Statistics for IT Managers
95-796, Fall 2012

Course Overview

Instructor: Daniel B. Neill (neill@cs.cmu.edu)

TAs: Eli (Han) Liu, Kats Sasanuma, Sriram Somanchi,
Skyler Speakman, Quan Wang, Yiye Zhang
(see Blackboard for contact information!)



Statistics: why bother?

We have some problem we want to solve:

“Are book prices lower on the Internet?”
“What industry sectors are most profitable?”
“Should we invest in a new technology?”

Option 1: Rely on intuition (“Because users can more easily compare prices on the
Internet, this will lead to more price competition and thus lower prices.”)

Option 2: Collect and analyze real-world data to test whether your intuitions are correct.

Mass of data
Huge, unstructured, hard to

interpret or use for decisions.

1. “Gone with the Wind” $12 at
Barnes and Noble (online)

2. “Statistics for Business and

Economics” $100 at Amazon.com.

3. “Statistics for Business and
Economics” $104 at B.Dalton.

(200,000 more records...)

)l Statistics

Which methods to use?

How to apply them?
(by hand, by computer)

How to interpret results?

=)

Information
Brief, structured,
interpretable, actionable.

Descriptive statistics:
“For our data, prices are an average
of $0.20 lower on the Internet.”

Statistical inference:

“There (is / is not) a significant
difference between textbook prices
from online and physical retailers.”




Goals of the course

* To provide individuals who aspire to IT
management positions with the basic statistical
tools for analyzing and interpreting data.

* By the end of this course, you should be able to
correctly choose and apply the appropriate
statistical methods for real-world problems
related to IT management.

* Because most real-world datasets are too large
to analyze by hand, you will be expected to learn
and use the statistical software package Minitab.



Structure of the course

* 13 lectures divided into three modules:
— Descriptive statistics and probability (4 lectures)
— Hypothesis testing and inference (5 lectures)
— Simple and multiple regression (4 lectures)

» Grades will be based on:
— Three homeworks 30% (10% each)
— Two mini-projects 30% (15% each)
— Final exam 40%

« See syllabus on Blackboard for detailed
schedule, and for course policies (cheating, late
work, re-grades, e-mail questions).



Course textbook and slides

« Statistics for Business and Economics (11t ed.)
by McClave, Benson, and Sincich.

— Module 1 (Descriptive statistics and probability)
covers Chapters 1-4.

— Module 2 (Statistical inference) covers Chapters 5-7.
— Module 3 (Regression) covers Chapters 10-11.

* Not all sections of these chapters will be
covered. See syllabus for readings
corresponding to each lecture.

e Slides for each module are available on
Blackboard.



Statistics for IT Managers
95-796, Fall 2012

Module 1: Descriptive Statistics
and Probability (4 lectures)

Reading: Statistics for Business and Economics, Ch. 1-4



Basic definitions

« Statistics is the science of analyzing and interpreting
data, i.e. transforming raw data into information.

* Descriptive statistics are used to organize and
summarize data, and to present this information in a
convenient and usable form.

— Graphical displays (e.g. histograms, box plots)
— Numerical summaries (e.g. mean, median, mode, variance)

* Inferential statistics use sample data to make
estimates, decisions, predictions, or other
generalizations about a larger set of data.

— Population: data measuring some characteristic of all members
of a group (“all teenage males who watch television”)

— Sample: data on a representative subset of the population (“100
randomly sampled teenage males who watch television”)

What can we conclude about the population, based on our sample?



Data types

* Qualitative (or categorical) data: each data point is
classified into one of a given set of categories.
— Nominal data: categories do not have a given order.
* Animal type: {dog, cat, bird, fish}.
— Ordinal data: categories have a given order.
* Movie ranking: 1-5 stars.
* Quantitative (or numerical) data: each data point is
measured on a naturally occurring numerical scale.
— Height, weight, income, etc.



Histograms

» One of the many graphical methods for displaying numerical data.
« Shows counts or percentages of data in each interval.

Example: Internet usage survey data
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Numerical descriptive statistics

Measures of the center of the data
— Mean, median, mode

Measures of variability
— Variance, standard deviation, range, interquartile range

Some advantages of numerical statistics:
— More succinct than graphical methods

— Less subject to distortion

— Form the basis for statistical inferences

Any disadvantages?



Measures of the center

Mean: the average of all values.

— Z X. (X 4+ X, 4+...4+X ) x; = value of the it" observation
X = L — 1 2 n n = total number of observations
n n

Median: the "middle” number when measurements are
arranged in ascending (or descending) order.

Mode: the most common value.

Example dataset: 1, 1, 2, 2, 2, 3,4, 4, 5, 16

Mean=(1+1+2+2+2+3+4+4+5+16)/10=4

\

Notice that the mean is more affected
by outlier values than the median!

Median = (2 + 3) /2= 2.5

Mode = 2



Skewed distributions

A distribution is symmetric if mean = median.
A distribution is positively skewed if mean > median.
A distribution is negatively skewed if mean < median.

Histogram of C1 Histogram of C2
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Measures of variability

* Range: the difference between the smallest and largest
observations.

 Interquartile range: the difference between the 25" and
75" percentiles, where the k" percentile is a value such
that k% of the observations are below that value and
(100-k)% of the observations are above that value.

Example dataset: 1, 1, 2, 2, 2,13, 4, 4, 5, 16
t t

25t percentile = 2 75t percentile = 4

Range =16 -1 = 15.
Like the median, the interquartile

Interquartile range =4 -2 =2 range is robust to outliers!



Box plots

« Make it easy to see the variability and skewness of a
distribution, as well as any outliers (unexpected values).

Boxplot of C2
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Measures of variability

« Variance: the average squared deviation from the mean.
« Standard deviation: the square root of the variance.

(Xi _;)2

n—1

Sample variance s2 = Z (n— 1) is used in the denominator instead of n.

This makes the sample variance s? an unbiased
estimator of the population variance 2.

Sample standard deviation s = \/9,72

Example dataset: 1, 1, 2, 2, 2, 3,4, 4, 5, 16
l Mean =4

Deviations: -3, -3, -2,-2,-2,-1,0,0, 1, 12
Squared deviations: 9,9, 4,4,4,1,0,0, 1, 144

176
Samplevariance:32=(9+9+4+4+4+1+0+0+1+144)/(1o-1)_T

1176
Sample standard deviation: s = 9 =442



Why measures of variability?

* Measures of the center tell us about our
expectation (e.g. expected profit or loss).

* Measures of variability characterize our
risk or uncertainty about this expectation.




The empirical rule

* For symmetric, unimodal (“mound-shaped”) distributions:

— Approximately 68% of the measurements will fall within 1
standard deviation of the mean.

— Approximately 95% of the measurements will fall within 2
standard deviations of the mean.

— Approximately 99.7% of the measurements will fall within 3
standard deviations of the mean.

* This rule is useful for:
— ldentifying outliers (erroneous data, unusual events)
— Calibrating the likelihood of success.
— “Guesstimating” the standard deviation.

Example: mean height of trees = 30 feet, standard deviation = 10 feet

How likely are we to see a tree taller than 40 feet?
How likely are we to see a tree taller than 60 feet?



Examples of the empirical rule

l K — 1000 data points generated from N(100,20)

: 68% of the data should be between 80 and 120

§ 95% of the data should be between 60 and 140
Almost all of the data should be between 40 and 160

| ﬁ =/l 1000 data points generated from N(100,10)

: ]Z 68% of the data should be between 90 and 110

§ 95% of the data should be between 80 and 120
Almost all of the data should be between 70 and 130




Using Minitab

» Creating and listing data (p. 27-28)
* Graphing data (p. 110)

« Computing numerical descriptive statistics
(p. 110-111)

* Generating a random sample (p. 170-171)



Why study probability?

Basis for statistical inference:
— Margin of error on opinion poll is +/- 4%.

— Difference between test scores is significant at 5%
level.

Key element of business:
— Expected profit, risk, uncertainty, etc.

Key element of operations management :
— Setting inventory level, delivery cycle, response time.

Our intuitions about probabilities are terrible!

“98% of individuals who do not make a return visit to a web site are first-time visitors.”

“98% of first-time visitors will not make a return visit to a web site.”



Basic definitions

Probability of A: a number P(A) between zero
and one, indicating the likelihood of event A.

— P(coin flip lands on heads) = %
— P(it will rain tomorrow) = 0.8
Interpreting probability as relative frequency:

# of times event A occursinn trials

N—>o0
n

P(A) = lim

Probabilities can be objective or subjective.

Complement of event A: the event that A does
not occur, usually denoted by ~A, A%, A’, or A.

— Important rule: P(~A) = 1 - P(A).



Combining probabilities

Given two events A and B, the probability of both events
occurring simultaneously is denoted by P(A N B), i.e. the
“probability of A and B.”

The probability of at least one of the two events
occurring is denoted by P(A U B), i.e. the “probability of
AorB.

Important rule: P(A U B) = P(A) + P(B) — P(A N B)

— Example: x = roll of a six-sided die. P({x is even} U {x = 3})
Mutually exclusive events: P(A N B) = 0.

— For mutually exclusive events, P(A U B) = P(A) + P(B).

— Example: x = roll of a six-sided die. A ={xis even}, B ={x = 1}.

— Example: A and ~A are mutually exclusive and exhaustive.

P(AN~A)=0 P(AU ~A) = 1




Conditional probabilities

Given that an event B has occurred, the probability that
event A has also occurred is denoted by P(A | B), i.e. the
“probability of A given B.”
— Example: x = roll of a six-sided die. P({x is even} | {x < 5})
Important rule: P(A | B) = P(A N B) / P(B).
— Note that P(A | B) # P(B | A)
— Example: x = roll of a six-sided die. P({x <5} | {x is even})
Another way to express this rule:
P(ANB)=P(A|B)P(B)=P(B|A)P(A)
Given mutually exclusive and exhaustive events B,..B,:
P(A)=P(ANB,)+P(ANB,) +...+ P(ANB,)
=P(A|B,) P(By) + P(A|B;) P(By) + ... + P(A| B,) P(B,).

Example: There are three coins in a box: one fair coin, one two-headed
coin, and one biased coin with P(heads) = 2/3. If you draw one coin at
random and flip it, what is the probability that it lands on heads?



Independent events

Two events A and B are said to be independent if:
P(A|B)=P(A|~B)=P(A),and P(B| A) =P(B | ~A) = P(B).
In other words, two events are independent if the

occurrence (or non-occurrence) of one event does not
change the probability that the other will occur.

Independent or dependent?

— Example 1: A = heads on first toss of a fair coin, B = tails on
second toss of that coin.

— Example 2: A = individual knows Java programming, B = that
individual is an engineer.

— Example 3: A = heads on first toss of a fair coin, B = tails on first
toss of that coin.

If A and B are independent:
P(ANB)=P(A|B)P({B)=P(A) P(B).

More generally, for independent events A,..A.:
PA,N...NA)=PA,)PA,) ... P(A,).




Bayes' Theorem

« A way of figuring out a conditional probability P(A | B) if
we have the opposite conditional probability, P(B | A).
 In fact, we have to know the probabilities P(B | A) and
P(B | ~A), as well as the “prior probability” P(A).
A NB) P(ANB) P(B|A)P(A)

P(A[B) =\ - -
PB) P(ANB)+P(~A~B) P(B|A)P(A)+P(B|~A)P(~A)

* More generally, given mutually exclusive and exhaustive
events A..A.;:

PB) PB|APA,)+...+PB|A PA)

Example: There are three coins in a box: one fair coin, one two-headed coin,
and one biased coin with P(heads) = 2/3. You draw one coin at random and
flip it: it lands on heads. What is the probability that it is the fair coin?



Random variables

« Sample space: the set of all possible outcomes
of a statistical experiment.

— Flipping three coins: HHH, HHT, ..., TTT

* Random variable: a variable that assigns a
numerical value to each possible outcome.
— Number of heads flipped: 3 if HHH, 2 if HHT, etc.

« Random variables can be discrete or
continuous:

— Discrete variable can take a countable number of
values (e.g. number of heads flipped =0, 1, 2, or 3).

— Continuous variable can take an uncountable
number of values (e.g. height, weight, response time).



Discrete random variables

Probability mass function p(x) specifies the
probability associated with each possible value
of the discrete random variable x.

— Example: x = number of heads in three coin flips.

p(0) = 1/8 {TTT}
p(2) = 3/8 {THH, HTH, HHT)
p(3) = 1/8 {HHH}

We must have p(x) 2 0 for all x, and > p(x) = 1.
Mean (or expected value): y = > x p(x).
Variance: 62 = Y (x — 4)? p(x).

Standard deviation: ¢ = /52

What are the mean and standard deviation of x for the coin flip example?



Sampling of random variables

* Let us assume that we perform the “three coin flip”
experiment 80 times, and count the number of heads x
for each experiment:

— We expect: 10 {x=0}, 30 {x=1}, 30 {x=2}, 10 {x=3}.
(Mean = 1.5, Variance = 0.75)

— First trial: 12 {x=0}, 22 {x=1}, 31 {x=2}, 15 {x=3}.
(Mean = 1.61, Variance = 0.92)

— Second trial; 12 {x=0}, 27 {x=1}, 32 {x=2}, 9 {x=3}
(Mean = 1.47, Variance = 0.78)

* Notice that the sample proportions are close, but not
equal, to the expected proportions p(x).

* As the number of trials increases, the sample
proportions will converge to their expectations, as will the

sample mean and sample variance. N\
“Law of Large Numbers”




A practice problem

* An insurance company sells hurricane damage
insurance to a Florida homeowner for $1,000/year. In a
given year, there is a 95% chance of no damage, 4%
chance of minor ($20,000) damage, and a 1% chance of
major ($80,000) damage.

— Let x = the insurance company’s profit. What is p(x)?
p(1,000) = 0.95, p(-19,000) = 0.04, p(-79,000) = 0.01.

— What is the probability that the insurance company will make a
profit in a given year?
P(x > 0) = 95%.

— What is the company’s expected yearly profit? Is this a profitable
policy for the insurance company?
0.95($1,000) + 0.04(-$19,000) + 0.01(-$79,000) = -$600.
Not profitable!



The binomial distribution

« Given an experiment with probability p of success. Let random
variable x denote the number of successes in n independent trials.

« Then x follows a binomial distribution, x ~ Bin(n,p).

n!
P(x)= x!(n—x)!

p*(1-p)" ", for0<x<n

« For example, we have a weighted coin with P(heads) = 0.6.
Let x = the number of heads in 10 trials.

Histogram of C1

| For x ~ Bin(n,p)
Mean of x: u = np.
Variance of x: 62 = np(1-p)

x ~ Bin(10,0.6)



Continuous random variables

Probability density function f(x) specifies the
probability associated with each range of the

continuous random variable Xx: 00

T

b

b
Area under the curve
<x<b)= -
Pla<x<b) I f(x)dx f(x), from a to b

We must have f(x) = 0 for all x, and jf(x)dx =1.
Mean (or expected value): =[x f(x)dx
Variance: o° = [ (x—p)* f(x)dx

Standard deviation: ¢ = /5



The uniform distribution

* Choose a point on the interval [c,d], where
each point on the interval is equally likely.

i x ~ Uniform(c,d)
¢ X

width d-c

T ifc<x<d 1 ' ‘
f d-c d_c |
(X) = | I\ height 1/(d-c)
0 otherwise
c u d
Mean: py=(c+d)/2 Example: if product weights are

Variance: 2 = (d — C)2/ 12 uniformly distributed on [1,1.5],

- = (A _ A0 what is the probability that a
Std. dev.: o = (d - ¢) /12 product will have weight > 1.2?



Comparison of discrete and
continuous random variables

X ~ Endpoints(5,9) y ~ Uniform(5,9)
5 9 5 T
y : y
50% 50%
Probability Probability
mass 4 p(X) 4 f(y) density
function € function
12+ o o 174 1
Sum of Area under
values = 1 I I R R curve = 1
5 9 ) 9
Pr(x =5) = Pr(x =9) = 5. Pr(Q—-e<x<9)=¢/4.

What are n and o for each distribution?



The Normal distribution

* The most important distribution for statistical inference!
— Many real-world distributions are approximately normal.

 Also called “Gaussian distribution” or “bell curve”.

* A symmetric, unimodal distribution N(j, o), determined
by its mean u and standard deviation o:

1 _1()(__“)2 M determines the center
of the distribution, and o
determines its spread.




The Normal distribution

* The most important distribution for statistical inference!
— Many real-world distributions are approximately normal.

 Also called “Gaussian distribution” or “bell curve”.

* A symmetric, unimodal distribution N(j, o), determined
by its mean u and standard deviation o:

1 _1()(__“)2 ~68% of the area of the
f(x)= ° normal distribution is
O+ 2T within 1o of the mean.

M-36 M-206 pu-lo M u+1lc p+20 M+30



The Normal distribution

* The most important distribution for statistical inference!
— Many real-world distributions are approximately normal.

 Also called “Gaussian distribution” or “bell curve”.

* A symmetric, unimodal distribution N(j, o), determined
by its mean u and standard deviation o:

1 _1()(__“)2 ~95% of the area of the
f(x)= ° normal distribution is
O+ 2T within 2o of the mean.




The Normal distribution

* The most important distribution for statistical inference!
— Many real-world distributions are approximately normal.

 Also called “Gaussian distribution” or “bell curve”.

* A symmetric, unimodal distribution N(j, o), determined
by its mean u and standard deviation o:

1 _1()(__“)2 ~99.7% of the area of the
f(x)= ° normal distribution is
O+ 2T within 3o of the mean.

M-36 M-206 pu-lo M u+1lc p+20 M+30



Computing normal probabilities

 Normal probabilities depend both on y and o.
— Example: which has higher probability of x > 140?

Same =10, different p Same p=110, different o

140

Solution: transform

What about
N(130,10) when p and o each distribution
- using the z-score!

are different?
N(120,20)
O O

140



Computing z-scores

e If x is distributed according to N(u, o), then
z = =% will be distributed according to the

)

standard normal distribution, N(0,1).

— The z-score (z) is the number of standard
deviations (o) that the original measurement
(x) is from the mean (n).

— Example: man’s weight x ~ N(185,10).
P(175=<x<195)=P(-1<z<1)=68%.

w SN
| — ;
/ i \ / ; \

165 175 185 195 205 2 -1 0 1 2




Using a table of normal curve areas

 Once we have converted to z-scores, how do we
compute more general probabilities, e.g. P(-1 <z < .71)?

« Answer: use a table of normal curve areas (or Minitab).
— The table gives F(z,) = P(0 =z = |z,|).
— We can use these values to compute any desired probability.

« Example: P(-1<z<.71)=F(1) + F(.71) = .3413 + .2611 = .6024

What about:
P(z=<-1)?
P(z=-1)?
P(z<.71)?
P(z=.71)?

sF)| F)y 1 EC71) |5
0



A practice problem

* Let us assume that men's weights are normally
distributed with y = 185 and o = 20, while
women’s weights are normally distributed with
U =150 and ¢ = 10. Are men or women more
likely to have weight between 160 and 1707

1st step: Convert to z-scores
Men: P(160 <x < 170) = P(-1.25 <z <-.75)

Women: P(160 <x<170)=P(1<z<2)

2nd step: Compute probabilities
Men: P(-1.25<z<-75)=F(1.25) - F(.75) = .3944 — .2734 = 1210
Women: P(1<z<2)=F2)-F(1)=.4772 - .3413 = 1359




An “inverse” problem

« Large employers regularly use skill tests to evaluate
potential employees. Suppose a test of programming
proficiency has a mean score of 60% and standard
deviation of 10%. If the employer only wants to hire the
most proficient 20% of applicants, what is the minimum
test score they should set?

15t step: Compute the necessary range of z-scores
P(z>2z,)=0.2

P(O<z<z,)=05-0.2=0.3

z, = F1(0.3) = 0.84

2"d step: Compute the necessary range of values
z>0.84
X >60% + 0.84(10%) = x> 68.4%

What if the employer wants to avoid hiring the bottom 20% of applicants?



Why the normal distribution”?

» Central Limit Theorem: averages are
approximately normally distributed.
— More samples = closer to a normal distribution.
— More samples = lower variance.

« Other probability distributions (e.g. binomial) can
be expressed as a sum, and thus are also
approximately normally distributed.

« These properties will be very useful for inference
(confidence intervals and hypothesis testing), as
we will discuss in Module II.




Parameters and sample statistics

* |If we know the probability distribution of a random
variable, we can compute its mean pu, standard
deviation o, and associated probabilities.

— “The average response time in minutes for a network
outage is normally distributed with un =47, c = 18.”

« What if we don’t know the distribution, but only

have samples from this distribution?

— “For the last 5 network outages, response times were
43,79, 21, 71, and 51 minutes (x = 53, s = 23).”

What can we conclude about population parameters
u and o, using the sample statistics x and s?




Parameters and sample statistics

* |If we know the probability distribution of a random
variable, we can compute its mean pu, standard

| 1 1 1 1 1 I "1°q¢"

s

The sample mean x can be used as an estimate of the
population mean u. But how good an estimate is it?

o Intuitively, x will be a good estimate if the number of samples is
N large, and a poor estimate if the number of samples is small. /

— “For the last 5 network outages, response times were
43,79, 21, 71, and 51 minutes (x = 53, s = 23).”

What can we conclude about population parameters
u and o, using the sample statistics x and s?




Sampling distributions

* A parameter such as u or ¢ describes some
characteristic of a population. It is a fixed quantity
that is calculated from all observations in the
population.

« A sample statistic such as x or s describes some
characteristic of a sample. It is calculated only
from those members of the population that are
iIncluded in the sample.

« Since the value of a sample statistic will be
different for each sample, a sample statistic is a
random variable.

— The probability distribution of this random variable is
called its sampling distribution.




Sampling distributions

 Example: You want to know the proportions of
children and adults in a room.

* You observe only two of the five people in the
room: let x be the proportion of children in ths
sample.

* If there are actually four adults and one child,
what is the sampling distribution of x?
p(0) =6/10 {A1Ag, AlAg, AtAy, AoAg, AAy AgA}
p(1/2)=4/10  {A,C, A,C, A,C, A,C}

Ly - 1/5 ~_
c. = 24 The sample statistic x is an unbiased estimate
X of the proportion of children in the population.




Sampling distributions

 Example: You want to know the proportions of
children and adults in a room.

* You observe only four of the five people in the
room: let x be the proportion of children in ths
sample.

* If there are actually four adults and one child,
what is the sampling distribution of x?

p(0) = 1/5 {A1AAA,}

p(1/4) = 4/5 {AALAC, AALAC, AAA,C, AAA,C
w, = 1/5

o, =.10 — Larger sample size leads to a lower variance of

the sampling distribution, i.e. better estimates!



Let us assume that the population is
normally distributed with p =47, ¢ = 18.

Here is a histogram of 100,000
samples drawn from the population.

Using x to estimate u

Histogram of C1 Histogram of C5
Normal Normal

3500

3000

2500+

2000+

o

2 1500
1000+

5004

Now consider drawing N = 4 samples from
the population and taking their mean, X.

We repeat this experiment 100,000 times
and form a histogram of the values of x.
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The sampling distribution of x is normal, with mean Uz =47 and
standard deviation o; = 9. Notice that the sample mean x is an
unbiased estimator of the population mean u. Additionally, the

sample mean will be between 38 and 56 about 68% of the time.




Let us assume that the population is
normally distributed with p =47, ¢ = 18.

Using x to estimate u

Here is a histogram of 100,000

samples drawn from the population.
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Now consider drawing N = 36 samples from
the population and taking their mean, X.

We repeat this experiment 100,000 times
and form a histogram of the values of x.
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The sampling distribution of x is normal, with mean Uz =47 and
standard deviation c; = 3. Notice that the sample mean x is an
unbiased estimator of the population mean u. Additionally, the

sample mean will be between 44 and 50 about 68% of the time.




Let us assume that the population is
normally distributed with p =47, ¢ = 18.

Here is a histogram of 100,000
samples drawn from the population.

Using x to estimate u
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Now consider drawing N = 36 samples from
the population and taking their mean, X.

We repeat this experiment 100,000 times
and form a histogram of the values of x.
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If the population is normally distributed with mean u and

standard deviation o, then the sample mean x is also normally

distributed, with mean p and standard deviation /4N .




Using x to estimate u

Let us assume that the population is Now consider drawing N = 36 samples from
uniformly distributed with u =47, c = 18. the population and taking their mean, x.
Here is a histogram of 100,000 We repeat this experiment 100,000 times
samples drawn from the population. and form a histogram of the values of x.
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Using x to estimate u

Let us assume that the population is Now consider drawing N = 36 samples from
uniformly distributed with u =47, c = 18. the population and taking their mean, x.
Here is a histogram of 100,000 We repeat this experiment 100,000 times
samples drawn from the population. and form a histogram of the values of x.
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If the population has any distribution with mean p and standard
deviation o, and if N = 30, then the sample mean x is normally
distributed, with mean p and standard deviation ¢ /N .

This rule is called the Central Limit Theorem.




Let us assume that the population is
uniformly distributed with u =47, ¢ = 18.

What if N is too small?

Here is a histogram of 100,000

samples drawn from the population.

Now consider drawing N = 2 samples from
the population and taking their mean, X.

We repeat this experiment 100,000 times
and form a histogram of the values of x.
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In general, the sample mean x has mean p and standard
deviation o /4/N, but it is only approximately normal for large N.




The Central Limit Theorem

If the population has any distribution with mean p and standard
deviation o, and if N = 30, then the sample mean x is normally
distributed, with mean p and standard deviation ¢ /N .

Example problem: if the daily number of hits for
your website follows some distribution with u = 1000
and o = 300, what is the probability that you will
receive more than 39,600 hits in the next 36 days?

Given p = 1000, o = 300, and N = 36, we know that the sample mean
X is normally distributed with p, = 1000 and o, = 300 / V36 = 50.

Then Pr(x >3~ ) = Pr(x > 1100) = Pr(z >, ) = Pr(z > 2).

Using the table of normal curve areas, we obtain .5 - .4772 = .0228.

Given p and o, the Central Limit Theorem lets you reason about x.




The Central Limit Theorem

Example problem #2: An analyst for an internet consulting company
is charged with collecting data on the performance of file sharing
networks. A network is rated “satisfactory” if the average
number of retries needed to gain entry is at most 1.

The analyst tests a site by attempting to gain entry 100 times. She
finds a mean of 1.5 retries and a standard deviation of 1. Can she
reliably conclude that the performance of the site is unsatisfactory?

/ N\

Let us assume that c = s = 1. Does a sample If the population had p = 1 and
mean of x = 1.5, computed from N =100 o = 1, we would expect x to be
trials, seem consistent with the assumption normally distributed with mean 1

that the population mean p is equal to 1? and std. deviation 1/~100 = 0.1.

Then Pr(x 2 1.5) =Pr(z=5) = 0.

Given x and s, the Central Limit Theorem lets you reason about p.




