes, k

12

Where:
kE+ K

is defined as:
o full + pure = full
e share + pure = share, share + share = share
e immutable 4+ immutable = immutable

e pure + pure = pure

1.3.6 Preservation for Thread Pools
If
e a;H;T —a;H; T’
o Fa H;T
Then there exists
e Y DY
o AZ
o uf
o w
such that
. Z’;Z/;Ot;ﬂ' Fe B\ W|u”
o Y. AEWE H'; S, where T' = <e, S5 >
e correct-atomic(a’,T’)
e Yo e dom(H) : w(o,S,) —w(o,A) —w(o,u) < w(o,S,) —w(o,A') —w(o,u), foreach Ain A, S, in S,
Ain Z/, and S, in STD/
Proof: By structural induction on the derivation of a; H; T — ao'; H'; T".

CASE TOP-LEVEL

Fa,H;T Assumption
a; Hye — a'; H'; €/; T where T, |e|| T}

Inversion of only eval rule.
SN AS TR H;STD
M:AE T
correct-atomic(a,T) whereT = (e, Sp,)

Inversion of only typing rule. -; X; A;ot;u ke : B\ wlu”
From well-typed thread pool.
Invoke preservation for single threads.
YAE WE W d, st
sY Aot u Ee s B\ W u

13

Single-threaded lemma.
IfT # -
XA Ot — ey By \ wilu”

Single-threaded lemma.
2 A uf - H; Si, Single-threaded lemma.
Vo € dom(H) : w(o, Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o, A”) —w(o,u’),
foreach A in A, S, in S, A in A and S, in S’ip/

Single-threaded lemma.
not-active(7”) by single-threaded lemma.

If ¢ = o implies not-active(T). If ' = e, then by single-threaded lemma active(e’). If ' = o the by single-threaded
lemma not-active(e’). Thus, correct-atomic(a’, T").

If o = e and active(e) implies not-active(7,||7;). If ' = e then by single-threaded lemma active(e’). If ' = o
then by the single-threaded lemma not-active(e’) Thus, correct-atomic(a’, T”).

If « = e and not-active(e) implies active(T,) or active(7;). Only one may be active but neither will change during
e’s step, so a’ = e. Single-threaded lemma gives us not-active(e’) Thus, correct-atomic(a’, T").

1.3.7 Preservation for Single Threads

If

SiAEute: B\ wlu”

o X A& uf F H;'S,, where AE = (A1, AD)E, (Ag, AS)E, ... (A, A%), where A contains extra permissions
that contain no temporary state information and no permissions for fields in w.

a; H; (e, Sp) — a's H'; (€', S,); T

And exactly one of the following:

— a = o and not-active(e)
- a = e and not-active(e)
- a = e and active(e)

Then there exists
e Y DY
e ' tagged with &, written uf .

e W', where either (a) a; H; (e, S,) — a’; H'; (¢/, S}); T unpacks an object o, i.e., u® = — and u€’ = k-0Qs and
w" — w only mentions fields of o, or (b) w’ C w.

o A’ tagged with &, written A€,
e Sy, AY and uf.
such that

e T'is either e; or -

o Y ALE W R BN\ WU

14

3, Af:u€ + H; S, where A and Sipl are A and S, with (A, A*) swapped for (A, A*) and 5], swapped for
Sp (and including Sp; and A, if T' = ey).

Vo € dom(H) : w(o, Sp) — w(o,A) — w(o,u) < w(o,S)) —w(o,A’) —w(o,u’), for each Ain A, Sp, in Sy,
Ain ZI, and S, in Sip/

If Tis e; then ;X' Ay; 0t — F ey - By \ w|—
e As well as all of the following, although exactly one will not be vaccuous:

- if a = @’ and not-active(e) then not-active(e’)

- if a = o’ and active(e) then active(e’)

- if a = o and o/ = e and not-active(e) then active(e’)
- if a = e and ¢/ = o and active(e) then not-active(e’)

Proof: By structural induction on the derivation of a; H; (e, Sp) — a'; H'; (€', S,); T

CASE E-UNPACK-RW-WT
So e = unpacky k-0Qs ineg, e = ey, a=a’ =o, H = H[o+ C(...)Qunpacked(k)], S, = Sp[(k' —k)-0]
and T = -.

1S A G uke: E\ wlu” Assumption
;A8 uf - H; S, Assumption
writes(k) o—C(...)0Qse H kK -0eS,k<Fk

Inversion of only eval rule
0eY A=A = (AW AW = (K - 0@s, Ay)

G AL R k-0Qs u=u"=— w=10

- 35 Ao, [o/thislinve (s, k); W k- 0Qs e : B\ wa|— Inversion of only typing rule
LetY =%, AW = Ay, [o/thislinve (s, k), o™ =k-0Qs, o' = ws.

SYLALwhu Fe B\ W - Substitution

Must show ; AE; uf + H;S,
S5 (AW, A S
We have removed £ - o from A and S, and added field perms to A which are ignored.
YA Siz’]
No other A or S;, changed.
Must show X'; A€"; S/ ué’ - H'

1.) ok ! No change to dom(X) or dom(H)
2.) ok A™ and ™ were and remain the only Wt elements.
3.) ok For u™', £ = wt. 0 — C(...)Qunpacked(k) € H' and writes(k).
4.a.) ok No change
4.b.) ok S = unpacked(k)
4.c.) ok No new stack perms in A,
4.d.) ok 4.b. was true before step. Fields added to A’ are given by invg (s, k).
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other As and w.
4.£) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok No fields altered.
o was unpacked. u=—andu = k- o0Qs.
w’ — w = w’ only contains fields of o. Packing flag lemma

Vo € dom(H) : w(o,Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o, A”) —w(o,u’)
Net is unchanged. Permission moved from A to u’'.
T=-

15

not-active(unpack) implies not-active(ez)
active(unpack) cannot be derrived.
a = a' and not-active(e) implies not-active(e’)

CASE E-UNPACK-RW
So e = unpackg k-0Qs ineg, € =es,a=ad', H
and T = -.

~;E;A;§uke:E\w|u”
S A8 uf - H; S,

writes(k) o—C(...)0Qsec H Kk -oe€S,k<F
0EY Ag:(Al,Ag)
wYi A e k-0@s u=u"=— w=0

k = uniquelfulllimmutable
LetY =%, Af = Ay [o/this)inve(s, k),
YA E W R E\W |-

Must show ¥; AE; u€ - H; S,

S5 (A, A) S

Inversion of not-active.

Above

= Hfo + C(...)Qunpacked(k)], S,, = S,[(k" — k) - o]

Assumption
Assumption

& = otlemp
Inversion of only eval rule

X5 Ag, [o/thislinve (s, k); €5k - 0Qs ey : E \ wa|— Inversion of only typing rule
ut =k - 0Q@s,

w' = wa.
Substitution

We have removed & - o from A and S, and added field perms to A which are ignored.

E';El—siz’)

Must show X'; A®'; 87 ué’ = H'
1.) ok
2.) ok

No other A or S, changed.

No change to dom(X) or dom(H)

We have not changed the number of wt elements from before.

If £ # wt, then not-wt(A’) because invariants cannot contain pure and shared information.

3.) ok

4.a.) ok

4.b.) ok

4.c.) ok

4.d.) ok

4.e.) ok

4.f.) ok

4.2.) ok

o was unpacked.
w' —w = W’ only contains fields of o.

k = immutable|fulljunique. o — C(...)@Qunpacked(k) € H’ and writes(k).

No change
S = unpacked(k)
No new stack perms in A,

4.b. was true before step. Fields added to A’ are given by invg (s, k).
4.g. was true before step. Any unique or full fields cannot be in other As and w.
4.g. was true before step. Other permissions to fields must agree with state.

No fields altered.
u=—andu = k- 0Qs.
packing flag lemma

Yo € dom(H) : w(o, Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o,A") —w(o,u’)

T=-

not-active(unpack) implies not-active(es)
active(unpack) cannot be derrived.

a = a’' and not-active(e) implies not-active(e’)

CASE E-UNPACK-R

Net is unchanged. Permission moved from A to u’.
Inversion of not-active.

Above

So e = unpackg k- 0Q@s ineg, € = ey, a =a', H' = Hlo — C(...)Qunpacked(s)], S, = Sp[(k' — k) - 0]

and T = -.

-;E;A;éul—e:E\wh/’
E;AE;UEI—H;ST,

Assumption
Assumption

E=ot|emp k' -0e S, readonly(k) o— C(...) QS e H k<Fk

16

k = immutable > S = (unpacked(s)|s),k =pure D S =s
Inversion of only eval rule
3 (A1, A9);E;— F unpackg k-0Qs ines : E\ 0|—
k = unique | full |immutable (0:C) e X ;A1 g k- 0Qs
E=emplot - X;Ag, o/thislinve(s, k); €5k - 0Qs - eg : B\ wa|—
Inversion of only typing rule
LetY =%, Af = Ay [o/thislinve(s, k), uE =k-0Qs, w' =ws.
SYLALE W R D E\W|- Substitution
Must show ¥; AS; u€ - H; S,
S5 (AF A% S
We have removed £ - o from A and S, and added field perms to A which are ignored.
A Sj’j
No other A or S;, changed.
Must show X/; A€"; S/ ué’ + H'

Y Y2

1.) ok No change to dom(X) or dom(H)
2.) ok We have not changed the number of wt elements from before.

If £ # wt, then not-wt(A’) because invariants cannot contain pure and shared information.
3.) ok k = immutable|fulljunique. o — C(...)@Qunpacked(k) € H' and writes(k).
4.a.) ok No change
4.b.) ok Before step, either S = unpacked(s) and invariant holds

by this rule, or S = s and invariant held by this rule.
Fields have not changed.

4.c.) ok No new stack perms in A,
4.d.) ok 4.b. was true before step. Fields added to A’ are given by invg (s, k).
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other As and w.
4.£) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok No fields altered.
o was unpacked. u=—andu = k-o0Qs.
w’ — w = w’ only contains fields of o. Packing Flag lemma
A’ does not contain any fields in w — w’ w—w =0

Yo € dom(H) : w(o, Sp) — w(o,A) —w(o,u) < w(o,S},) —w(o,A") — w(o,u’)
Net is unchanged. Permission moved from A to u’.

T=.
not-active(unpack) implies not-active(es) Inversion of not-active.
active(unpack) cannot be derrived.

a = a' and not-active(e) implies not-active(e’) Above

CASE E-UNPACK-R-WT
So e = unpacky; k- 0Qs in ey, ¢’ = ey, a = a’, H' = Hlo — C(...)Qunpacked(s)], S, = Sp[(k' — k) - 0]
and T = -.

s A ub e B\ wlu Assumption
E;F;uﬁf (o H;ST, Assumption
k' -0€ S, readonly(k) o— C(...) @S e H k<F
k = immutable D S = (unpacked(s)|s),k =pure D S =s

Inversion of only evaluation rule.
% (A1, Ag); Wt — - unpacky k- 0Qs ine’ : E\ 0]—
(0:CYeX XA 1bwmk-0Qs 5 Ag, [o/thislinve (s, k); Wh k- 0@s F e 1 E\ wa|—

Only typing rule and its inversion.
LetY =3, AW = Ay, [o/thislinve (s, k), o™ =k-0Qs, o = ws.
SYLALE W R E\W|- Substitution

17

Must show ¥; AS; u€ - H; S,
S5 (AW, AF) - S
We have removed £ - o from A and S, and added field perms to A which are ignored.
A Sj’j
No other A or S;, changed.
Must show ¥'; A&"; S/ uf’ = H'

1.) ok No change to dom(X) or dom(H)
2.) ok Still the only wt, no need to prove not-active.
3.) ok £ = wt.
4.a.) ok No change
4.b.) ok Before step, either S = unpacked(s) and invariant holds

by this rule, or S = s and invariant held by this rule.
Fields have not changed.

4.c.) ok No new stack perms in A,
4.d.) ok 4.b. was true before step. Fields added to A’ are given by invg (s, k).
4.e.) ok 4.g. was true before step. Any unique or full fields cannot be in other As and w.
4.£) ok 4.g. was true before step. Other permissions to fields must agree with state.
4.g.) ok No fields altered.
o was unpacked. u=—andu = k- 0Qs.
w' — w = w’ only contains fields of o. Packing Flag lemma
A’ does not contain any fields in w — w’ w—w =0

Vo € dom(H) : w(o,Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o, A”) —w(o,u’)
Net is unchanged. Permission moved from A to u’.

T=.
not-active(unpack) implies not-active(ez) Inversion of not-active.
active(unpack) cannot be derrived.

a = o’ and not-active(e) implies not-active(e’) Above

CASE E-PACK-R
Soe=packotosiney e =eya=a,H =How— C(..)Qs], S, = Sp[(k+k,) -0l and T = -.

SN Eute B\ wu Assumption
¥, A W€ - H; S, Assumption
inve(s) satisfied by o’s fields
ko-0€ S, o— C(f =k o)Qunpacked(s) € H

Inversion of only evaluation rule
0EY AE:(Al,AQ)
35 Ay Fe [o/this]linve (s, k)
Yik-0Qs ¢ k- 0Q$
% Aoy k- 0Q$;E— ey BN\ {I.f}—
No temporary permissions for o.f in Ay

Inversion of only typing rule

LetY =%, D¢ =Ayk-00% uf =— =0
SALE W R B\ W|— Substitution
Must show ¥; AE; u€ - H; S,
S (AE A*) S,

k added back to A, S, ¥/; A7 - ST’) No other A or S;, changed.
1.) ok No change to dom(X) or dom(H)
2.) ok We have not added a wt that was not previously there.

If £ # wt, not-wt(A€") by inversion of ¥; A’ k¢ k - 0@$.

18

3.) ok We have only removed a permission from u. This o is packed and inv¢ (o, unique) from above.

4.a.) ok No change
4.b.) ok For only modified o, S = s and invariant satisfied from assumption and 4.d being true before step.
4.c.) ok Only one new permission added to A, and S = s.
4.d.) ok We have only removed fields from A.
4.e.) Ok True before step. Can be no other full or uniques to u, now in A’.
4.f.) ok True before step. u, now in A, must be consistent.
4.2.) ok From 4.e. and 4.f before step.
Ww=0Cuw

Vo € dom(H) : w(o, Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o,A”) —w(o,u’)
Net is unchanged. Permission moved from u to A’.

T=.
not-active(pack) implies not-active(es) Inversion of not-active.
active(pack) cannot be derrived.

a = o’ and not-active(e) implies not-active(e’) Above

CASE E-PACK-RW
Soe=packotosiney e =eya=a,H =How— C(..)Qs], S, = Sp[(k+k,) -0l and T = -.

SN Eute B\ wu” Assumption
¥, A W€ - H; S, Assumption
o+— C(...)Qunpacked(k) € H k,-0€ S, invc(s) satisfied by o’s fields
Inversion of only eval rule

0EY A‘S:(A:[,AQ)
35 Ay Fe [o/this]linve (s, k)
Yik-0Qs ¢ k- 0Q$
% Aoy k- 0Q@$E— ey BN\ {I.f}—
No temporary permissions for o.f in Ay

Inversion of only typing rule
LetY =%, Df =Ayk-00% uf =— =0
SALE W R T E\W|— Substitution
Must show ; A¢;uf = H; S,
S (AE A*) S,

k added back to A, S, ¥'; A’ - ST’, No other A or S;, changed.
Must show X'; A8"; S/ ué’ = H'
1.) ok No change to dom(X) or dom(H)
2.) ok We have not added a wt that was not previously there.
If £ # wt, not-wt(A€") by inversion of ¥; A’ k¢ k - 0@$.
3.) ok We have only removed a permission from u. This o is packed and inv¢ (o, unique) from above.
4.a.) ok No change
4.b.) ok For only modified o, S = s and invariant satisfied from assumption and 4.d being true before step.
4.c.) ok Only one new permission added to A, and S = s.
4.d.) ok We have only removed fields from A.
4.e.) Ok True before step. Can be no other full or uniques to u, now in A’.
4.f.) ok True before step. u, now in A, must be consistent.
4.2.) ok From 4.e. and 4.f before step.
Ww=0Cuw

Yo € dom(H) : w(o, Sp) — w(o,A) —w(o,u) < w(o,S},) —w(o,A") —w(o,u’)
Net is unchanged. Permission moved from u to A’.
T="-

19

not-active(pack) implies not-active(ez) Inversion of not-active.
active(pack) cannot be derrived.
a = a' and not-active(e) implies not-active(e’) Above

CASE E-ASSIGN
Soe=o1.f:=k-03,¢ =k -0,a=d,H = Hloy — C(...,f = k- o0g,...)Qunpacked(k")], S, =
Sp[(kg — k) . 02],/€I 2o and T = -.

1S A G uber E \ wlu” Assumption
;A8 uf - H; S, Assumption
ki-01 € Sp

o —C(...,f=Fk-0o,...)Qunpacked(k") € H
ka-0a€S8, 02— C(..)Q8 € H
Inversion of only eval rule
Ag = (Al,Ag) u:{Ozf}
localFields(C")=f:C (o : C") e X writes(k’)
XA Fek-o: 3z C,LP
X Ag kg [0 fi /2| P’
Inversion of only typing rule
LetY =%, Af =[o//2/|P' ®o;.f/a]P uf =uf =k -0Qs W =0
SYLALE W R D EN\ WU By rule T-Loc. Must show ¥; AE; u€ H;S,
A" = [0;.f/02]([0" 0i. f]A)) From above.
S5 (A A*) - S
k' - o' went into both A, as subst. for field permission and Sj,.
Field permissions inserted, which are ignored.
LA 571’1
No other A or S}, changed.
Must show X/; A€ S7:ué' = H'

1.) ok ' No change to dom(X) or dom(H)
2.) ok We have not changed the number of wt elements from before.
The permissions added to A’ were cleansed, by the inverse of transaction-aware linear judgment. 3.) oku¢ unchanged. 4.a.) okNo chan
4.b.) ok S = unpacked(k)
4.c.) ok From 4.d. true before step.
4.d.) ok From 4.c. true before step.
4.e.) ok From 4.g. true before step.
4.£) ok From 4.g. true before step.
4.g.) ok From 4.d,e.f. true before step.

W' =D w={o01.f} Yo e dom(H) : w(o, S,) — w(o,A) —w(o,u) < w(o,S,) —w(o,A") — w(o,u’)
k - 05 and k&’ - o’ move between field and stack.

T=.
a’ = a and only not-active(e) can be derrived.

not-active rules for field.
not-active(e’) not-active rules for loc.

CASeE-CaLL B
Soe=k-om(k-o),e =[ofthis|[o] fle,m, H = H', S, = Sp, d’ =a,

TN A G uber BN wlu” Assumption
S A8 uf - H; S, Assumption
mbody(C,m) = Z.e,, mtype(C,m)=Vz:C.P —FE

20

H; Splk -0,k - o & [o/this|[o/Z] P
Inversion only eval rule
S A E —Fk-om(k-o): 3z C.P.\D|—
(0:C)eX 0:CCXE
555 A kg [o/this)[o/fIP mtype(C,m) =Vz: C.P — 3z : C.P,
forgetg(P,) = P}

Only typing rule and its inversion.
x: C,this: C;+; Pywt;— ey, - 3z : C.B \ 0] —
x: C,this: C;; P;ot;— F ey, : 3z : C.P/\ 0]—

Inversion of M ok
& = wtimplies P, = P
& # wtimplies P/ = P!
Inversion of forget
YA Esu' F [o/this][0) flem : B\ w'lu”
Above and substituion.
XA S uE - HY

No changes
Yo € dom(H) : w(o, Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o,A") — w(o,u’)

No changes
a’ = a and not-active(e) Only notactive can be derrived for call.
not-active(e’) Well formed method body cannot be active.
CASE E-SPAWN I

So e = spawn (k-om(k o)), H = H', S, = S,,Sp2 with S,1,immutable - 0,QS, replacing S,,.

5 A ubke: E\ wlu” Assumption
;A8 uf - H; S, Assumption

mbody(C,m) = T.e,, mtype(C,m)=Vx:C.P—FE
H; Sp,|k -0,k ot [o/this][o/z] P
Inversion of only eval rule

0:CeXY 0:Cey mtype(C,m)=Vz:C.P —-F
5335 A% oy [o/this][o/ f| P

Inversion of only typing rule
Let ¢/ = immutable - o4, T' = ([o/this[6/flem, Spa), &' = £, A% = immutable - 0,05, A% = A, udt = — 4 = —
SY Aot — e B\ 0]—

x:C,this: C;; P;ot;— F ey By \ 0]— Inversion of mtype.
X5 Az ot; — F immutable - o4 : 3- : Cy.immutable - 0,QS5, Always true of o4, which is implicitly in all A.
Must show ; AE; uf + H;ST,

D (AOt,, A*)E S, Only one permission in A’ and we added it to Sj,.
A% Sy From above
AR ST No other A or S, changed.
Must show X'; A&'; 87 ué’ = H'

1.) ok No change to dom(X) or dom(H)
2.) ok New As are tagged with ot. A’ on has immutable objects and A, is clean, inverse of TALJ.
3.) ok New us are both —.
4.a.) ok No change
4.b.) ok No states or fields changed.
4.c.) ok Nothing new in As w.r.t. the heap.
4.d.) ok Nothing new in As w.r.t. the heap.
4.e.) ok Nothing new in As w.r.t. the heap or u.

21

4.£.) ok Special default object, o4, is always in state s4.

4.2.) ok No fields modified.
w Cw W=w=0
w; Cw wp=w=1_0

A’ contains no permissions for fields in)
A, contains no permissions for fields in ()
Yo € dom(H) : w(o,Sp) — w(0,A) —w(o,u) < w(o,S, USy) —wlo, A, Ay) —w(o,u', ut)
Net is unchanged. immutable - 0,Q@s4 added to S, and A’

a’ = a and not-active(e) not-active rule for Spawn.
not-active(e’) not-active rule for og4.
not-active(e;) Property of well-typed method body.

CASE E-READ-R
Soe=k-of,e =k-o,T=-a =a, H = Hjo — C(...,f; = (k' — k) - 0,...)@Qunpacked(s")],
S, = Sp,(k-0).

TN A S ube B \ wlu” Assumption
Sy A uf - H; S, Assumption
k = pure |immutable o— C(..., f; =k - o')Qunpacked(s”) € H

Inversion of only eval rule
53 A Eky - 0QS, Fk-o.f; : Tz Tz fi] P\ 0]k, - 0Qs,,
readonly(k,,) implies readonly(k) -;3; A ¢ P localFields(C) = f: C
Only typing rule and its inversion
Let Y =%, uf =uf, A = [0/ /o.f;]P,w = w = 0.
SYLALE W RO B\ W

Rule T-LocC.
Must show ¥; AZ; uf + H;ST,
Y (A A¥); S, A’ only has permissions for ¢/, this object was added to .S,,.
S ATE SN AT ST No other A or S, changed.
Must show X'; A®'; 87 ué’ = H'
1.) ok No change to dom(X) or dom(H)
2.) ok We have not added a wt that was not previously there.
If £ # wt, not-wt(A€") by inversion of 3; A’ k¢ k - 0@8$.
3.) ok u’ has not changed.
4.a.) ok No change
4.b.) ok By inversion of — on permissions and inv¢ (s, immutable)
4.c.) ok States are correct by invg (s, immutable) of o’s fields.
4.d.) ok We have only removed field permissions from A.
4.e.) ok There can be no full or unique perm in P after downgrading.
4.f.) ok From 4.g. true before step.
4.g.) ok True by inversion of subtraction on permissions.
W Cw W=w=0

A’ contains no permissions for fields in ()
Yo € dom(H) : w(o,Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o, A”") —w(o,u’)
Net unchanged. & - o’ added to S, and A.

T=-
a’ = a and only not-active(e) can be derrived. not-active rule for field reads.
Only not-active(e’) can be derrived. not-active rule for location reads.

CASE E-READ-RW

22

Soe=k-ofi,e =k-o,T=-d =a, H = Hlo— C(...,fi = (K — k) -o,...)Qunpacked(k")],

S, = Sp,(k-0).
TN A S ube B \ wlu” Assumption
Sy A uf = H; S, Assumption

kE<k o~ C(..,fi=Fk -o)Qunpacked(k") € H
Inversion of only eval rule.
% AFe P localFields(C) = f: C
535 A Eky - 0QS, ko f; : Tz Tz fi] P\ 0]k, - 0Qs,,
Inversion of only typing rule.
Let Y =%, uf =uf, A = [0/ /o.f;]P,w = w = 0.
SYLALE W RO B\ W

Rule T-LocC.
Must show ; AZ; uf + H;ST,
Y (A A¥) S, A’ only has permissions for ¢/, this object was added to .S,,.
S AR ST No other A or S, changed.
Must show X'; A®'; 57 ué’ = H'
1.) ok No change to dom(X) or dom(H)
2.) ok We have not added a wt that was not previously there.
If £ # wt, not-wt(A€") by inversion of 3; A’ k¢ k - 0@S.
3.) ok u’ has not changed.
4.a.) ok No change
4.b.) ok S = unpacked(k)
4.c.) ok 4.d.) was true before step.
4.d.) ok We have only removed field permissions from A.
4.e.) ok 4.g.) was true before step.
4.f.) ok 4.g.) was true before step.
4.g.) ok True by inversion of subtraction on permissions.
W Cw W=w=0

A’ contains no permissions for fields in ()
Yo € dom(H) : w(o,Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o, A”) —w(o,u’)
Net unchanged. & - o’ added to S, and A.

T=-
a’ = a and only not-active(e) can be derrived. not-active rule for field reads.
Only not-active(e’) can be derrived. not-active rule for location reads.

CASE E-INATOMIC
So e = inatomic (e1), ¢ = inatomic (e}), a’ = a, H' = H' from LH,, S, = S}, from LH., v’ = ' from
LH.

15 A uke B \ wlu” Assumption
;A8 uf - H; S, Assumption
a; H;(e1, Sp) — a's H'; (e}, S,); T

Inversion of only eval rule
XA u b inatomic (er) 1 Jz: C.P/\ w|u/
sY;Aswhub ey 3z C.P\wlu forgetg(P)=PF
Inversion of only typing rule
Apply induction hypothesis.
;A8 uf - H; S, LH.
T ok LH.

23

w’ ok LH.
a’ = a and active(inatomic (e1)) active rule for inatomic .
active(e’) active rule for inatomic .

CASE E-ATOMIC-EXIT
Soe = inatomic (k-0),e' =k-o,5, =5, H = H,ad" =o.

s A ub e BN\ wlu” Assumption
;A% uf - H; S, Assumption
YA u b inatomic (e) s Jz: C.P \ wlu”

sYsAswtube:dr: C.P\wlu” forgetg(P) =P’

Only typing rule and its inverse. Let ¥/ = ¥, ' = w
Case: £ = wt
Let AW = A, o™,
SYGAwhu R E-0:3X CP\ wu”
By sustitution, and P’=P when £ = wt
Tag for v and A did not change.
(A% uf) ok Above
Case: £ # wt
Let A = P/, uf = .
Y AW EE-0: X CP N\ wiu
Rules T-Loc
A€ contains no share or pure perms. inv. forget.
u® contains no share or pure permissions.
Unpacking share or pure requires £ = wt
(A%, uf) ok Above
Heap cond 3 satisfied. Above

YA uf - H; Sp
Rest of heap unchanged. T' = - ¢/ = o # e = q, active(e) Active rule for inatomic
not-active(e’) Only derivable rule for k - o

CASE E-ATOMIC
Soe=atomic (e1), e = inatomic (e;), H' = H, S:; =S5, d =e W =w.

SN Eube: B\ wu Assumption
¥, A8 W€ - H; S, Assumption
XA Eu b atomic (er) @ Jx: C.P\ wlu”
sY;Aswhub ey i3z C.P\wlu forgetg(P)=P

only typing rule and its inversion. Let ¥/ = X, v/ = u, A’ = A, 0’ = w.

SYALERE cFr CP\ WU
By rule T-INATOMIC. Let v’ and A’ be tagged with wt.
(A%, uf) ok
a = o implies no u or A tagged with wt before step.
2 A uf - H;S,
No other changes to heap.
a’ = o # e = a. Given not-active(e).
active(e’) active rule for inatomic .

24

CASE E-NEW L L
Soe =new C(k-o), ¢ =unique-o,, H' = H,0, — C(f = k-0)@s, S, = (S, — k- 0),unique - o,, a’ = a.

SN Eube B\ wu Assumption
2 A uf - H;Sip Assumption
H; S, [o/fIP init(C) = (3f:C.P,s)

Inversion of only evaluation rule
53 A u 'k new C(k - 0) : 3o : C.unique - z@s \ O|u
YA Re [0/fIP 0o:CCY init(C) = (3f: C.P,s)

Only typing rule and its inversion.
LetY =X, 0, : C, uE =, Af = unique - 0,@s, where £ tag is the same as before step, w’ = w = ().
Y5 A Eu F unique - o, @ 3z : C.unique - z@s
By rule T-Loc
Must show E;F;E H H;Sip
S5 (A, A) S
We removed k - o from both S, and A and added unique - 0,,@s to both.
YA S
No other A or S, changed.
Must show X'; A®'; S/ ué’ = H'

1.) ok Added o, to both.
2.) ok We have not changed £ tagging. Only new permission is unique, so invariant holds, if nec.
3.) ok on, is packed. inv¢ holds b/c inverse of init and runtime proof of P.
4.a.) ok o : C added to both.
4.b.) ok S = s for o,, and invariant holds from above.
4.c.) ok We know o0,,@s in A’ and H' b/c we added them.
4.d.) ok No fields added to A.
4.e.) ok True b/c 0,, ¢ dom(X) until now.
4.f) ok None added.
4.g.) ok Fields were all in A before step, therefore by 4.e and 4.f property now holds for fields.

Yo € dom(H) : w(o,Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o,A”) —w(o,u’)

k - o removed from Sz/) and A’.

T=-
a’ = a and only not-active(e) can be derrived. inv on not-active rule.
not-active(e’) not-active rule for locations.
CASE E-LET-E

Soe=1letxz =e;iney, e =letx=¢€} ines.
s A ub e BN\ wlu Assumption
Sy A uf - H; S, Assumption
a; H; (e1, Sp) — a's H'; (e, S,); T Inversion of only eval rule
A8 = (A1, Ar) AL Euer :3n: C.P\ wlug
S Ay, P g P/

x:C;E P& us ey BN\ walu”
Inversion of only typing rule
35 A% uf = H; S, where A€ has A instead of A.

Compositionality
Apply induction hypothesis where (A, A*) is the additional linear context.
Z’;Z/;u’ H H’;Sip/
A is the same as A except A is now Al Ag, A, LH.

25

. !’
Givesus ¥’ O ¥. uf and w}

LH.

Either (a) u = — and v’ = k - 0@s and wy-w] only contains fields of o or (b) w] D wy.

55 ALGE Y e T COP\ Wi|ug

Yo € dom(H) : w(o,Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o,A”") —w(o,u’)

T ok

SUBCASE: u = — and v’ = k - 0@Qs and w] — w; only contains fields of o.

Ao, A* do not contain permissions for fields of o.

Ay, A* do not contain permissions for fields in w]
YL ALE W R E\ W

SUBCASE: w] 2wy
Ay, A* do not contain permissions for fields in w]

SYLALE W R E\ W

If @ = o’ and active(e), then active(e;), not-active(es)
active(e;) implies active(e})

active(e) and not-active(ez) imply active(e’)

If a = o’ and not-active(e) then not-active(e;) and not-active(es)
a = a and not-active(e;) implies not-active(e})
not-active (e}) and not-active(e,) imply not-active(e’)
If a = o and @’ = e, then not-active(e;) and active(e})
a = o implies not-active(e)

not-active(e) imples not-active(es)

active(e) and not-active(ez) imply active(e’)

If a = e and ¢’ = o then active(e;) and not-active(e;)
a = e implies either active(e) or not-active(e)

Given active(e;), not-active(e) impossible

active(e)

active(e) implies not-active(ez)

not-active(e}) and not-active(es implies not-active(e’)

CASE E-LET-V

Soe:letx:k~oin62,e':[o/x]eg,H’:H,S{j:Sp,a’:a.

15 A & ub e B\ wlu”
;A% uf - H; S,
K-0€eS, o—C(.)QSeH k<FK

Y (A, Ag);Esuk let z =€y ines : B\ wy Uws|u/
$: Ay, Phs P

5Y AL uk ey i i TP\ wilug z: C;8; P58 us b eg : Ewslu/

No permissions for e f f1 in Ag

LetY =3, A = P uf = u, 0 = w. YA E U Ees B\ wrlug

26

I.H.
I.H.
I.H. Fractions in Ay unchanged.

LH.

Definition of well-typed store.
w] — wy contains only fields of o

By rule T-LET

wi 2w

By rule T-LET
Inversion active
Induction

Active rule, Let
Inversion not-active(e)
Induction

Not-active rule, Let
Induction

Assumption

Inversion, not-active Let
Active rule, Let
Induction

Assumption

Definition of active for Let
Above

Active rule, Let

Not active rule, Let.

Assumption
Assumption

Inversion of only eval rule.

Only typing rule and its inversion.

Substitution

Must show ¥; AS; u€ - H; S,

T =.

a = a.
not-active(e)
not-active(ez)

1.4 Progress
1.4.1 Top-Level Progress

Ifta,H;T
Then there exists either:

e Usuch that T =<, S, >, or

e a/;H'; T suchthata; H;T — o/; H'; T’

Proof: By structural induction on the derivation of - a; H; T

CASE T-ToP-LEVEL

Fa,H;T
correct-atomic(a, T')
SUBCASE: a = o

Every e; in (ole, S,) is not-active(e;).
SUBCASE: Every e in € is a value

Proof satisfied

SUBCASE: de; in € s.t. e; not a value

e; must take a step

Global thread pool steps

SUBCASE: a = o

There is a e; in € such that active(e;).

e; must take a step

Global thread pool steps

1.4.2 Thread-Level Progress

If
° E;F;?P H;ST,

Then the following three items must hold true:

No change at all except forgetting permissions in A.
Yo € dom(H) : w(o,Sp) — w(o,A) —w(o,u) < w(o,S,) —w(o, A") —w(o,u’)

No changes

No active rule for locations, let rule.

notactive Let rule.

Asssumed
Inversion of above

Inversion of correct-atomic

Single-threaded lemma
rule E-THREAD-POOL

Inversion of correct-atomic
Single-threaded lemma
rule E-THREAD-POOL

L If %A ute: B\ wluand active(e), then 3¢’, o', H', T', S, such that e; H; (e, S,) — a'; H'; (¢/, S}); T,

where A and S, come from A and S, respectively and are associated.

2. If 5 355 A; &5 u k- e : E'\ wlu, and not-active(e), then e is a value, or 3¢’, o', H', T', S, such that o; H; (e, S,) —
a’s H'; (€', S},); T, where A and S}, come from A and S, respectively and are associated.

27

Proof: By structural induction on the derivation of I'; 3; A; E;u b e :

CASE T-LOC k - o is already a value.
CASE T-CALL
Soe=k-om(k-o).

A uf - H;Sip

S A E—Fk-om(k): 3z C.P|—

(0:C)ex 0:CCY

535 A g [o/this)[o/f|P mtype(C,m) =Vz:C.P — 3z : C.P,
forgetg(P,) =P

Inversion of typing rule. 0,0 € dom(H)

0,0 € dom(S,)

{k'-0,k-0} CS,

E<KE k<K

H,S,|k -0,k -ot [o/this|[o/ f|P

a; H; (e, Sp) — a's H'; (¢, Sp); T
not-active(e)

Rule works for ¢ = o

CASE T-SPAWN L
So e = spawn (k- o.m(k - 0)).

Z;F;uigl—H;Sip

E\wlu”

5% Asot; — - spawn (k- o.m(k-0)) : 3_: Cy.immutable - 04Q@s, \ 0]—

0:Ce¥ 0:Ce¥ mtype(C,m)=Vz:C.P - FE
5 85 A% by [o/this][o/ f1P

0,0 € dom(H)

0,0 € dom(S,)

{k'-0,k-0} CS,

k<K k<K

H,S,|k -0,k ot [o/this|[o/ f| P

a; H; (e, Sp) — a’s H'; (€', S,); T

not-active(e)
Rule works for a = o

CASE T-UNPACK-WT
So e = unpacky k - 0Qs in es.

E;F;UT F H;ST)
Y (A, A');wt; — F unpacky k- 0Qs ine’ : E\ 0]—
(0:C)eX 0:CCX

55 A ¢ [o/this|[o/ f]P mtype(C,m) =Vx : C.P —o 3z :
forgetg(P,) =P

T

C.P.

28

Assumption
Assumption

Heap condition 1
S AES,
Above

S AES,

; A+ S, and heap well-typed

By rule E-CALL
No rule for active Call.

Assumption

Assumption

Inversion of only typing rule.
Heap condition 1

S AFS,

Above

AR S,

;A F S, and heap well-typed

By rule E-SPAWN
No rule for active Spawn.

Assumption
Assumption

Inversion of only typing rule

K-o0€S, ;AR S,
o € dom(H) S AES,
E<FE From ;A F S,

SUBCASE: readonly(k)
k = immutable implies 0 — C(...)@s € H or o — C(...)Qunpacked(s) € H
From heap condition 4.c and <. &k = pure implies o — C(...)@Qs € H
From heap conditions 4.c, 2 and 3.
a; H; (e, Sp) — a's H'; (e, S,); T’
By rule E-UNPACK-R-WT
Only not-active(e) can be derrived, and we can step when a = o.
SUBCASE: writes(k)
k = sharelfulljunique implies 0 — C(...)Qs € H
Heap condition 4.c.
KeS, k<K SAES,
a; H; (e, Sp) — a's H'; (€', S,); T
By rule E-UNPACK-RW-WT
Only not-active(e) can be derrived, and we can step when a = o.

CASE T-UNPACK
So e = unpackg k- 0Qs in es.

;A uE - H; S, Assumption
535 (A, A);E;— Funpackg k-0Qs ine' : E\ 0|—
Assumption
k = unique | full |immutable (0:C) e X X;Abg k- o0Qs
E =emplot - 3; A/ [o/thislinve (s, k); E;k-0@Qs e : B\ w|—
Inversion of only typing rule

kl'OESp Z;AI_SP
o € dom(H) S AES,
k<K From ;A F S,

SUBCASE: readonly(k)
k = immutable implies 0 — C(...)@s € H or o — C(...)Qunpacked(s) € H
From heap condition 4.c and <.
a; H; (e, Sp) — a's H'; (¢, S,); T’
By rule E-UNPACK-R
Only not-active(e) can be derrived, and we can step when a = o.
SUBCASE: writes(k)
k = fulllunique implies 0 — C(...)@Qs € H
Heap condition 4.c.
KeS, k<K S5AFS,
a; H; (e, Sp) — a’; H'; (¢!, S,); T
By rule E-UNPACK-RW
Only not-active(e) can be derrived, and we can step when a = o.

CASE T-PACK
Soe=packotos’ ines.

A uf - H;Sip Assumption
8 (A A); Ek-0Qs Fpackoto s’ ine : B\ {of}]|— Assumption

29

forgetg(k-0Qs) = k- 0@Q$
k = immutable | pure implies s = s’ X, A k-0Q$;E;— e E\ |-
localFields(C) = f: C' (0:C) € ¥ ;A kg [o/thislinve (s, k)

No temporary permissions for o.f in A’

SUBCASE: writes(k)
o+ C(...)Qunpacked(k) € H
o’s fields satisfy [o/this]linve (s, k)

kK-o€S,
a; H; (e, Sp) — a's H'; (€', S,); T

Only not-active(e) can be derrived.

We can step when a = o.
SUBCASE: readonly(k)

o+ C(...)Qunpacked(s) € H

o’s fields satisfy [o/this]inve(s, k)

kK -o€S,
a; H; (e, Sp) —>a’;H’;<e',SZ',>;T’

Only not-active(e) can be derrived.
We can step when a = o.

CASE T-ATOMIC
e =atomic (e;)

E;F;UTFH;S?
YA u b atomic (er) 1 do: C.P\ wlu/
sY;Aswhub ey 3z C.P\wlu forgetg(P)=PF

a; H; (e, Sp) — a’s H'; (€', S,); T

Only active(e) can be derrived.
e can step when e = o

CASE T-INATOMIC
e = inatomic (e;)

2 AEuf H;S,
YA u b inatomic (e) : Jx: C.P\ wlu/
s Aswhube:dr: C.P\wlu forgetg(P)=PFP'

SUBCASE: e; is avalue It is only possible to derrive active(e).
When a = e, we can step.
a; H; (e, Sp) — a’s H'; (¢, §,); T

SUBCASE: e; is not a value.

eo can take a step
It is only possible to derrive active(e).

30

Inversion of only typing rule.
Heap condition 3

Above and heap condition 4.d.
;AR S,

By rule E-PACK-RW

Heap condition 3

Above and heap condition 4.d.
XAES,

By rule E-PACK-R

Assumption
Assumption

Inversion of only typing rule

By rule E-ATOMIC-BEGIN

Assumption
Assumption

Inversion of typing rule.

By rule E-AToMIC-EXIT

Induction hypothesis

When a = e, we can step.
a; H; (e, Sp) — a’; H'; (¢, §,); T"

CASE T-READ
Soe=k- O-fi-
A8 W€ - H; S,
5 A Eub ko 3z Clz/o]P\ Ou

readonly(k,) implies readonly(k) -;3;A kg P localFields(C) = f:C

OHC(,fl:kZOZ,)@S

k <k
SUBCASE: writes(k,)
S = unpacked(k,)
Only not-active(e) can be derrived.

We can step when a = o
a; H; (e, Sp) — a/s H'; (¢!, S,); T

SUBCASE: readonly(k,,)
S = unpacked(s)
k = immutable|pure
Only not-active(e) can be derrived.
We can step when a = o
a; H; (e, Sp) — a's H'; (¢, S,); T’

CASE T-LET
Soe=let x =e1 in es.

E;F;uigl—H;Sip
5N (A, Ag);Esut let x =€y ines: B\ wy Uws|u
S Ao, P g P/

sY A ub ey T TP\ wilug z:C;%; P58 us b eg : Ews|u/

No permissions for wy in Aqg

SUBCASE: e is a value.
e1=k-o

K-0€S, k<k

oce H

Only not-active(e) possible when e is a value.
We can step when a = o.

a; H; (e, Sp) — a's H'; (€, S,); T"

SUBCASE: ¢ is not a value.
e is well-typed
€1 must step
If active(e) then active(e;)

31

By rule E-INATOMIC

Assumption
Assumption

Inversion of typing rule

Heap condition 3
Heap condition 4.d

Heap condition 3

By rule E-READ-RW

Heap condition 3
Above

By rule E-READ-R

Assumption
Assumption

Inversion of typing rule

No other values.

By inversion of T-LoC and ¥; A = 5,

Heap condition 1

By rule E-LET-V

Above
Induction hypothesis
active for Let

e1 must step whena = LH
If not-active(e) then not-active(e;) not-active for Let
e1 must step when a = o ILH
a; H; (e, Sp) — a's H'; (', S,); T’

By rule E-LET-E

CASE T-NEwW
Soe =new C(k-0).

E;F;uﬁf (o H;ST, Assumption
53 A8 u b new C(k - o) : Jx : C.unique - Qs \ O|u
Assumption

5% ARe [0o/fIP o:CCY init(C)=(3f:C.P,s)
Inversion of typing rule

H; Sy + [0/ f1P

Heap condition 4.c.
k -0 € Sp Z; A }_ Sp
=W AR S,

We can only derrive not-active(e)
We can step when a = o
a; H; (e, Sp) — a's H'; (!, S,); T'
By rule E-NEW-E

CASE T-ASSIGN

¥, A W€ - H; S, Assumption
S AALE R Qs RO fl =k 0:32 : Ci.P' @ [0.fi/x]P\ {o;. f}K - o'Qs
Assumption
localFields(C") = f:C (o' :C") € writes(k')
sYAbek-o:3x:Ci. P X A e [0 fi /2| P
Inversion of typing rule.

o+ C(...)Qunpacked(k') € H Heap condition 3
ki€ Sy, Heap condition 4.d
k, <k; Heap condition 4.d

Only not-active(e) can be derrived.
We can step when a = o
a; H; (e, Sp) — a's H's (!, S); T
By rule E-ASSIGN-E

References

[1] Bierhoff, K., Aldrich, J. Modular Typestate Checking of Aliased Objects. OOPSLA ‘07, Montreal, Canada. Octo-
ber, 2007.

[2] Moore, K., Grossman, D. High-Level Small-Step Operational Semantics for Transactions. POPL ‘08, San Fran-
cisco, CA. January, 2008.

32

