
Statistics for IT Managers
95 796 F ll 201295-796, Fall 2012

Module 2: Hypothesis Testing and 
Statistical Inference (5 lectures)

Reading: Statistics for Business and Economics, Ch. 5-7



Confidence intervals
Given the sample mean x and standard deviation s, we want to 
draw conclusions about the population mean μ, of the form:
“Th i 95% h h i b d ”

Example: We want to know the average amount of money μ that a 

“There is a 95% chance that μ is between ____ and ____.”

Pittsburgh household spends yearly on Internet purchases.  For a 
random sample of N = 36 households, we compute a mean of $350 
and standard deviation of $180.  What can we conclude about μ?

Intuitively, μ is likely to be 
close to $350, but unlikely 

$

To estimate how close  
μ is to $350, we use the 
C

If the population has any distribution with mean μ and standard 
d i ti d if N ≥ 30 th th l i ll

to be exactly $350. Central Limit Theorem.

deviation σ, and if N ≥ 30, then the sample mean x is normally 
distributed, with mean μ and standard deviation σ /      .N



Large-sample confidence intervals
Given the sample mean x and standard deviation s, we want to 
draw conclusions about the population mean μ, of the form:
“Th i 95% h h i b d ”

Step 1: Using an inverse table lookup, we know that 95% of the 
d l li b t 1 96 d 1 96

“There is a 95% chance that μ is between ____ and ____.”

area under a normal curve lies between μ – 1.96σ and μ + 1.96σ. 

0.95 = 2*F(zc)            zc = F-1(.475) = 1.96

St 2 A i N ≥ 30 k th t i ll di t ib t d

Pr(μx – 1.96σx ≤ x ≤ μx + 1.96σx) = 0.95 

Step 2: Assuming N ≥ 30, we know that x is normally distributed 
with mean μx = μ and standard deviation σx = σ / √N ≈ s / √N.

Pr(x – 1.96(s / √N) ≤ μ ≤ x + 1.96(s / √N)) = 0.95 

Pr(μ – 1.96(s / √N) ≤ x ≤ μ + 1.96(s / √N)) = 0.95 

“There is a 95% chance that μ is between x – 1.96(s / √N) and x + 1.96(s / √N).”



Large-sample confidence intervals
Example: We want to know the average amount of money μ that a 
Pittsburgh household spends yearly on Internet purchases.  For a 

d l f N 36 h h ld t f $350random sample of N = 36 households, we compute a mean of $350 
and standard deviation of $180.  What can we conclude about μ?

Answer: There is a 95% chance that μ is between $291 20 and $408 80Answer: There is a 95% chance that μ is between $291.20 and $408.80.

350    1.96(180 / 6)±

Answer: There is a 95% chance that μ is between $346 47 and $353 53

What if we sampled 10,000 households, and obtained the same x and s?

Answer: There is a 95% chance that μ is between $346.47 and $353.53.

350    1.96(180 / 100)±

“There is a 95% chance that μ is between x – 1.96(s / √N) and x + 1.96(s / √N).”



Large-sample confidence intervals
Example: We want to know the average amount of money μ that a 
Pittsburgh household spends yearly on Internet purchases.  For a 

d l f N 36 h h ld t f $350random sample of N = 36 households, we compute a mean of $350 
and standard deviation of $180.  What can we conclude about μ?

Answer: There is a 95% chance that μ is between $291 20 and $408 80Answer: There is a 95% chance that μ is between $291.20 and $408.80.

350    1.96(180 / 6)±

How many households must we sample to be 95% 
certain that μ is within a range of $5 of the sample mean?

√1.96(s / √N) = 5            N = (1.96s / 5)2  = 4,979 

“There is a 95% chance that μ is between x – 1.96(s / √N) and x + 1.96(s / √N).”



Large-sample confidence intervals
Example: We want to know the average amount of money μ that a 
Pittsburgh household spends yearly on Internet purchases.  For a 

d l f N 36 h h ld t f $350random sample of N = 36 households, we compute a mean of $350 
and standard deviation of $180.  What can we conclude about μ?

What if we would like to be 99% certain of the value of μ?What if we would like to be 99% certain of the value of μ?

Step 1: Using an inverse table lookup, we know that proportion c of the 
area under a normal curve lies between μ – zcσ and μ + zcσ, where:

c = 2*F(zc)            zc = F-1(c / 2)

zc is the confidence threshold corresponding to the confidence interval c.

Step 2: Assuming N ≥ 30, we know that x is normally distributed 
with mean μx = μ and standard deviation σx = σ / √N ≈ s / √N.

“There is a probability c that μ is between x – zc(s / √N) and x + zc(s / √N).”



Small-sample confidence intervals
Example: We want to know the average amount of money μ that a 
Pittsburgh household spends yearly on Internet purchases.  For a 

d l f N 16 h h ld t f $350random sample of N = 16 households, we compute a mean of $350 
and standard deviation of $180.  What can we conclude about μ?

When the sample size is small (N < 30) we must deal with two problems:When the sample size is small (N < 30), we must deal with two problems:

1. The Central Limit Theorem does not guarantee that 
the sample mean x is normally distributed. y

2. The sample standard deviation s may not be a good 
estimate of the population standard deviation σ.

The first problem means that we can only do small-sample inference when 
we believe that the population is approximately normally distributed.  

Small to moderate deviations from normality are ok, but for highly skewed 
distributions we must use a non-parametric test (see McClave, Ch. 14).



Small-sample confidence intervals
Example: We want to know the average amount of money μ that a 
Pittsburgh household spends yearly on Internet purchases.  For a 

d l f N 16 h h ld t f $350random sample of N = 16 households, we compute a mean of $350 
and standard deviation of $180.  What can we conclude about μ?

When the sample size is small (N < 30) we must deal with two problems:When the sample size is small (N < 30), we must deal with two problems:

1. The Central Limit Theorem does not guarantee that 
the sample mean x is normally distributed. y

2. The sample standard deviation s may not be a good 
estimate of the population standard deviation σ.

The second problem means that we must use a confidence threshold 
based on the t-distribution rather than the normal distribution.  

The t-score is calculated and interpreted just like the z-score, but it 
accounts for the error in using s to estimate σ.



Small-sample confidence intervals
Example: We want to know the average amount of money μ that a 
Pittsburgh household spends yearly on Internet purchases.  For a 

d l f N 16 h h ld t f $350random sample of N = 16 households, we compute a mean of $350 
and standard deviation of $180.  What can we conclude about μ?

“There is a probability c that μ is between x – t (s / √N) and x + t (s / √N) ”There is a probability c that μ is between x tc(s / √N) and x + tc(s / √N).

We obtain the value of tc from a t-score table, using two values: the 
confidence interval c and the number of degrees of freedom df = N – 1confidence interval c, and the number of degrees of freedom df = N – 1.

For example, for a 95% confidence interval, and N – 1 = 15 
degrees of freedom, we have tc = 2.131 (instead of zc = 1.96).c c

In our example, there is a 95% probability that μ is between $254.10 and $445.90.

350 2 131(180 / 4)±350    2.131(180 / 4)±For small samples, the uncertainty 
about σ leads to a wider range for μ.



Understanding confidence intervals
“There is a 95% probability that μ is between $250 and $300.”

μ is a fixed quantity that we are trying to estimate

μ x

μ is a fixed quantity that we are trying to estimate.

To do so, we choose N samples from the population and 
calculate their sample mean x and standard deviation s.

This lets us calculate a 95% confidence interval from x – ε to x + ε.
For large samples, ε = 1.96s / √N.



Understanding confidence intervals
“There is a 95% probability that μ is between $250 and $300.”

μ is a fixed quantity that we are trying to estimate

μx

μ is a fixed quantity that we are trying to estimate.

To do so, we choose N samples from the population and 
calculate their sample mean x and standard deviation s.

This lets us calculate a 95% confidence interval from x – ε to x + ε.
For large samples, ε = 1.96s / √N.

If we had chosen a different sample, we would 
have calculated a different confidence interval.



Understanding confidence intervals
“There is a 95% probability that μ is between $250 and $300.”

μ is a fixed quantity that we are trying to estimate

μx

μ is a fixed quantity that we are trying to estimate.

To do so, we choose N samples from the population and 
calculate their sample mean x and standard deviation s.

This lets us calculate a 95% confidence interval from x – ε to x + ε.
For large samples, ε = 1.96s / √N.

If we had chosen a different sample, we would 
have calculated a different confidence interval.

95% of the time, the interval will contain μ, and 5% of the time it will not.



Understanding confidence intervals

x – ε x + ε

μx
We must carefully consider the tradeoffs between the number of 

samples N, the length of the interval 2ε, and the confidence level c. 

For a fixed number of samples N, a higher confidence level means a 
larger interval for μ For example you may be 90% certain that μ islarger interval for μ.  For example, you may be 90% certain that μ is 

between 250 and 350, and 99.9% certain that μ is between 200 and 400.



Understanding confidence intervals

μx
We must carefully consider the tradeoffs between the number of 

samples N, the length of the interval 2ε, and the confidence level c. 

For a fixed number of samples N, a higher confidence level means a 
larger interval for μ For example you may be 90% certain that μ islarger interval for μ.  For example, you may be 90% certain that μ is 

between 250 and 350, and 99.9% certain that μ is between 200 and 400.

If we increase the number of samples, we can do one of two things:
1. Keep the confidence level constant, and shorten the interval.

“90% certain that μ is between 275 and 325.”
2. Keep the interval length constant, and increase the confidence.

“99 9% certain that μ is between 250 and 350 ”99.9% certain that μ is between 250 and 350.

Disadvantage: taking more samples may be expensive or infeasible.



Confidence intervals for proportions
In a random sample of 400 U.S. college students, 40% were 

in favor of the president’s domestic policy decisions, and 60% 
fopposed.  What can we conclude about p, the proportion of 

students that support the president’s domestic policy?

μ = p
σ = √p(1-p)

Then the sample mean x = ∑x / N is the proportion of the

Define xi = 1 if the ith individual supports the president’s 
policy, and xi = 0 if the individual opposes his policy.

Then the sample mean x = ∑xi / N is the proportion of the 
sampled individuals supporting the president’s policy.

According to the Central Limit Theorem, x will be normally g y
distributed for N ≥ 30, with mean p and std. dev. √p(1-p) / N.

Pr(p – 1.96√p(1-p) / N ≤ x ≤ p + 1.96√p(1-p) / N ) = 0.95

Pr(x – 1.96√p(1-p) / N ≤ p ≤ x + 1.96√p(1-p) / N ) = 0.95

Pr(x – 1.96√x(1-x) / N ≤ p ≤ x + 1.96√x(1-x) / N ) = 0.95



Confidence intervals for proportions
In a random sample of 400 U.S. college students, 40% were 

in favor of the president’s domestic policy decisions, and 60% 
fopposed.  What can we conclude about p, the proportion of 

students that support the president’s domestic policy?

μ = p
σ = √p(1-p)

Then the sample mean x = ∑x / N is the proportion of the

Define xi = 1 if the ith individual supports the president’s 
policy, and xi = 0 if the individual opposes his policy.

Then the sample mean x = ∑xi / N is the proportion of the 
sampled individuals supporting the president’s policy.

According to the Central Limit Theorem, x will be normally g y
distributed for N ≥ 30, with mean p and std. dev. √p(1-p) / N.

“There is a probability c that p is between x – zc(√x(1-x) / N) and x + zc(√x(1-x) / N).”

Note: this method is not accurate for very small or very large x.  See McClave, Section 5.4, for more details.



Confidence intervals for proportions
In a random sample of 400 U.S. college students, 40% were 

in favor of the president’s domestic policy decisions, and 60% 
f

A Th i 9 % b bili h i b 0 3 2 d 0 448

opposed.  What can we conclude about p, the proportion of 
students that support the president’s domestic policy?

Answer: There is a 95% probability that p is between 0.352 and 0.448.

0.4      1.96(√(0.4)(0.6) / 400)±“40% of students support the president’s 
policy with a sampling error of +/- 4 8% ”policy, with a sampling error of +/- 4.8%.

How many samples would we need to estimate p within +/- 1%?

1.96 √(0.4)(0.6) / N = 0.01 N = (0.4)(0.6)(1.96 / 0.01)2 = 9,220

“There is a probability c that p is between x – zc(√x(1-x) / N) and x + zc(√x(1-x) / N).”



Confidence intervals for proportions
In a random sample of 400 U.S. college students, 40% were 

in favor of the president’s domestic policy decisions, and 60% 
f

A Th i 9 % b bili h i b 0 3 2 d 0 448

opposed.  What can we conclude about p, the proportion of 
students that support the president’s domestic policy?

Answer: There is a 95% probability that p is between 0.352 and 0.448.

0.4      1.96(√(0.4)(0.6) / 400)±“40% of students support the president’s 
policy with a sampling error of +/- 4 8% ”policy, with a sampling error of +/- 4.8%.

How many samples would we need to estimate p within +/- 1%? 
(if we didn’t know in advance that x = 0.4)( )

1 96 √(0 5)(0 5) / N = 0 01 N = (0 5)(0 5)(1 96 / 0 01)2 = 9 604

Use a conservative bound: x(1-x) is maximized at x = 0.5.

1.96 √(0.5)(0.5) / N = 0.01 N = (0.5)(0.5)(1.96 / 0.01)2 = 9,604



Hypothesis testing
We have been drawing inferences about μ using confidence intervals:  

“There is a 95% chance that μ is between ____ and ____.”μ

What if we want to test a specific claim about the value of μ?

In each case, we want to decide which of two possible hypotheses is true:

H1 : μ > $40,000 H1 : μ ≠ μ0
where μ is some 

objective measure ofH1 : μ  $40,000
H0 : μ ≤ $40,000

H1 : μ ≠ μ0
H0 : μ = μ0

objective measure of 
productivity, and μ0 is 
its historical average

“Is the mean income μ of 
Pittsburgh steelworkers 

over $40 000?”

Does our new integrated 
development environment 

affect programmerover $40,000? affect programmer 
productivity?



Hypothesis testing
Let us assume that we want to 

measure productivity in terms of 
lines of production-quality code We want to test the alternative 

h th i H ≠ 1000 i t written, and that historically we 
have achieved an average of  

μ0 = 1000 lines of code per day.

hypothesis H1 : μ ≠ 1000 against 
the null hypothesis H0 : μ = 1000.

Generally, the alternative hypothesis H1 indicates that there is an effect (e.g. 
significant increase or decrease in some quantity) while the null hypothesis H0
indicates that there is no effect (e.g. the quantity has not changed significantly). 

Our test will give one of two possible outcomes:

( g q y g g y)

1. We can reject the null hypothesis, and thus the 
alternative hypothesis is true. 

2. We cannot reject the null hypothesis.  This 
does not necessarily mean that the null is true!

“We can conclude 
that μ ≠ 1000.”

“We do not have does not necessarily mean that the null is true! sufficient evidence to 
conclude that μ ≠ 1000.”



Hypothesis testing
Let us assume that we want to 

measure productivity in terms of 
lines of production-quality code We want to test the alternative 

h th i H ≠ 1000 i t written, and that historically we 
have achieved an average of  

μ0 = 1000 lines of code per day.

hypothesis H1 : μ ≠ 1000 against 
the null hypothesis H0 : μ = 1000.

Key idea: the sample evidence must strongly contradict the 
null hypothesis for us to reject it in favor of the alternative.

Our test will give one of two possible outcomes:

1. We can reject the null hypothesis, and thus the 
alternative hypothesis is true. 

2. We cannot reject the null hypothesis.  This 
does not necessarily mean that the null is true!

“We can conclude 
that μ ≠ 1000.”

“We do not have does not necessarily mean that the null is true! sufficient evidence to 
conclude that μ ≠ 1000.”



Identifying H1 and H01 0
A statistical hypothesis is an assumption about some parameter of a 
population, such as the population mean μ or population proportion p.

The alternative hypothesis H1 is some claim 
about a parameter that you want to demonstrate.

The null hypothesis H0 is the assumption about this parameter 
that you must reject in order to show that H1 is true.y j 1

“Support for the new billing system is less than 50%.”

“The community’s average yearly expenditure 
on computing supplies is greater than $40.”

“ ’“The company’s charitable giving rate did not 
equal the historical mean of 0.2% of net equity.”



Two-sided hypothesis tests
We want to test H1: μ ≠ μ0 against H0: μ = μ0.

Solution: use the sample mean x and sample standard deviation s,Solution: use the sample mean x and sample standard deviation s, 
and reject the null hypothesis if x is sufficiently far from μ0.

Assume μ = μ0.  Then if N ≥ 30, x is normally distributed with mean μ0 and 
standard deviation σ / √N ≈ s / √N Thus the z score of x is z = (x μ ) / (s / √N)standard deviation σ / √N ≈ s / √N.  Thus the z-score of x is z = (x – μ0) / (s / √N).

Reject H0 if z < -zc or  z > zc.

Do not reject H0 if 
μ0 – ε ≤ x ≤ μ0 + ε.

Typically we use zc = 1.96, 
corresponding to a 

significance level of α = 0.05.

Reject H0 if  x > μ0 + ε.Reject H0 if  x < μ0 – ε.

μ0μ0 – ε μ0 + ε



Two-sided hypothesis tests
Based on historical data, our team of programmers produces an average of 
1000 lines of production-quality code per day.  In the last 36 days, our team 
h d i t t d d l t i t d i fhas used a new integrated development environment, producing a mean of 
1100 lines of production-quality code and standard deviation of 300 lines.  
Can we conclude that the new environment affects programmer productivity? 

H1 : μ ≠ 1000
H0 : μ = 1000

If H0 was true, x would be normally 
distributed with mean 1000 and 

standard deviation 300 / √36 = 50.

The z-score corresponding to x = 1100 is z = (1100 – 1000) / 50 = 2.

We can reject H0 since z < -1.96 or z > 1.96.

Assuming a significance level of α = 0.05 and the corresponding threshold    
zc = 1.96 for a two-sided test, we can reject the null hypothesis and conclude 

j 0

c , j yp
that μ ≠ 1000.  The new environment does affect productivity!



One-sided hypothesis tests
We want to test H1: μ > μ0 against H0: μ ≤ μ0.

Solution: use the sample mean x and sample standard deviation s,Solution: use the sample mean x and sample standard deviation s, 
and reject the null hypothesis if x is sufficiently higher than μ0.

Assume μ = μ0.  Then if N ≥ 30, x is normally distributed with mean μ0 and 
standard deviation σ / √N ≈ s / √N Thus the z score of x is z = (x μ ) / (s / √N)standard deviation σ / √N ≈ s / √N.  Thus the z-score of x is z = (x – μ0) / (s / √N).

Reject H0 if z > zc.

Do not reject H0 if 
x ≤ μ0 + ε.

Typically we use zc = 1.645, 
corresponding to a 

significance level of α = 0.05.

Reject H0 if  x > μ0 + ε.

μ0 μ0 + ε



One-sided hypothesis tests
A computer supplies retail chain has a policy of only opening stores in 

communities where households spend more than $40 per year on computing 
li d i t A f 100 h h ld i M ill fi dsupplies and equipment.  A survey of 100 households in Monroeville finds 

that average expenditures in the sample are $40.50 with a standard deviation 
of $10.  Is this strong evidence that the community spends more than $40?

H1 : μ > 40
H0 : μ ≤ 40

If H0 was true with μ = 40, x would be 
normally distributed with mean 40 and 

standard deviation 10 / √100 = 1.

The z-score corresponding to x = 40.50 is z = (40.50 – 40) / 1 = 0.5.

We cannot reject H0 since z ≤ 1.645.

Assuming a significance level of α = 0.05 and the corresponding threshold        
zc = 1.645 for a one-sided test, we cannot reject the null hypothesis.  We do not 

j 0

c , j yp
have sufficient evidence to conclude that the community spends more than $40.



One-sided hypothesis tests
We want to test H1: μ < μ0 against H0: μ ≥ μ0.

Solution: use the sample mean x and sample standard deviation s,Solution: use the sample mean x and sample standard deviation s, 
and reject the null hypothesis if x is sufficiently lower than μ0.

Assume μ = μ0.  Then if N ≥ 30, x is normally distributed with mean μ0 and 
standard deviation σ / √N ≈ s / √N Thus the z score of x is z = (x μ ) / (s / √N)standard deviation σ / √N ≈ s / √N.  Thus the z-score of x is z = (x – μ0) / (s / √N).

Reject H0 if z < -zc.

Do not reject H0 if 
x ≥ μ0 – ε.

Typically we use zc = 1.645, 
corresponding to a 

significance level of α = 0.05.

Reject H0 if  x < μ0 – ε.

μ0μ0 – ε



One-sided hypothesis tests
A survey of 400 customers shows that 43% prefer the new on-line bill 

payment system to the old pay-by-mail system.  Is this sufficient evidence 
t h th t j it f t d t f th t ?to show that a majority of customers do not prefer the new system?

H1 : p < 0.5 If H0 was true with p = 0.5, x would be 
ll di t ib t d ith 0 5 d1 p 0 5

H0 : p ≥ 0.5
normally distributed with mean 0.5 and 

standard deviation √(0.5)(0.5) / 400 = .025.

( ) /The z-score corresponding to x = 0.43 is z = (0.43 – 0.5) / 0.025 = -2.8.

We can reject H0 since z < -1.645.

Assuming a significance level of α = 0.05 and the corresponding threshold        
zc = 1.645 for a one-sided test, we can reject the null hypothesis and conclude 

that p < 0.5.  A majority of customers do not prefer the new system!



Small-sample hypothesis tests
Based on historical data, our team of programmers produces an average of 
1000 lines of production-quality code per day.  In the last 16 days, our team 
h d i t t d d l t i t d i fhas used a new integrated development environment, producing a mean of 
1100 lines of production-quality code and standard deviation of 300 lines.  
Can we conclude that the new environment affects programmer productivity? 

H1 : μ ≠ 1000
H0 : μ = 1000

If H0 was true, x would follow a t-distribution with 
mean 1000, standard deviation 300 / √16 = 75, 

and 16 – 1 = 15 degrees of freedom.

The t-score corresponding to x = 1100 is t = (1100 – 1000) / 75 = 1.33.

The t-value threshold corresponding to α = 0.05 and 15 dof is tc = 2.131.

p g ( )

Assuming a significance level of α = 0.05 and the corresponding threshold     
f f f

We cannot reject H0 since -2.131 ≤ t ≤ 2.131.

tc = 2.131 for a two-sided test with 15 degrees of freedom, we do not have 
sufficient evidence to conclude that the new environment affects productivity.



Review of hypothesis tests
We want to compare H1: “there is an effect” vs. H0: “there is no effect.”

H1: μ > μ0 μ < μ0 μ ≠ μ0
HH0: μ ≤ μ0 μ ≥ μ0 μ = μ0 H0 always contains μ = μ0.

Step 1: Find how the observation x would be distributed if H0: μ = μ0.
L l N l( / √N)Large samples: Normal(μ0, s / √N).
Small samples: t-dist(μ0, s / √N, N – 1 dof)

Step 2: If x is far enough from μ0 in the desired direction(s), reject H0.p g μ0 ( ), j 0

Large samples:
For μ > μ0: reject H0 when x > μ0 + zc (s / √N), i.e. when z > zc.
For < : reject H when x < z (s / √N) i e when z < zFor μ < μ0: reject H0 when x < μ0 – zc (s / √N), i.e. when z < -zc.
For μ ≠ μ0: reject H0 when | x – μ0 | >  zc (s / √N), i.e. when | z | > zc.

Small samples: same except use t and tc instead of z and zc.p p c c

How to choose our threshold zc or tc?



Review of hypothesis tests
We want to compare H1: “there is an effect” vs. H0: “there is no effect.”

H1: p > p0 p < p0 p ≠ p0
HH0: p ≤ p0 p ≥ p0 p = p0 H0 always contains p = p0.

Step 1: Find how the observation x would be distributed if H0: p = p0.
L l N l( √ (1 ) / N)Large samples: Normal(p0, √p0(1 – p0) / N).

Step 2: If x is far enough from p0 in the desired direction(s), reject H0.

For p > p0: reject H0 when x > p0 + zc √p0(1 – p0) / N, i.e. when z > zc.
For p < p0: reject H0 when x < p0 – zc √p0(1 – p0) / N, i.e. when z < -zc.
For p ≠ p0: reject H0 when | x – p0 | >  zc √p0(1 – p0) / N, i.e. when | z | > zc.

How to choose our threshold zc?



Significance levels
The significance level α is the probability of incorrectly 

rejecting the null hypothesis H0, if the null is true.

If the null is true and N is large, the z-score z = (x – μ0) / (s / √N) 
will be normally distributed with mean 0 and standard deviation 1.

Probability of incorrectly rejecting the null: α = 1 – 2*F(zc) for a 2-sided test.

Let us assume that we are Then zc = F-1((1 – α) / 2) =
willing to accept a 5% 

probability of incorrectly 
rejecting the null (α = .05).

Then zc  F ((1 α) / 2)  
F-1(0.475) = 1.96.

Same as 95% confidence interval!

Reject H0 if  z > zc.Reject H0 if  z < -zc.

0-zc zc



Significance levels
The significance level α is the probability of incorrectly 

rejecting the null hypothesis H0, if the null is true.

If the null is true and N is large, the z-score z = (x – μ0) / (s / √N) 
will be normally distributed with mean 0 and standard deviation 1.

Probability of incorrectly rejecting the null: α = 0.5 – F(zc) for a 1-sided test.

Let us assume that we are Then zc = F-1(0.5 – α) =
willing to accept a 5% 

probability of incorrectly 
rejecting the null (α = .05).

Then zc  F (0.5 α)        
F-1(0.45) = 1.645.

Reject H0 if  z > zc.

0 zc



Significance levels
The significance level α is the probability of incorrectly 

rejecting the null hypothesis H0, if the null is true.

If the null is true and N is small, the t-score t = (x – μ0) / (s / √N) will be t-
distributed with mean 0, standard deviation 1, and N – 1 degrees of freedom.

To find the t-score threshold tc for a 1-sided test, for a given significance level α: 
Look up the value tα with N – 1 degrees of freedom using the t-score table.  

To find the t-score threshold tc for a 2-sided test, for a given significance level α: 
Look up the value tα/2 with N – 1 degrees of freedom using the t-score table.  

Just as for confidence intervals, the t-score threshold tc will be larger than the 
corresponding z-score threshold zc, to account for the uncertainty in using the 
sample standard deviation s to estimate the population standard deviation σ.

This means that it is harder to reject the null hypothesis when N is small.



Type I and Type II errors
Key idea: Making inferences about the population parameters based 
on sample statistics is inherently uncertain and thus subject to error.

Our decision

Reject H0Do not reject H0

If H0 is true:

If H0 is false:

CORRECT

TYPE II ERROR CORRECT

TYPE I ERROR

If H0 is false: TYPE II ERROR CORRECT

Type I Type II

μ0 μ0

(TRUE) (FALSE)
xx



Type I and Type II errors
Key idea: Making inferences about the population parameters based 
on sample statistics is inherently uncertain and thus subject to error.

Let α = probability of making a type I error (rejecting a true null)
Let β = probability of making a type II error (failing to reject a false null)

As discussed previously, α is the total probability in the tails of the null distribution.
β is hard to calculate: it depends on how far the true mean μ is from μ0. 

Type I Type II

α β

μ0 μ0

(TRUE) (FALSE)

μ



Type I and Type II errors
Key idea: Making inferences about the population parameters based 
on sample statistics is inherently uncertain and thus subject to error.

Let α = probability of making a type I error (rejecting a true null)
Let β = probability of making a type II error (failing to reject a false null)

As discussed previously, α is the total probability in the tails of the null distribution.
β is hard to calculate: it depends on how far the true mean μ is from μ0. 

Increasing the width of the interval decreases α but increases β

Type I Type II

Increasing the width of the interval decreases α but increases β.

α
β

μ0 μ0

(TRUE) (FALSE)

μ



Balancing Type I and Type II errors
Step 1: List and quantify the costs of a type I error.
Step 2: List and quantify the costs of a type II error.
Step 3: Estimate the distance of the true mean μ from μStep 3: Estimate the distance of the true mean μ from μ0.             

(How large of an effect do we expect to see?)
Step 4: Ask an expert to calculate the tradeoff between α and β.
Step 5: Choose a value of α that reasonably balances these costsStep 5: Choose a value of α that reasonably balances these costs.

A computer supplies retail chain has a policy of only opening stores in 
communities where households spend more than $40 per year on computing 

supplies and equipment.  A survey of 100 households in Monroeville finds 
that average expenditures in the sample are $40.50 with a standard deviation 

of $10.  Is this strong evidence that the community spends more than $40?

What is a Type I error, and what are its consequences?

What is a Type II error, and what are its consequences?

How much do we expect the communities we are interested in to spend?



Balancing Type I and Type II errors
Step 1: List and quantify the costs of a type I error.
Step 2: List and quantify the costs of a type II error.
Step 3: Estimate the distance of the true mean μ from μStep 3: Estimate the distance of the true mean μ from μ0.             

(How large of an effect do we expect to see?)
Step 4: Ask an expert to calculate the tradeoff between α and β.
Step 5: Choose a value of α that reasonably balances these costsStep 5: Choose a value of α that reasonably balances these costs.

A computer supplies retail chain has a policy of only opening stores in 
communities where households spend more than $40 per year on computing 

supplies and equipment.  A survey of 100 households in Monroeville finds 
that average expenditures in the sample are $40.50 with a standard deviation 

of $10.  Is this strong evidence that the community spends more than $40?

Option I: We will open stores in 80% of communities that spend $50 or more            
(β = 0.2 for μ = 50) but also in 10% of communities that spend $40 or less (α = 0.1).

Option II: We will open stores in 50% of communities that spend $50 or moreOption II: We will open stores in 50% of communities that spend $50 or more           
(β = 0.5 for μ = 50) but also in 5% of communities that spend $40 or less (α = 0.05).

Not happy with any of these options?  Then collect more samples!



Using p-values for hypothesis testing
We have learned one way to do hypothesis testing:
1. Choose a significance level α.
2 C t th di th h ld

Question: What if 
we don’t know a 

2. Compute the corresponding z-score threshold zc.
3. Compare the observed z-score z to the threshold zc.
4. Reject H0 if the z-score falls outside the threshold.

good value for α?

For example, a p-value of 0.04 would mean, “Reject the null if 
h i ifi l l i hi h th 0 04 ”

Answer: report the observed significance level, or p-value, from your test. 

your chosen significance level α is higher than 0.04.”

Someone else can then choose whether or not to reject the 
null, based on the value of α that they think is reasonable.

A lower p-value means that the data disagrees more strongly with the 
null, suggesting that the alternative hypothesis is more likely to be true.

However, the p-value is not the probability of the null.



Using p-values for hypothesis testing
To obtain the p-value corresponding to the observed value of x:
1. Compute the z-score of x as before, zobs = (x – μ0) / (s / √N).
2 Find the tail probability of z b (probability of observing a value farther from μ0)2. Find the tail probability of zobs (probability of observing a value farther from μ0).

a) If the alternative hypothesis is μ > μ0: p-value = Pr(z > zobs).
b) If the alternative hypothesis is μ < μ0: p-value = Pr(z < zobs).
c) If the alternative hypothesis is μ ≠ μ0: p-value = Pr(| z | > | zobs |).

For a given significance level α, we can reject the null when the p-value < α.



Using p-values for hypothesis testing
To obtain the p-value corresponding to the observed value of x:
1. Compute the z-score of x as before, zobs = (x – μ0) / (s / √N).
2 Find the tail probability of z b (probability of observing a value farther from μ0)2. Find the tail probability of zobs (probability of observing a value farther from μ0).

a) If the alternative hypothesis is μ > μ0: p-value = Pr(z > zobs).
b) If the alternative hypothesis is μ < μ0: p-value = Pr(z < zobs).
c) If the alternative hypothesis is μ ≠ μ0: p-value = Pr(| z | > | zobs |).

Based on historical data, our team of programmers produces an average of 
1000 lines of production-quality code per day.  In the last 36 days, our team 
has used a new integrated development environment producing a mean ofhas used a new integrated development environment, producing a mean of 
1100 lines of production-quality code and standard deviation of 300 lines.  
Can we conclude that the new environment affects programmer productivity? 

The z-score corresponding to x = 1100 is z = (1100 – 1000) / 50 = 2.

p-value = Pr(| z | > 2) = 1 – 2*F(2) = 0.0456.

If α = 0.05, we would reject the null since p-value < α.
If α = 0.01, we would not reject the null.



Using p-values for hypothesis testing
To obtain the p-value corresponding to the observed value of x:
1. Compute the z-score of x as before, zobs = (x – μ0) / (s / √N).
2 Find the tail probability of z b (probability of observing a value farther from μ0)2. Find the tail probability of zobs (probability of observing a value farther from μ0).

a) If the alternative hypothesis is μ > μ0: p-value = Pr(z > zobs).
b) If the alternative hypothesis is μ < μ0: p-value = Pr(z < zobs).
c) If the alternative hypothesis is μ ≠ μ0: p-value = Pr(| z | > | zobs |).

A computer supplies retail chain has a policy of only opening stores in 
communities where households spend more than $40 per year on computing 

supplies and equipment A survey of 100 households in Monroeville findssupplies and equipment.  A survey of 100 households in Monroeville finds 
that average expenditures in the sample are $40.50 with a standard deviation 

of $10.  Is this strong evidence that the community spends more than $40?

The z-score corresponding to x = 40.50 is z = (40.50 – 40) / 1 = 0.5.

p-value = Pr(z  > 0.5) = 0.5 – F(0.5) = 0.3085.

If α = 0.05, we would not reject the null since p-value ≥ α.



Comparing two populations
We can also make inferences comparing some parameter of two different 
populations, such as the population mean μ or the population proportion p.

Let us assume that we have a random sample from each 
population, and that these samples are drawn independently.

The average hourly wage of a random sample of 196 working 
women in Allegheny County is $8.21, with a standard deviation 

f $6 66 F d l f 204 ki thof $6.66.  For a random sample of 204 working men, the 
average hourly wage is $12.96, with a standard deviation of 
$11.41.  Is this sample evidence sufficient to conclude that there 
is a difference between the wages of men and women?g

Let μ1 = average hourly wage of men in Allegheny County.
Let μ2 = average hourly wage of women in Allegheny County.

We want to find confidence intervals for μ1 – μ2, and to test whether μ1 – μ2 = 0.



Large-sample confidence intervals 
for the difference in means μ μfor the difference in means, μ1 – μ2

There is a probability of c that μ1 – μ2 lies within (x1 – x2) +/– zcσ.

True 
difference

Observed 
difference

Number of 
std. dev. 

from mean

Std. dev. of 
observed 
differencefrom mean difference

How to obtain σ, the standard deviation of the observed difference?

σ2 = (σ1 / √n1)2 + (σ2 / √n2)2

= (σ1
2 / n1) + (σ2

2 / n2)                  

Answer: the variance 
of x1 – x2 is the sum of 
the variance of x and σ = √ (s1

2 / n1) + (s2
2 / n2)1 1 2 2

≈ (s1
2 / n1) + (s2

2 / n2).
the variance of x1 and 
the variance of x2.

( 1 1) ( 2 2)

√There is a probability of c that μ1 – μ2 lies within (x1 – x2) +/– zc √ (s1
2 / n1) + (s2

2 / n2).



Large-sample confidence intervals 
for the difference in means μ μfor the difference in means, μ1 – μ2

The average hourly wage of a random sample of 196 working 
$women in Allegheny County is $8.21, with a standard deviation 

of $6.66.  For a random sample of 204 working men, the 
average hourly wage is $12.96, with a standard deviation of 
$11.41. Is this sample evidence sufficient to conclude that there$11.41.  Is this sample evidence sufficient to conclude that there 
is a difference between the wages of men and women?

Let μ1 = average hourly wage of men in Allegheny County.
L t h l f i All h C t

x1 = 12.96
s = 11 41

x2 = 8.21
s = 6 66

Let μ2 = average hourly wage of women in Allegheny County.

There is a 95% probability that μ1 – μ2 lies within
(12 96 – 8 21) +/– 1 96 √ (11 412 / 204) + (6 662 / 196)s1 = 11.41

n1 = 204

√

s2 = 6.66
n2 = 196

(12.96 8.21) +/ 1.96 √ (11.41 / 204) + (6.66 / 196).

95% CI  = 4.75 +/– 1.96(0.930) = [$2.93, $6.57].

There is a probability of c that μ1 – μ2 lies within (x1 – x2) +/– zc √ (s1
2 / n1) + (s2

2 / n2).



Large-sample hypothesis tests for 
the difference in means μ μthe difference in means, μ1 – μ2

Do the means differ significantly?  We want to test the alternative 
hypothesis H1 : μ1 ≠ μ2 against the null hypothesis H0 : μ1 = μ2.

If the null hypothesis was true, the observed difference x1 – x2 would follow a 
normal distribution with mean 0 and standard deviation √ (s 2 / n ) + (s 2 / n )normal distribution with mean 0 and standard deviation √ (s1

2 / n1) + (s2
2 / n2).

z-score of the observed difference: zobs = (x1 – x2) / √ (s1
2 / n1) + (s2

2 / n2).

p-value for a two-sided test: Pr(| z | > | zobs |) = 1 – 2*F(zobs).
Reject the null if p-value < α. 

x1 = 12.96
s1 = 11.41
n1 = 204

x2 = 8.21
s2 = 6.66
n2 = 196

x1 – x2 = 4.75
std. dev. = 0.930

z-score = 4.75 / 0.930 = 5.11
p-value ≈ .000

1 2

We can reject the null hypothesis, and conclude that μ1 ≠ μ2.



Small-sample inference for the 
difference in means μ μdifference in means, μ1 – μ2

As in the one-population case, small-sample inference is more 
difficult because the Central Limit Theorem does not guarantee 
that the sample means x1 and x2 are normally distributed, and 
because s1 and s2 may not be accurate estimates of σ1 and σ2.

In order to do small-sample inference, we must make several 
simplifying assumptions: both populations must be approximately 

normally distributed, and must have equal variances σ1
2 = σ2

2. y , q 1 2

μ1 μ2



Small-sample inference for the 
difference in means μ μdifference in means, μ1 – μ2

As in the one-population case, small-sample inference is more 
difficult because the Central Limit Theorem does not guarantee 
that the sample means x1 and x2 are normally distributed, and 
because s1 and s2 may not be accurate estimates of σ1 and σ2.

In order to do small-sample inference, we must make several 
simplifying assumptions: both populations must be approximately 

normally distributed, and must have equal variances σ1
2 = σ2

2. y , q 1 2

There is a probability of c that           

For confidence intervals: For hypothesis tests:

t-score of the observed p y
μ1 – μ2 lies in (x1 – x2) +/– tcσ. difference: tobs = (x1 – x2) / σ.

How to obtain the standard deviation of the observed difference?How to obtain σ, the standard deviation of the observed difference?
How to obtain the number of degrees of freedom for the t-distribution?



Small-sample inference for the 
difference in means μ μdifference in means, μ1 – μ2

Solution: recall that we are assuming equal population variances, σ1
2 = σ2

2 = σp
2.

σp
2 is called the 

“pooled variance.”
We must first estimate the pooled variance 

using the sample variances s1
2 and s2

2. g 1 2

Pooled sample variance: sp
2 = ((n1 – 1)(s1

2) + (n2 – 1)(s2
2)) / (n1 + n2 – 2) 

s 2 is a weighted average of the sample variances s 2 and s 2sp
2 is a weighted average of the sample variances s1

2 and s2
2, 

each weighted by its number of degrees of freedom ni – 1.

Standard deviation of the observed difference: Total number of degrees

How to obtain the standard deviation of the observed difference?

Standard deviation of the observed difference:   
σ = √ (sp

2 / n1) + (sp
2 / n2) = sp √ (1 / n1) + (1 / n2).

Total number of degrees 
of freedom: n1 + n2 – 2.

How to obtain σ, the standard deviation of the observed difference?
How to obtain the number of degrees of freedom for the t-distribution?



Small-sample inference for the 
difference in means μ μdifference in means, μ1 – μ2

The average hourly wage of a random sample of 16 working 
$women in Allegheny County is $8.21, with a standard deviation 

of $6.66.  For a random sample of 14 working men, the average 
hourly wage is $12.96, with a standard deviation of $11.41.       
Is this sample evidence sufficient to conclude that there is aIs this sample evidence sufficient to conclude that there is a 
difference between the wages of men and women?

Assuming equal variances, we compute the pooled sample variance as   
sp

2 = (15*6.662 + 13*11.412) / 28 = 84.2, so sp = 9.18.  Then the standard 
deviation of the observed difference is σ = 9.18 √ (1 / 16) + (1 / 14) = 3.36.

Total number of degrees of freedom: 16 + 14 2 = 28

Standard deviation of the observed difference:   
√ ( 2 / ) ( 2 / ) √ (1 / ) (1 / )

Total number of degrees 
f f d 2

Total number of degrees of freedom: 16 + 14 – 2 = 28.

Pooled sample variance: sp
2 = ((n1 – 1)(s1

2) + (n2 – 1)(s2
2)) / (n1 + n2 – 2) 

σ = √ (sp
2 / n1) + (sp

2 / n2) = sp √ (1 / n1) + (1 / n2). of freedom: n1 + n2 – 2.



Small-sample confidence intervals 
for the difference in means μ μfor the difference in means, μ1 – μ2

The average hourly wage of a random sample of 16 working 
$women in Allegheny County is $8.21, with a standard deviation 

of $6.66.  For a random sample of 14 working men, the average 
hourly wage is $12.96, with a standard deviation of $11.41.       
Is this sample evidence sufficient to conclude that there is aIs this sample evidence sufficient to conclude that there is a 
difference between the wages of men and women?

Assuming equal variances, we compute the pooled sample variance as   
sp

2 = (15*6.662 + 13*11.412) / 28 = 84.2, so sp = 9.18.  Then the standard 
deviation of the observed difference is σ = 9.18 √ (1 / 16) + (1 / 14) = 3.36.

Total number of degrees of freedom: 16 + 14 2 = 28Total number of degrees of freedom: 16 + 14 – 2 = 28.

For confidence intervals:
95% CI: 4.75 +/– (2.048)(3.36) 

= [-$2.13, +$11.63] 
There is a probability of c that           
μ1 – μ2 lies in (x1 – x2) +/– tcσ. 99% CI: 4.75 +/– (2.763)(3.36) 

= [-$4.53, +$14.03] 



Small-sample hypothesis tests for 
the difference in means μ μthe difference in means, μ1 – μ2

The average hourly wage of a random sample of 16 working 
$women in Allegheny County is $8.21, with a standard deviation 

of $6.66.  For a random sample of 14 working men, the average 
hourly wage is $12.96, with a standard deviation of $11.41.       
Is this sample evidence sufficient to conclude that there is aIs this sample evidence sufficient to conclude that there is a 
difference between the wages of men and women?

Assuming equal variances, we compute the pooled sample variance as   
sp

2 = (15*6.662 + 13*11.412) / 28 = 84.2, so sp = 9.18.  Then the standard 
deviation of the observed difference is σ = 9.18 √ (1 / 16) + (1 / 14) = 3.36.

Total number of degrees of freedom: 16 + 14 2 = 28Total number of degrees of freedom: 16 + 14 – 2 = 28.

For hypothesis tests: t-score = 4.75 / 3.36 = 1.41

t for two-sided test (α = 0 05 28 dof): 2 048t-score of the observed 
difference: tobs = (x1 – x2) / σ.

tc for two-sided test (α = 0.05, 28 dof): 2.048

Cannot reject H0.



Small-sample inference for the 
difference in means μ μdifference in means, μ1 – μ2

What if we do not believe that the population variances are equal?

It turns out that we can still do approximate inference, as the 
difference is still approximately t-distributed.  The tricky part, 

though, is estimating the number of degrees of freedom.

The standard deviation of the observed difference is approximately 
the same as in the large-sample case, σ = √ (s1

2 / n1) + (s2
2 / n2).

However the estimated number of degrees of freedom for the t distribution is now:However, the estimated number of degrees of freedom for the t-distribution is now:
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This slide is optional material and will not be tested.



Large-sample confidence intervals 
for the difference in proportionsfor the difference in proportions

There is a probability of c that p1 – p2 lies within (x1 – x2) +/– zcσ.

True 
difference

Observed 
difference

Number of 
std. dev. 

from mean

Std. dev. of 
observed 
differencefrom mean difference

How to obtain σ, the standard deviation of the observed difference?

σ2 = (√p1(1 – p1) / n1)2 + (√p2(1 – p2) / n2)2

= (p1(1 – p1) / n1) + (p2(1 – p2) / n2) 
≈ (x (1 x ) / n ) + (x (1 x ) / n )

Answer: the variance 
of x1 – x2 is the sum of 
the variance of x and ≈ (x1(1 – x1) / n1) + (x2(1 – x2) / n2) the variance of x1 and 
the variance of x2.

σ = √ (x1(1 – x1) / n1) + (x2(1 – x2) / n2). 

There is a probability of c that p1 – p2 lies within 
(x1 – x2) +/– zc √(x1(1 – x1) / n1) + (x2(1 – x2) / n2). 



Large-sample confidence intervals 
for the difference in proportionsfor the difference in proportions

In a poll of 500 customers conducted two weeks after the implementation of 
a new computerized account system, you find that 49% are satisfied with the 
system.  In a poll one month later, surveying an independent sample of 400 
customers, you find the percentage of satisfied customers has increased to 
53% Can you conclude that support for the new system has increased?53%.  Can you conclude that support for the new system has increased?

Let p1 = current proportion of customers who support the new system.
Let p2 = original proportion of customers who support the new system.

x1 = 0.53
n1 = 400

x1 – x2 = 0.040, √(x1(1 – x1) / n1) + (x2(1 – x2) / n2) = 0.034

There is a 95% chance that p p is between 0 026 and +0 106
x2 = 0.49
n2 = 500

There is a 95% chance that p1 – p2 is between -0.026 and +0.106. 

0.04 +/– 1.96(0.034)

There is a probability of c that p1 – p2 lies within 
(x1 – x2) +/– zc √(x1(1 – x1) / n1) + (x2(1 – x2) / n2). 



Large-sample hypothesis tests for 
the difference in proportionsthe difference in proportions

If the null hypothesis was true with p1 = p2, then x1 – x2 would be normally 
distributed with mean 0 and standard deviation σ How to find σ?distributed with mean 0 and standard deviation σ.  How to find σ?

For proportions, σ is different for confidence intervals and hypothesis tests:

1-population CI: σ = √ x(1 – x) / N,  1-population HT: σ = √ p0(1 – p0) / N

2-population CI: σ = √ (x1(1 – x1) / n1) + (x2(1 – x2) / n2). 

2-population HT: σ = √ p0(1 – p0)(1 / n1 + 1 / n2) What is p0?
Assume p1 = p2 = p0.

The best estimate of p0 under the null hypothesis is a weighted average of x1 and x2.

( ) / ( )p0 ≈ (n1 x1 + n2 x2) / (n1 + n2)



Large-sample hypothesis tests for 
the difference in proportionsthe difference in proportions

Has the proportion increased significantly?  We want to test the alternative 
hypothesis H : p > p against the null hypothesis H : p ≤ phypothesis H1 : p1 > p2 against the null hypothesis H0 : p1 ≤ p2.

If the null hypothesis was true, the observed difference   
x1 – x2 would follow a normal distribution with mean 0 

and standard deviation √ p0(1 – p0)(1 / n1 + 1 / n2).

z-score of the observed difference: zobs = (x1 – x2) / √p0(1 – p0)(1 / n1 + 1 / n2).

p-value for a one-sided test: Pr(z > zobs) = 0.5 – F(zobs).
Reject the null if p-value < α. 

x1 = 0.53
n1 = 400

x = 0 49

x1 – x2 = 0.04
p0 = 0.508 

std. dev. = 0.034

z-score = 0.04 / 0.034 = 1.19
p-value ≈ .1170

x2 = 0.49
n2 = 500

std. dev.  0.034

We do not have sufficient evidence to reject the null hypothesis.



Paired differences
An online retailer of ski equipment 

wishes to compare monthly sales for the 
Month This yr Last yr Diff
Jan 35062 33956 1106

current year to last year’s monthly sales.

Mean sales for current year: x1 = 18941
Mean sales for last year: x = 18040

Jan. 35062 33956 1106
Feb. 27908 26544 1364
Mar. 18003 17443 560

Mean sales for last year: x2 = 18040
Std. dev. for current year: s1 ≈ 12042

Std. dev. for last year: s2 ≈ 11552
Number of samples: n1 = n2 = 12

Apr. 12544 12452 92
May 10708 9323 1385
Jun 8322 7615 707

95% CI for μ1 – μ2 = 901 +/- 9990 
t-score = 901 / 4818 = .187

p-value = 0 853 cannot reject H0

Jun. 8322 7615 707
Jul. 8413 8222 191
Aug. 7857 8012 -155

p value  0.853, cannot reject H0.

But we did better than last year, every 
month but August!  What’s wrong here?

Sep. 10190 9554 636
Oct. 15760 14220 1540
Nov 28776 27639 1137Nov. 28776 27639 1137
Dec. 43749 41500 2249



Paired differences
The assumption of independent samples 
is invalid.  The counts for a given month 

Month This yr Last yr Diff
Jan 35062 33956 1106

are highly correlated between this year 
and last (high in winter, low in summer).

Notice that the variation from

Jan. 35062 33956 1106
Feb. 27908 26544 1364
Mar. 18003 17443 560

Notice that the variation from 
month to month is very large, 

compared to the relatively small 
difference between sample means.

Apr. 12544 12452 92
May 10708 9323 1385
Jun 8322 7615 707Jun. 8322 7615 707
Jul. 8413 8222 191
Aug. 7857 8012 -155

We can reduce the variance of our 
sample by performing inference on 
the differences between this year’sSep. 10190 9554 636

Oct. 15760 14220 1540
Nov 28776 27639 1137

the differences between this year s 
counts and last year’s counts.

This method is only valid when we have Nov. 28776 27639 1137
Dec. 43749 41500 2249

y
matched pairs of datapoints; it cannot 

be used for independent samples.



Paired differences
Month This yr Last yr Diff
Jan 35062 33956 1106

Mean of differences: xd = 901
Std. dev. of differences: sd = 692Jan. 35062 33956 1106

Feb. 27908 26544 1364
Mar. 18003 17443 560

Number of differences: nd = 12 

We can now do one-population 
inference for the population ofApr. 12544 12452 92

May 10708 9323 1385
Jun 8322 7615 707

inference for the population of 
differences.

Assumption: sample differences Jun. 8322 7615 707
Jul. 8413 8222 191
Aug. 7857 8012 -155

are sampled at random from the 
target population of differences.

For small samples we must
Sep. 10190 9554 636
Oct. 15760 14220 1540
Nov 28776 27639 1137

For small samples, we must 
also assume that the population 
of differences is approximately 

normally distributed.
Nov. 28776 27639 1137
Dec. 43749 41500 2249



Paired differences
Month This yr Last yr Diff
Jan 35062 33956 1106

Mean of differences: xd = 901
Std. dev. of differences: sd = 692Jan. 35062 33956 1106

Feb. 27908 26544 1364
Mar. 18003 17443 560

Number of differences: nd = 12 

Confidence interval for μd = xd +/– tc (sd / √nd )

Apr. 12544 12452 92
May 10708 9323 1385
Jun 8322 7615 707 95% CI = 901 +/– 2.201(199.8) = [461, 1341]

nd – 1 degrees of freedom

Jun. 8322 7615 707
Jul. 8413 8222 191
Aug. 7857 8012 -155 Testing μd ≠ 0 (same as μ1 – μ2 ≠ 0)

Sep. 10190 9554 636
Oct. 15760 14220 1540
Nov 28776 27639 1137

t-score = xd / (sd / √nd ) = 901 / 199.8 = 4.51
p-value ≈ .000

Nov. 28776 27639 1137
Dec. 43749 41500 2249

We can reject the null hypothesis 
and conclude that μ1 ≠ μ2.



When to use paired differences?
Comparing daily sales 
for two restaurants for 

Comparing daily sales for two 
restaurants, choosing an 

the same set of 30 days. independent set of 30 days 
for each restaurant. 

Comparing salaries of male Comparing salaries of male andComparing salaries of male 
and female movie stars, 

sampling 50 of each.

Comparing salaries of male and 
female movie stars, matching each 

actor to an actress with similar 
experience, fame, etc. 

Comparing the average 
reaction time of 50 subjects 
dosed with caffeine and 50 

Comparing each subject’s 
reaction time with and 

without caffeine.
patients without caffeine.

Comparing the average 
stress on a car’s front

Comparing the number of attempted 
network intrusions before and afterstress on a car s front 

and back wheels.
network intrusions before and after 

installing a new firewall.


