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Statistics: why bother?
We have some problem we want to solve:
“Are book prices lower on the Internet?”
“What industry sectors are most profitable?”
“Should we invest in a new technology?”

Option 1: Rely on intuition (“Because users can more easily compare prices on the 
Internet, this will lead to more price competition and thus lower prices.”), p p p )

Option 2: Collect and analyze real-world data to test whether your intuitions are correct.

“G ith th Wi d” $12 t

Mass of data
Huge, unstructured, hard to 

interpret or use for decisions.
Statistics

Information
Brief, structured, 

interpretable, actionable.

1. “Gone with the Wind” $12 at 
Barnes and Noble (online)

2. “Statistics for Business and 
Economics” $100 at Amazon.com.

3 “Statistics for Business and

Descriptive statistics:
“For our data, prices are an average 
of $0.20 lower on the Internet.”

Statistical inference:
“There (is / is not) a significant

Which methods to use?

How to apply them?
(by hand, by computer)

3. Statistics for Business and 
Economics” $104 at B.Dalton.

(200,000 more records…)

There (is / is not) a significant 
difference between textbook prices 
from online and physical retailers.”

How to interpret results?



Goals of the course
• To provide individuals who aspire to IT 

management positions with the basic statisticalmanagement positions with the basic statistical 
tools for analyzing and interpreting data.

• By the end of this course you should be able toBy the end of this course, you should be able to 
correctly choose and apply the appropriate 
statistical methods for real-world problems 
related to IT management.

• Because most real-world datasets are too large 
to analyze by hand, you will be expected to learn 
and use the statistical software package Minitab.



Structure of the course
• 13 lectures divided into three modules:

Descriptive statistics and probability (4 lectures)– Descriptive statistics and probability (4 lectures)
– Hypothesis testing and inference (5 lectures)
– Simple and multiple regression (4 lectures)Simple and multiple regression (4 lectures)

• Grades will be based on:
– Three homeworks 30% (10% each)( )
– Two mini-projects 30% (15% each)
– Final exam 40%

• See syllabus on Blackboard for detailed 
schedule, and for course policies (cheating, late 

k d il ti )work, re-grades, e-mail questions).



Course textbook and slides
• Statistics for Business and Economics (11th ed.) 

by McClave Benson and Sincichby McClave, Benson, and Sincich.
– Module 1 (Descriptive statistics and probability) 

covers Chapters 1-4.
– Module 2 (Statistical inference) covers Chapters 5-7.
– Module 3 (Regression) covers Chapters 10-11.

• Not all sections of these chapters will be 
covered.  See syllabus for readings 

di t h l tcorresponding to each lecture.
• Slides for each module are available on 

BlackboardBlackboard.



Statistics for IT Managers
95 796 F ll 201295-796, Fall 2012

Module 1: Descriptive Statistics 
and Probability (4 lectures)

Reading: Statistics for Business and Economics, Ch. 1-4



Basic definitions
• Statistics is the science of analyzing and interpreting 

data, i.e. transforming raw data into information.
• Descriptive statistics are used to organize and 

summarize data, and to present this information in a 
convenient and usable form.
– Graphical displays (e.g. histograms, box plots)
– Numerical summaries (e.g. mean, median, mode, variance)

• Inferential statistics use sample data to make• Inferential statistics use sample data to make 
estimates, decisions, predictions, or other 
generalizations about a larger set of data.

Population: data measuring some characteristic of all members– Population: data measuring some characteristic of all members 
of a group (“all teenage males who watch television”)

– Sample: data on a representative subset of the population (“100 
randomly sampled teenage males who watch television”)randomly sampled teenage males who watch television )

What can we conclude about the population, based on our sample?



Data types
• Qualitative (or categorical) data: each data point is 

classified into one of a given set of categories.g g
– Nominal data: categories do not have a given order.

• Animal type: {dog, cat, bird, fish}.
– Ordinal data: categories have a given order– Ordinal data: categories have a given order.

• Movie ranking: 1-5 stars.

• Quantitative (or numerical) data: each data point is 
d t ll i i l lmeasured on a naturally occurring numerical scale.

– Height, weight, income, etc.



Histograms
• One of the many graphical methods for displaying numerical data.
• Shows counts or percentages of data in each interval.
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Numerical descriptive statistics
• Measures of the center of the data

– Mean, median, mode, ,

• Measures of variability
– Variance, standard deviation, range, interquartile range

• Some advantages of numerical statistics:
– More succinct than graphical methods
– Less subject to distortionj
– Form the basis for statistical inferences

• Any disadvantages?



Measures of the center
• Mean: the average of all values.

)(x∑ x = value of the ith observation

• Median: the “middle” number when measurements are 
n

)x...xx(
n

x
x n21i +++

== ∑ xi = value of the ith observation
n = total number of observations

arranged in ascending (or descending) order.
• Mode: the most common value.

Mean = (1 + 1 + 2 + 2 + 2 + 3 + 4 + 4 + 5 + 16) / 10 = 4

Example dataset: 1, 1, 2, 2, 2, 3, 4, 4, 5, 16

Mean  (1 + 1 + 2 + 2 + 2 + 3 + 4 + 4 + 5 + 16) / 10  4

Median = (2 + 3) / 2 = 2.5
Notice that the mean is more affected 

b tli l th th di !Mode = 2 by outlier values than the median!



Skewed distributions
• A distribution is symmetric if mean = median.
• A distribution is positively skewed if mean > medianA distribution is positively skewed if mean > median.
• A distribution is negatively skewed if mean < median.
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Measures of variability
• Range: the difference between the smallest and largest 

observations.
• Interquartile range: the difference between the 25th and 

75th percentiles, where the kth percentile is a value such 
that k% of the obser ations are belo that al e andthat k% of the observations are below that value and 
(100-k)% of the observations are above that value.

Example dataset: 1, 1, 2, 2, 2, 3, 4, 4, 5, 16

25th percentile = 2 75th percentile = 4

Range = 16 - 1 = 15.

Interquartile range = 4 2 = 2
Like the median, the interquartile 

range is robust to outliers!

25 percentile  2 75 percentile  4

Interquartile range = 4 - 2 = 2. range is robust to outliers!



Box plots
• Make it easy to see the variability and skewness of a 

distribution, as well as any outliers (unexpected values)., y ( p )
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Measures of variability
• Variance: the average squared deviation from the mean.
• Standard deviation: the square root of the variance

1n
)xx( 2

i

−
−∑

Standard deviation: the square root of the variance.

Sample variance s2 = (n – 1) is used in the denominator instead of n.

This makes the sample variance s2 an unbiased

Sample standard deviation s = 2s
This makes the sample variance s an unbiased 
estimator of the population variance σ2.

Example dataset: 1, 1, 2, 2, 2, 3, 4, 4, 5, 16
Mean = 4

Deviations: -3, -3, -2, -2, -2, -1, 0, 0, 1, 12
Squared deviations: 9, 9, 4, 4, 4, 1, 0, 0, 1, 144

Sample variance: s2 = (9 + 9 + 4 + 4 + 4 + 1 + 0 + 0 + 1 + 144) / (10 1) =
176

Sample variance: s2 = (9 + 9 + 4 + 4 + 4 + 1 + 0 + 0 + 1 + 144) / (10 - 1) =

Sample standard deviation: s =          ≈ 4.42
9

176
9



Why measures of variability?
• Measures of the center tell us about our 

expectation (e g expected profit or loss)expectation (e.g. expected profit or loss).
• Measures of variability characterize our 

i k t i t b t thi t tirisk or uncertainty about this expectation.

Scenario 1: You are offered $5000.

Expected profit?  Risk?  Would you take this offer?

Scenario 2: You are offered a gamble on the flip of a fair coin.
If the coin comes up heads, you win $50K, otherwise you lose $40K.p , y , y

Expected profit?  Risk?  Would you take this offer?



The empirical rule
• For symmetric, unimodal (“mound-shaped”) distributions:

– Approximately 68% of the measurements will fall within 1 
standard deviation of the mean.

– Approximately 95% of the measurements will fall within 2 
standard deviations of the mean.
A i t l 99 7% f th t ill f ll ithi 3– Approximately 99.7% of the measurements will fall within 3 
standard deviations of the mean.

• This rule is useful for:
– Identifying outliers (erroneous data, unusual events)
– Calibrating the likelihood of success.
– “Guesstimating” the standard deviation.

Example: mean height of trees = 30 feet, standard deviation = 10 feet

How likely are we to see a tree taller than 40 feet?
H lik l t t t ll th 60 f t?How likely are we to see a tree taller than 60 feet?



Examples of the empirical rule
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Using Minitab
• Creating and listing data (p. 27-28)

G hi d ( 110)• Graphing data (p. 110)
• Computing numerical descriptive statistics 

(p. 110-111)
• Generating a random sample (p. 170-171)g p (p )



Why study probability?
• Basis for statistical inference:

Margin of error on opinion poll is +/ 4%– Margin of error on opinion poll is +/- 4%.
– Difference between test scores is significant at 5% 

level.
• Key element of business:

– Expected profit, risk, uncertainty, etc.
• Key element of operations management :

– Setting inventory level, delivery cycle, response time.
• Our intuitions about probabilities are terrible!
“98% of individuals who do not make a return visit to a web site are first-time visitors.”

“98% of first-time visitors will not make a return visit to a web site.”



Basic definitions
• Probability of A: a number P(A) between zero 

and one, indicating the likelihood of event A., g
– P(coin flip lands on heads) = ½
– P(it will rain tomorrow) = 0.8

• Interpreting probability as relative frequency:

n
trials n in occurs A event times of #lim)AP( n ∞→=

• Probabilities can be objective or subjective.
C l t f t A th t th t A d

n

• Complement of event A: the event that A does 
not occur, usually denoted by ~A, AC,    , or    .
– Important rule: P(~A) = 1 – P(A).

AA′
Important rule: P( A)  1 P(A).



Combining probabilities
• Given two events A and B, the probability of both events 

occurring simultaneously is denoted by P(A ∩ B), i.e. the 
“probability of A and B.”

• The probability of at least one of the two events 
occurring is denoted by P(A U B), i.e. the “probability of g y ( ), p y
A or B.”

• Important rule: P(A U B) = P(A) + P(B) – P(A ∩ B)
Example: x = roll of a six-sided die P({x is even} U {x ≥ 3})– Example: x = roll of a six-sided die.  P({x is even} U {x ≥ 3})

• Mutually exclusive events: P(A ∩ B) = 0.
– For mutually exclusive events, P(A U B) = P(A) + P(B).

E l ll f i id d di A { i } B { 1}– Example: x = roll of a six-sided die.  A = {x is even}, B = {x = 1}.
– Example: A and ~A are mutually exclusive and exhaustive.

P(A ∩ ~A) = 0 P(A U ~A) = 1( ) ( )



Conditional probabilities
• Given that an event B has occurred, the probability that 

event A has also occurred is denoted by P(A | B), i.e. the 
“probability of A given B ”probability of A given B.
– Example: x = roll of a six-sided die.  P({x is even} | {x ≤ 5})

• Important rule: P(A | B) = P(A ∩ B) / P(B).
Note that P(A | B) ≠ P(B | A)– Note that P(A | B) ≠ P(B | A)

– Example: x = roll of a six-sided die.  P({x ≤ 5} | {x is even})
• Another way to express this rule:

P(A ∩ B) = P(A | B) P(B) = P(B | A) P(A)P(A ∩ B) = P(A | B) P(B) = P(B | A) P(A)
• Given mutually exclusive and exhaustive events B1..Bn:

P(A) = P(A ∩ B1) + P(A ∩ B2) + … + P(A ∩ Bn)
= P(A | B ) P(B ) + P(A | B ) P(B ) + + P(A | B ) P(B )= P(A | B1) P(B1) + P(A | B2) P(B2) + … + P(A | Bn) P(Bn).

Example: There are three coins in a box: one fair coin, one two-headed 
coin and one biased coin with P(heads) = 2/3 If you draw one coin atcoin, and one biased coin with P(heads) = 2/3.  If you draw one coin at 
random and flip it, what is the probability that it lands on heads?



Independent events
• Two events A and B are said to be independent if:

P (A | B) = P(A | ~B) = P(A), and P(B | A) = P(B | ~A) = P(B).
I th d t t i d d t if th• In other words, two events are independent if the 
occurrence (or non-occurrence) of one event does not 
change the probability that the other will occur.
I d d t d d t?• Independent or dependent?
– Example 1: A = heads on first toss of a fair coin, B = tails on 

second toss of that coin.
– Example 2: A = individual knows Java programming B = that– Example 2: A = individual knows Java programming, B = that 

individual is an engineer.
– Example 3: A = heads on first toss of a fair coin, B = tails on first 

toss of that coin.
• If A and B are independent:

P(A ∩ B) = P(A | B) P(B) = P(A) P(B).
• More generally, for independent events A1..An: 

P(A1 ∩ … ∩ An) = P(A1) P(A2) … P(An).



Bayes’ Theorem
• A way of figuring out a conditional probability P(A | B) if 

we have the opposite conditional probability, P(B | A).
• In fact, we have to know the probabilities P(B | A) and 

P(B | ~A), as well as the “prior probability” P(A).

)~A(P)~A|B(P)A(P)A|B(P
)A(P)A|B(P

)B~A(P)BA(P
)BA(P

)B(P
)BA(P)B|A(P

+
=

∩+∩
∩

=
∩

=

• More generally, given mutually exclusive and exhaustive 
events A1..An:

)A(P)A|B(P)BA(P)B|A(P iii ∩
)A(P)A|B(P...)A(P)A|B(P

)()|(
)B(P

)()B|A(P
nn11

iii
i ++

==

Example: There are three coins in a box: one fair coin one two-headed coinExample: There are three coins in a box: one fair coin, one two headed coin, 
and one biased coin with P(heads) = 2/3.  You draw one coin at random and 
flip it: it lands on heads.  What is the probability that it is the fair coin?



Random variables
• Sample space: the set of all possible outcomes 

of a statistical experiment.
– Flipping three coins: HHH, HHT, …, TTT

• Random variable: a variable that assigns a 
numerical value to each possible outcomenumerical value to each possible outcome.
– Number of heads flipped: 3 if HHH, 2 if HHT, etc.

• Random variables can be discrete or 
ticontinuous:

– Discrete variable can take a countable number of 
values (e.g. number of heads flipped = 0, 1, 2, or 3).

– Continuous variable can take an uncountable 
number of values (e.g. height, weight, response time).



Discrete random variables
• Probability mass function p(x) specifies the 

probability associated with each possible value 
f h di d i blof the discrete random variable x.  
– Example: x = number of heads in three coin flips. 

p(0) = 1/8 {TTT}p(0)  1/8 {TTT}
p(1) = 3/8 {TTH, THT, HTT}
p(2) = 3/8 {THH, HTH, HHT}
p(3) = 1/8 {HHH}p(3) = 1/8 {HHH}

• We must have p(x) ≥ 0 for all x, and ∑p(x) = 1.
• Mean (or expected value): μ = ∑x p(x).( p ) μ ∑ p( )
• Variance: σ2 = ∑(x – μ)2 p(x).
• Standard deviation: σ = 2σ

What are the mean and standard deviation of x for the coin flip example?



Sampling of random variables
• Let us assume that we perform the “three coin flip” 

experiment 80 times, and count the number of heads x 
for each experiment:
– We expect: 10 {x=0}, 30 {x=1}, 30 {x=2}, 10 {x=3}.

(Mean = 1.5, Variance = 0.75)
– First trial: 12 {x=0}, 22 {x=1}, 31 {x=2}, 15 {x=3}.

(Mean = 1.61, Variance = 0.92)
– Second trial: 12 {x=0}, 27 {x=1}, 32 {x=2}, 9 {x=3}{ } { } { } { }

(Mean = 1.47, Variance = 0.78)
• Notice that the sample proportions are close, but not 

equal, to the expected proportions p(x).equal, to the expected proportions p(x). 
• As the number of trials increases, the sample 

proportions will converge to their expectations, as will the 
sample mean and sample variancesample mean and sample variance.

“Law of Large Numbers”



A practice problem
• An insurance company sells hurricane damage 

insurance to a Florida homeowner for $1,000/year.  In a 
given year, there is a 95% chance of no damage, 4% 
chance of minor ($20,000) damage, and a 1% chance of 
major ($80,000) damage.
– Let x = the insurance company’s profit.  What is p(x)?  

p(1,000) = 0.95, p(-19,000) = 0.04, p(-79,000) = 0.01.
– What is the probability that the insurance company will make a 

profit in a given year?
P(x > 0) = 95%.

– What is the company’s expected yearly profit?  Is this a profitable 
f ?policy for the insurance company?

0.95($1,000) + 0.04(-$19,000) + 0.01(-$79,000) = -$600.
Not profitable!



The binomial distribution
• Given an experiment with probability p of success.  Let random 

variable x denote the number of successes in n independent trials.
• Then x follows a binomial distribution, x ~ Bin(n,p). 

nx0 for ,)p1(p
)!xn(!x

!n)x(p xnx ≤≤−
−

= −

• For example, we have a weighted coin with P(heads) = 0.6.
Let x = the number of heads in 10 trials.
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Continuous random variables
• Probability density function f(x) specifies the 

probability associated with each range of theprobability associated with each range of the 
continuous random variable x:

∫
b Area under the curve

f(x)

• We must have f(x) ≥ 0 for all x and

∫=≤≤
a

dx)x(f)bxa(P Area under the curve 
f(x), from a to b a b

∫ = 1dx)x(f• We must have f(x) ≥ 0 for all x, and 
• Mean (or expected value): 
• Variance:

∫ = 1.dx)x(f

∫=μ dx)x(f x
( )∫ μσ dx)x(fx 22• Variance: 

• Standard deviation: σ = 2σ

( )∫ μ−=σ dx)x(fx



The uniform distribution
• Choose a point on the interval [c,d], where 

each point on the interval is equally likelyeach point on the interval is equally likely.

c d
x

x ~ Uniform(c,d)
x

⎪
⎪
⎧ ≤≤

−
dxc if  

cd
1

d
1

width d-c

σ σ

⎪
⎪
⎩

⎪
⎨=

otherwise 0

cd
)x(f cd −

height 1/(d-c)

c d

Mean: μ = (c + d) / 2
Variance: σ2 = (d c)2 / 12

Example: if product weights are 
uniformly distributed on [1 1 5]

μ

Variance: σ = (d – c) / 12
Std. dev.: σ = (d – c) /

uniformly distributed on [1,1.5], 
what is the probability that a 
product will have weight > 1.2?12



Comparison of discrete and 
continuous random variables

y ~ Uniform(5,9)x ~ Endpoints(5,9)

continuous random variables

5 9
y

5 9

f(y)p(x)
1/4

ε

50% 50%
Probability 

mass 
function

Probability 
density 
function

5 95 9

1/2 1/4
Area under 
curve = 1

Sum of 
values = 1

5 95 9

Pr(x = 5) = Pr(x = 9) = ½. Pr(9 – ε ≤ x ≤ 9) = ε / 4.

What are μ and σ for each distribution?



The Normal distribution
• The most important distribution for statistical inference!

– Many real-world distributions are approximately normal.
• Also called “Gaussian distribution” or “bell curve”.
• A symmetric, unimodal distribution N(μ, σ), determined 

by its mean μ and standard deviation σ:by its mean μ and standard deviation σ:

2x
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πσ
= of the distribution, and σ
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σ σ
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The Normal distribution
• The most important distribution for statistical inference!

– Many real-world distributions are approximately normal.
• Also called “Gaussian distribution” or “bell curve”.
• A symmetric, unimodal distribution N(μ, σ), determined 

by its mean μ and standard deviation σ:by its mean μ and standard deviation σ:
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The Normal distribution
• The most important distribution for statistical inference!

– Many real-world distributions are approximately normal.
• Also called “Gaussian distribution” or “bell curve”.
• A symmetric, unimodal distribution N(μ, σ), determined 

by its mean μ and standard deviation σ:by its mean μ and standard deviation σ:
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The Normal distribution
• The most important distribution for statistical inference!

– Many real-world distributions are approximately normal.
• Also called “Gaussian distribution” or “bell curve”.
• A symmetric, unimodal distribution N(μ, σ), determined 

by its mean μ and standard deviation σ:by its mean μ and standard deviation σ:
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⎟
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=
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)x(f
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= normal distribution is 
within 3σ of the mean.

99 7%

μ μ+1σ μ+2σ μ+3σμ-2σ μ-1σμ-3σ
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Computing normal probabilities
• Normal probabilities depend both on μ and σ.

– Example: which has higher probability of x > 140?

Same σ=10, different μ Same μ=110, different σ

σ=10σ 10

σ=20

100 120 140 140

N(130 10)
What about Solution: transform 

N(120,20)

N(130,10) when μ and σ
are different?

each distribution 
using the z-score!

140



Computing z-scores
• If x is distributed according to N(μ, σ), then 

z = will be distributed according to theμ−xz        will be distributed according to the 
standard normal distribution, N(0,1).
– The z-score (z) is the number of standard

σ

The z score (z) is the number of standard 
deviations (σ) that the original measurement 
(x) is from the mean (μ).

– Example: man’s weight x ~ N(185,10). 
P(175 ≤ x ≤ 195) = P(-1 ≤ z ≤ 1) ≈ 68%.

10
185xz −

=f(x) f(z)

175 185 195165 205 -1 0 1-2 2



Using a table of normal curve areas
• Once we have converted to z-scores, how do we 

compute more general probabilities, e.g. P(-1 ≤ z ≤ .71)?
• Answer: use a table of normal curve areas (or Minitab).

– The table gives F(z0) = P(0 ≤ z ≤ |z0|).
– We can use these values to compute any desired probability.p y p y

• Example: P(-1 ≤ z ≤ .71) = F(1) + F(.71) = .3413 + .2611 = .6024

What about:What about:
P(z ≤ -1)?
P(z ≥ -1)?
P(z ≤ .71)?

F(1) F(.71) .5-F(.71).5-F(1)

P(z ≥ .71)?

0 .71-1

( ) ( ) 5 ( )5 ( )



A practice problem
• Let us assume that men’s weights are normally 

distributed with μ = 185 and σ = 20, while μ ,
women’s weights are normally distributed with   
μ = 150 and σ = 10.  Are men or women more 
likely to have weight between 160 and 170?likely to have weight between 160 and 170?

1st step: Convert to z-scores
Men: P(160 < x < 170) = P( 1 25 < z < 75)Men: P(160 < x < 170) = P(-1.25 < z < -.75) 
Women: P(160 < x < 170) = P(1 < z < 2)

2nd step: Compute probabilities2 step: Compute probabilities
Men: P(-1.25 < z < -.75) = F(1.25) – F(.75) = .3944 – .2734 = .1210 
Women: P(1 < z < 2) = F(2) – F(1) = .4772 – .3413 =  .1359



An “inverse” problem
• Large employers regularly use skill tests to evaluate 

potential employees.  Suppose a test of programming 
fi i h f 60% d t d dproficiency has a mean score of 60% and standard 

deviation of 10%.  If the employer only wants to hire the 
most proficient 20% of applicants, what is the minimum 
t t th h ld t?test score they should set? 

1st step: Compute the necessary range of z-scores
P(z > z ) = 0 2P(z > z0) = 0.2
P(0 < z < z0) = 0.5 – 0.2 = 0.3
z0 = F-1(0.3) ≈ 0.84

2nd step: Compute the necessary range of values
z > 0.84
x > 60% + 0.84(10%) x > 68.4%( )

What if the employer wants to avoid hiring the bottom 20% of applicants?



Why the normal distribution?
• Central Limit Theorem: averages are 

approximately normally distributedapproximately normally distributed.
– More samples = closer to a normal distribution.
– More samples = lower variance.p

• Other probability distributions (e.g. binomial) can 
be expressed as a sum, and thus are also 
approximately normally distributed.

• These properties will be very useful for inference 
(confidence intervals and hypothesis testing), as 
we will discuss in Module II.



Parameters and sample statistics
• If we know the probability distribution of a random 

variable we can compute its mean μ standardvariable, we can compute its mean μ, standard 
deviation σ, and associated probabilities.
– “The average response time in minutes for a network g p

outage is normally distributed with μ = 47, σ = 18.”
• What if we don’t know the distribution, but only 

have samples from this distribution?
– “For the last 5 network outages, response times were 

43 79 21 71 and 51 minutes (x = 53 s ≈ 23) ”43, 79, 21, 71, and 51 minutes (x = 53, s ≈ 23).

What can we conclude about population parameters
μ and σ, using the sample statistics x and s?



Parameters and sample statistics
• If we know the probability distribution of a random 

variable we can compute its mean μ standardvariable, we can compute its mean μ, standard 
deviation σ, and associated probabilities.
– “The average response time in minutes for a network The sample mean x can be used as an estimate of the 

population mean μ But how good an estimate is it?g p
outage is normally distributed with μ = 47, σ = 18.”

• What if we don’t know the distribution, but only 

population mean μ.  But how good an estimate is it?

Intuitively, x will be a good estimate if the number of samples is 
large, and a poor estimate if the number of samples is small.

have samples from this distribution?
– “For the last 5 network outages, response times were 

43 79 21 71 and 51 minutes (x = 53 s ≈ 23) ”

large, and a poor estimate if the number of samples is small.

43, 79, 21, 71, and 51 minutes (x = 53, s ≈ 23).

What can we conclude about population parameters
μ and σ, using the sample statistics x and s?



Sampling distributions
• A parameter such as μ or σ describes some 

characteristic of a population.  It is a fixed quantity p p q y
that is calculated from all observations in the 
population.  
A l t ti ti h d ib• A sample statistic such as x or s describes some 
characteristic of a sample.  It is calculated only 
from those members of the population that arefrom those members of the population that are 
included in the sample.

• Since the value of a sample statistic will be 
different for each sample, a sample statistic is a 
random variable.

The probability distribution of this random variable is– The probability distribution of this random variable is 
called its sampling distribution.



Sampling distributions
• Example: You want to know the proportions of 

children and adults in a roomchildren and adults in a room.
• You observe only two of the five people in the 

room: let x be the proportion of children in thsroom: let x be the proportion of children in ths 
sample.

• If there are actually four adults and one child, y ,
what is the sampling distribution of x?
p(0) = 6/10 {A1A2, A1A3, A1A4, A2A3, A2A4, A3A4}
p(1/2) = 4/10 {A1C, A2C, A3C, A4C}
μx = 1/5

24 The sample statistic x is an unbiased estimateσx ≈ .24 The sample statistic x is an unbiased estimate
of the proportion of children in the population.



Sampling distributions
• Example: You want to know the proportions of 

children and adults in a roomchildren and adults in a room.
• You observe only four of the five people in the 

room: let x be the proportion of children in thsroom: let x be the proportion of children in ths 
sample.

• If there are actually four adults and one child, y ,
what is the sampling distribution of x?
p(0) = 1/5 {A1A2A3A4}        
p(1/4) = 4/5 {A1A2A3C, A1A2A4C, A1A3A4C, A2A3A4C}      
μx = 1/5

10 Larger sample size leads to a lower variance ofσx = .10 Larger sample size leads to a lower variance of 
the sampling distribution, i.e. better estimates!



Using x to estimate μ
Now consider drawing N = 4 samples from 

the population and taking their mean, x.  
Let us assume that the population is 

normally distributed with μ = 47, σ = 18.

Histogram of C1
Normal 

Histogram of C5
Normal 

We repeat this experiment 100,000 times 
and form a histogram of the values of x.

Here is a histogram of 100,000   
samples drawn from the population.
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The sampling distribution of x is normal, with mean μx = 47 and 
standard deviation σx = 9.  Notice that the sample mean x is an 
unbiased estimator of the population mean μ.  Additionally, the 
sample mean will be between 38 and 56 about 68% of the time.



Using x to estimate μ
Now consider drawing N = 36 samples from 

the population and taking their mean, x.  
Let us assume that the population is 

normally distributed with μ = 47, σ = 18.

Histogram of C37
Normal 

We repeat this experiment 100,000 times 
and form a histogram of the values of x.

Histogram of C1
Normal 

Here is a histogram of 100,000   
samples drawn from the population.
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The sampling distribution of x is normal, with mean μx = 47 and 
standard deviation σx = 3.  Notice that the sample mean x is an 
unbiased estimator of the population mean μ.  Additionally, the 
sample mean will be between 44 and 50 about 68% of the time.



Using x to estimate μ
Now consider drawing N = 36 samples from 

the population and taking their mean, x.  
Let us assume that the population is 

normally distributed with μ = 47, σ = 18.

We repeat this experiment 100,000 times 
and form a histogram of the values of x.

Histogram of C37
Normal 

Histogram of C1
Normal 

Here is a histogram of 100,000   
samples drawn from the population.
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If the population is normally distributed with mean μ and 
standard deviation σ, then the sample mean x is also normally , p y

distributed, with mean μ and standard deviation σ /      .N



Using x to estimate μ
Now consider drawing N = 36 samples from 

the population and taking their mean, x.  
Let us assume that the population is 

uniformly distributed with μ = 47, σ = 18.

Histogram of C37
Normal 1800

Histogram of C3

We repeat this experiment 100,000 times 
and form a histogram of the values of x.

Here is a histogram of 100,000    
samples drawn from the population.
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Using x to estimate μ
Now consider drawing N = 36 samples from 

the population and taking their mean, x.  
Let us assume that the population is 

uniformly distributed with μ = 47, σ = 18.

Histogram of C37
Normal 1800

Histogram of C3

We repeat this experiment 100,000 times 
and form a histogram of the values of x.

Here is a histogram of 100,000    
samples drawn from the population.
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If the population has any distribution with mean μ and standard 
deviation σ, and if N ≥ 30, then the sample mean x is normally , , p y

distributed, with mean μ and standard deviation σ /      .N

This rule is called the Central Limit Theorem.



What if N is too small?
Now consider drawing N = 2 samples from 

the population and taking their mean, x.  
Let us assume that the population is 

uniformly distributed with μ = 47, σ = 18.

Histogram of C3
Normal 1800

Histogram of C3

We repeat this experiment 100,000 times 
and form a histogram of the values of x.

Here is a histogram of 100,000   
samples drawn from the population.
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In general, the sample mean x has mean μ and standard 
deviation σ /      , but it is only approximately normal for large N.N , y pp y gN



The Central Limit Theorem
For N > 30, the sample mean x is 

approximately normally distributed.
If the population has any distribution with mean μ and standard 
deviation σ, and if N ≥ 30, then the sample mean x is normally 

distributed, with mean μ and standard deviation σ /      .N

Example problem: if the daily number of hits for                   p p y
your website follows some distribution with μ = 1000            

and σ = 300, what is the probability that you will              
receive more than 39,600 hits in the next 36 days? 

Given μ = 1000, σ = 300, and N = 36, we know that the sample mean 
x is normally distributed with μx = 1000 and σx = 300 / √36 = 50.

Then Pr(x >        ) = Pr(x > 1100) = Pr(z >              ) = Pr(z > 2).
Using the table of normal curve areas, we obtain .5 - .4772 = .0228.

36
600,39

50
10001100 −

Given μ and σ, the Central Limit Theorem lets you reason about x.



The Central Limit Theorem
Example problem #2: An analyst for an internet consulting company  

is charged with collecting data on the performance of file sharing 
t k A t k i t d “ ti f t ” if thnetworks.  A network is rated “satisfactory” if the average             
number of retries needed to gain entry is at most 1.

The analyst tests a site by attempting to gain entry 100 times. SheThe analyst tests a site by attempting to gain entry 100 times.  She 
finds a mean of 1.5 retries and a standard deviation of 1.  Can she 
reliably conclude that the performance of the site is unsatisfactory? 

Let us assume that σ ≈ s = 1.  Does a sample 
mean of x = 1.5, computed from N =100    

trials, seem consistent with the assumption   

If the population had μ = 1 and    
σ = 1, we would expect x to be 

normally distributed with mean 1   
that the population mean μ is equal to 1? and std. deviation 1 / √100 = 0.1. 

Then Pr(x ≥ 1.5) = Pr(z ≥ 5) ≈ 0.

Given x and s, the Central Limit Theorem lets you reason about μ.


