
Statistics for IT Managers
95 796 F ll 201295-796, Fall 2012

Module 3: Simple and Multiple 
Regression (4 lectures)

Reading: Statistics for Business and Economics, Ch. 10-11



Why regression?
We want to model how two (or more) variables are related.

Drinking more coffee 
increases productivity.

Employees with more 
experience earn higher

salaries.

A proper diet lowers
risk of heart disease.

We want to predict the value of one variable, given the other(s). 

Given a person’s demographic How fast do wep g p
characteristics, how often do we 

expect them to utilize our website?

How fast do we 
expect computer 

CPUs to be in 2020?

We want to test whether there is a statistically 
significant relationship between variables.

Can I conclude that increased advertising 
expenditures increase sales?

Can I conclude that worker 
satisfaction increased over time? 



Linear regression
We will focus here on modeling linear
relationships between two variables. y = β0 + β1 x

“dependent variable” “independent variable”

Employee salary tends to increase The price of a house tends to increase 
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Linear regression
Linear regression can also be used to model certain non-linear relationships 

between variables, such as exponential growth and power laws.

Internet data tends to follow a power law distribution:
y is proportional to xβ1, so (log y) = β0 + β1 (log x).

Number of incoming links for top 100 blogs

The Nth most popular website gets 
about 1/N the hits of the most popular.

Number of links to a blog decreases as 
a power law with its popularity rank.
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Linear regression
Linear regression can also be used to model certain non-linear relationships 

between variables, such as exponential growth and power laws.

Moore’s Law states that various quantities in computer 
technology, such as the number of transistors on a 

t hi ill i ti ll ith ticomputer chip, will increase exponentially with time:    
y is proportional to exp(β1x), so (log y) = β0 + β1x.
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“Least Squares” Linear Regression
Once we have the best-fitting line, we can use it for prediction or hypothesis testing.

“When years = 10 we expectWhen years = 10, we expect 
employee salary to be _______” 

“We can conclude that β1 > 0, so 
salary increases with experience ”

How to obtain the best fitting line 
from a set of datapoints (xi, yi)?

A h ti t
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Scatterplot of Employee Salary vs. Experience

salary increases with experience. Answer: choose estimates 
of β0 and β1 to minimize the 

sum of squared errors.

S
al

ar
y

60000

50000

Regression line: xy 10
ˆˆ ββ +=

Estimate of yi for xi: ix10
ˆˆ ββ +S

302520151050

40000

30000

20000

yi i i10 ββ
Error for xi: ( )ii xy 10

ˆˆ ββ +−

( )( )2ˆˆ∑ ββ

(xi, yi)

Years of Employment

Salary = 28394 + 1107 Years

Minimize: ( )( )10∑ +−
ix

ii xy ββ



“Least Squares” Linear Regression
( )( ) minimized. is  error squared the that such  and  Find
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1. Compute the sample means x and y.
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3. Compute the sum of squares ssxy = Σ (xi – x)(yi – y)
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“Least Squares” Linear Regression
Employee 1 makes $40K after 5 years
Employee 2 makes $30K after 1 year
Employee 3 makes $35K after 1 year

x = 4, y = 37500
ssxx = 44

46000

44000

Income and Experience of Four Employees

Employee 3 makes $35K after 1 year
Employee 4 makes $45K after 9 years ssxy = 70000

70000ˆ y = 31136 + 1591 x

In
co

m
e

42000

40000

38000

36000

34000

32000

1591
44

70000
1̂ ≈=β

31136ˆ437500ˆ ββ

y  31136 + 1591 x

Years of Experience
9876543210

32000

30000
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Model assumptions
We assume that the relationship of yi to xi can be approximated by a linear equation.

β + βHowever, the relationship between yi
and xi is not perfect, e.g. an employee’s 
salary cannot be completely explained 

by their amount of experience. yi = β0 + β1xi + εi

y = β0 + β1x
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from a normal distribution with mean 0 
and standard deviation σ:  εi ~ N(0, σ).

We can estimate σ2, and use our
Years of Employment

Salary = 28394 + 1107 Years

We can estimate σ , and use our 
estimate to perform inference. 



Model assumptions
We assume that the relationship of yi to xi can be approximated by a linear equation.

β + βBest estimate of σ2 (called s2 or MSE):

yi = β0 + β1xi + εi

y = β0 + β1x
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Best estimate of σ (called s or MSE): 
Sum of 
squared 
errors
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from a normal distribution with mean 0 
and standard deviation σ:  εi ~ N(0, σ).

We can estimate σ2, and use our
Years of Employment

Salary = 28394 + 1107 Years

We can estimate σ , and use our 
estimate to perform inference. 



Model assumptions

Best estimate of σ2 (called s2 or MSE):

We assume that the relationship of yi to xi can be approximated by a linear equation.

β + β
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s
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x
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Best estimate of σ (called s or MSE): 
Sum of 
squared 
errors

D f
yi = β0 + β1xi + εi

y = β0 + β1x

2N
s

− Degrees of 
freedom

yi β0 β1 i i

Deterministic 
component

Random 
component

Employee 1 makes $40K after 5 years
Employee 2 makes $30K after 1 year
Employee 3 makes $35K after 1 year

(40000 – 39091)2 =   826281
(30000 – 32727)2 = 7436529
(35000 – 32727)2 = 5166529

Employee 4 makes $45K after 9 years

y = 31136 + 1591 x

(45000 – 45455)2 =   207025

13636364

s2 = 13636364 / (4 – 2) = 6818182

s = √s2 ≈ 2611
s measures the “goodness of fit” 

for our regression line.



Inference for model parameters
 ? and  parameters model true the of estimates good  and  Are 1ββββ 010

ˆˆ

s is a measure of the “average” distance of datapoints from our regression line.s is a measure of the average  distance of datapoints from our regression line.
Higher s means more random error, and thus more uncertainty in our model.

Standard deviation of our estimate for β1:

( )2∑s Note that ssxx grows
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 where, β

Note that ssxx grows 
linearly with the number 

of datapoints N.
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Inference for model parameters
 ? and  parameters model true the of estimates good  and  Are 1ββββ 010

ˆˆ

s is a measure of the “average” distance of datapoints from our regression line.s is a measure of the average  distance of datapoints from our regression line.
Higher s means more random error, and thus more uncertainty in our model.

Standard deviation of our estimate for β1:

( )2∑s Note that ssxx grows
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1̂
∑ −== xxss
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ss ixx
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 where, β

Note that ssxx grows 
linearly with the number 

of datapoints N.

95% confidence interval for β1: 
1̂1̂ β

β stc± Note: tc has N – 2 
degrees of freedom.

Hypothesis test for β1 ≠ b: 1̂β bscore-t −
=

For the “four employees” example, our regression line was y = 31136 + 1591 x.  
We also calculated s = 2611 and ssxx = 44, giving sβ1

= 2611 / √44 ≈ 394.

Hypothesis test for β1 ≠ b:
1̂β

s

e a so ca cu ated s 6 a d ssxx , g g sβ1
6 / √ 39

95% CI for β1:  1591 +/– (4.303)(394) = [-104, 3286]



Inference for model parameters
 ? and  parameters model true the of estimates good  and  Are 1ββββ 010

ˆˆ

s is a measure of the “average” distance of datapoints from our regression line.s is a measure of the average  distance of datapoints from our regression line.
Higher s means more random error, and thus more uncertainty in our model.

Standard deviation of our estimate for β1:

( )2∑s Note that ssxx grows
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 where, β

Note that ssxx grows 
linearly with the number 

of datapoints N.

95% confidence interval for β1: 
1̂1̂ β

β stc± Note: tc has N – 2 
degrees of freedom.

Hypothesis test for β1 ≠ b: 1̂β bscore-t −
=

For the “four employees” example, our regression line was y = 31136 + 1591 x.  
We also calculated s = 2611 and ssxx = 44, giving sβ1

= 2611 / √44 ≈ 394.

Hypothesis test for β1 ≠ b:
1̂β

s

e a so ca cu ated s 6 a d ssxx , g g sβ1
6 / √ 39

Hypothesis test for β1 ≠ 0:  t-score = 1591 / 394 = 4.04, cannot reject H0. 



Coefficient of determination
An overall measure of how well our linear model fits the data.

y is different across observations for two reasons: random 
error, and because the observations have different x values.

The coefficient of determination, r2, measures the proportion 
of the variation in y that can be explained by the variation in x. 

Total variation in y:

Variation in y due to random error: ( ) ( )( )∑∑ +−=−=
2

i10i
2

ii xˆˆyŷySSE ββ

( )2iyy yyss ∑ −=

Variation in y due to variation in x:   ssyy – SSE

Thus r2 = (ssyy – SSE) / ssyy = 1 – (SSE / ssyy).



Coefficient of determination
An overall measure of how well our linear model fits the data.

y is different across observations for two reasons: random 
error, and because the observations have different x values.

The coefficient of determination, r2, measures the proportion 
of the variation in y that can be explained by the variation in x. 
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Coefficient of determination
An overall measure of how well our linear model fits the data.

y is different across observations for two reasons: random 
error, and because the observations have different x values.

The coefficient of determination, r2, measures the proportion 
of the variation in y that can be explained by the variation in x. 
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Coefficient of determination
An overall measure of how well our linear model fits the data.

y is different across observations for two reasons: random 
error, and because the observations have different x values.

The coefficient of determination, r2, measures the proportion 
of the variation in y that can be explained by the variation in x. 
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Coefficient of correlation
For the case of simple regression (one independent variable), 

we can also define the coefficient of correlation r.

Positive r means that y increases with increasing x (“positively correlated”)
Negative r means that y decreases with increasing x (“negatively correlated”)

r can take values between -1 and 1: r = -1 is perfect negative 
correlation, and r = +1 is perfect positive correlation.
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Coefficient of correlation
For the case of simple regression (one independent variable), 

we can also define the coefficient of correlation r.

Positive r means that y increases with increasing x (“positively correlated”)
Negative r means that y decreases with increasing x (“negatively correlated”)

r can take values between -1 and 1: r = -1 is perfect negative 
correlation, and r = +1 is perfect positive correlation.

To calculate r, compute the square root of r2, and give it the same sign as β1. 

Another way of calculating r is: r = ssxy / √ssxx ssyy

“Four employees” example: ssxx = 44, ssxy = 70000, ssyy = 125000000.
r ≈ 70000 / 74162 ≈ .944
r2 ≈ .891

Note: high correlation between x and y does not mean that x causes y.



Dealing with outliers
Outliers can have a large impact on the regression line, especially when N is small.
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Mi it b i li t f ll i t hi h b tli i l diMinitab gives a list of all points which may be outliers, including:
Points with large residuals (far from the regression line)
Points with very large or small x values (high-impact points)

In this case, Minitab finds an unusual observation with x = 1999, y = 1, 
Fit (estimated y) = 5.88, and standardized residual t = -3.15.



Using Minitab
Regression Analysis: Income versus Years 

Th i ti i

46000

44000

Income and Experience of Four Employees

The regression equation is
Income = 31136 + 1591 Years

Predictor    Coef  SE Coef   T P
C t t 31136 2045 15 22 0 004
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34000Constant    31136    2045  15.22  0.004
Years        1590.9 393.6   4.04  0.056

S = 2611.16 R-Sq = 89.1% R-Sq(adj) = 83.6% Years of Experience
9876543210
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Minitab gives you:
• The regression equation.g q
• The coefficient of determination r2.
• The estimated standard deviation s.
• Standard deviation, t-score, and p-values for estimates of β0 and β1.
• Analysis of variance (don’t worry about this for now)• Analysis of variance (don t worry about this for now).
• A list of the residuals for unusual observations (or all observations).



Multiple regression
We can extend linear regression to model a linear relationship between 

the dependent variable y and multiple independent variables x1, x2, …, xk.

y = β0 + β1 x1 + β2 x2 + … + βk xk

58 5% of the variation in employees’ What other factors might also
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Scatterplot of Employee Salary vs. Experience

58.5% of the variation in employees  
salary can be explained by experience…

What other factors might also 
explain differences in salary?

x1 = years of employment
x = years of post-HS education
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x3 = 1 if female, 0 if male
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…and many other possibilities!
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Multiple regression
We can extend linear regression to model a linear relationship between 

the dependent variable y and multiple independent variables x1, x2, …, xk.

y = β0 + β1 x1 + β2 x2 + … + βk xk

What other factors might alsoWhat other factors might also 
explain differences in salary?

x1 = years of employment
x = years of post-HS education

What is the expected salary of a female 
employee with 4 years of education 

and 2 years of employment, who 
supervises a team of 3 employees? x2 = years of post-HS education

x3 = 1 if female, 0 if male
x4 = # of employees supervised
…and many other possibilities!

supervises a team of 3 employees? 

Salary = 24655 + 646 (2) + 1615 (4) 
– 1295 (1) + 165 (3) =  $31,607

Salary = 24655 + 646 x1 + 1615 x2
– 1295 x3 + 165 x4

How do we expect her salary to increase 
with years of employment, assuming that 

all other variables are constant?

How to interpret β0… β4?
Salary = 30315 + 646 x



Multiple regression
We can extend linear regression to model a linear relationship between 

the dependent variable y and multiple independent variables x1, x2, …, xk.

y = β0 + β1 x1 + β2 x2 + … + βk xk

What other factors might alsoWhat other factors might also 
explain differences in salary?

x1 = years of employment
x = years of post-HS education

Why do we only expect salary to 
increase $646 per year of employment, 

rather than $1107 per year as in the 
simple regression equation? x2 = years of post-HS education

x3 = 1 if female, 0 if male
x4 = # of employees supervised
…and many other possibilities!

simple regression equation? 

Expected salary increases $646 per 
year for a constant amount of education, 

Salary = 24655 + 646 x1 + 1615 x2
– 1295 x3 + 165 x4

y
number of employees supervised, etc.  

However, more experienced employees 
also tend to have more education and to 

be managers of larger groups

How to interpret β0… β4?

be managers of larger groups.



“Least Squares” Multiple Regression
How to obtain the best fitting multiple regression 
model, y = β0 + Σ βj xj, from a set of datapoints?

As before, we choose estimates of β0 and 
each βj to minimize the sum of squared errors.

Regression model: ∑+=
j

jj0 xˆˆy ββ

ˆˆ

⎞⎛ ⎞⎛
2

Estimate of y for the ith datapoint: ∑+=
j
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(xi1, xi2, …, xik, yi)

Thus we want to minimize: ( ) ∑ ∑∑ ⎟
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Solution: Use Minitab to obtain the regression coefficients.



Model assumptions
We assume that the relationship between the dependent variable y and the 

independent variables x1…xk can be approximated by a linear equation.
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Deterministic 
component

Random 
componentAssumption: The random error for each 

datapoint is drawn independently from 
a normal distribution with mean 0 anda normal distribution with mean 0 and 

standard deviation σ:  εi ~ N(0, σ).

Best estimate of σ2 (called s2 or MSE):
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Model assumptions
“Four employees” example, using experience and gender as independent variables: 

Employee 1 (female) makes $40K after 5 years (40000 – 37500)2 = 6,250,000Employee 1 (female) makes $40K after 5 years
Employee 2 (female) makes $30K after 1 year
Employee 3 (male) makes $35K after 1 year
Employee 4 (male) makes $45K after 9 years

(40000 37500)   6,250,000
(30000 – 32500)2 =  6,250,000
(35000 – 35000)2 =                0
(45000 – 45000)2 =                0

y = 33750 + 1250 (Years) – 2500 (if female) 12,500,000

s2 = 12,500,000 / (4 – 3) = 12,500,000

Best estimate of σ2 (called s2 or MSE):

, , ( ) , ,

s = √s2 ≈ 3536
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Coefficient of determination
As in the simple regression case, the coefficient of determination R2 is an 
overall measure of how well our multiple regression model fits the data.

R2 measures the proportion of the variation in the 
dependent variable y that can be explained by the 

i ti i th i d d t i blvariation in the independent variables x1…xk. 

Total variation in y:
⎞⎛ ⎞⎛

2
( )2iyy yyss ∑ −=

Variation in y due to random error:

Variation in y due to variation in x1…xk:   ssyy – SSE
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Thus R2 = (ssyy – SSE) / ssyy = 1 – (SSE / ssyy).

R2 = 1 means a perfect fit: all the variation in y is due to variation in x1…xk.
R2 = 0 means that all the variation in y is due to random error.



Coefficient of determination
As in the simple regression case, the coefficient of determination R2 is an 
overall measure of how well our multiple regression model fits the data.

R2 measures the proportion of the variation in the 
dependent variable y that can be explained by the 

i ti i th i d d t i blvariation in the independent variables x1…xk. 

Total variation in y:
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Variation in y due to random error:

Variation in y due to variation in x1…xk:   ssyy – SSE
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Thus R2 = (ssyy – SSE) / ssyy = 1 – (SSE / ssyy).

Four employees example: we calculated ssyy = 125,000,000 
and SSE = 12,500,000, giving R2 = 1 – (SSE / ssyy) = .900.



Inference for model parameters
 ? parameters model true the of estimates good ˆ the Are jj ββ

Minitab computes not only an estimate of each model 

95% confidence interval for βj: ˆcj stˆ
ββ ± t h N (k + 1) d f

p y
parameter, but also the standard deviation of each estimate.

95% confidence interval for βj: jcj st ββ ± tc has N – (k + 1) dof, 
where k is the number of 
independent variables.Hypothesis test for βj ≠ b:

ˆ

j

s
bˆ

 score-t
β

β −
=

jβ

Four employees example:
Predictor Coeff StDev

95% CI for Gender:
-2500 +/– 12 706(8292) = [-107858 102858]Predictor Coeff StDev        

Constant 33750 9100
Years 1250 1250
Gender -2500 8292

2500 +/ 12.706(8292)  [ 107858, 102858]

Hypothesis test for Gender ≠ 0:
t-score =  -2500 / 8292 = -.301

l 0 2 t j t Hp-value > 0.2, cannot reject H0. 



Inference for model parameters
How do we conclude whether the model is useful, i.e. that any of 

the k independent variables xj have βj significantly different from 0? 

Answer: we perform a global goodness of fit test (F-test) 
using Minitab, and conclude that the model is useful if 

f

Do not just perform hypothesis tests for the individual variables, and 
conclude that the model is useful if any variable has p value less than α

the resulting p-value is less than the significance level α. 

conclude that the model is useful if any variable has p-value less than α.

If we were to do this, we would have a problem of multiple hypothesis 
testing: our expected number of Type I errors (i.e. incorrectly concluding 
that the model is useful) increases proportional to the number of tests.

For the “four employees” example, Minitab gives us a p-value of 
316 for the F test so we cannot conclude that the model is useful.316 for the F-test, so we cannot conclude that the model is useful.



Using Minitab
The regression equation is
Salary = 24655 + 646 Years + 1615 Education – 1295 Gender + 165 Supervised

P di t C f SE C f T PPredictor Coef SE Coef T P
Constant 24655 2113 11.67  0.000
Years 646.1 140.4 4.60  0.000
Education 1615.1           406.9 3.97  0.000
G d 1295 1708 0 76 0 453

Years, Education 
are significantly 

i t d ithGender     -1295    1708 -0.76  0.453
Supervised        165.04    95.39 1.73  0.091

S 5636 93 R S 76 1% R S ( dj) 73 7%

associated with 
increased salary.

76 1% of the observed variation inS = 5636.93   R-Sq = 76.1% R-Sq(adj) = 73.7%

Analysis of Variance

76.1% of the observed variation in 
salary can be explained by differences 

in years of employment, education, 
gender, and employees supervised.

Source          DF          SS MS F P
Regression       4  4141476437  1035369109  32.58 0.000
Residual Error  41  1302774966    31774999
T t l 45 5444251403Total           45  5444251403

F-test has p-value < .05, 
so the model is useful.



Higher-order models
If the relationship between the dependent variable y and an independent variable x 

is not a straight line, we can include quadratic (x2) or higher terms in the model.

y = β0 + β1 x + β2 x2For example, we can examine the growth 
in U.S. population density over time.
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S 1.97836
R-Sq 99.3%
R-Sq(adj) 99.2%

U.S. Population Density
Density = 4985 - 5.59 Year + 0.00157 Year^2

Predictor       Coef        SE Coef       T          P
Constant       4985.1         471.5    10.57   0.000
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Year             -5.5903       0.4993  -11.20   0.000
Year2      0.0015684  0.0001321   11.87   0.000

S = 1.97836   R-Sq = 99.3% R-Sq(adj) = 99.2%

Year
20001950190018501800

10

0

We can conclude that the growth in 
population density is accelerating. 

The quadratic model explains 99.3% of the observed variation 
in population density, as opposed to 93.4% for the linear model. 



Higher-order models
If the relationship between the dependent variable y and an independent variable x 

is not a straight line, we can include quadratic (x2) or higher terms in the model.

y = β0 + β1 x + β2 x2For example, we can examine the growth 
in U.S. population density over time.
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U.S. Population Density
Other examples:

Diminishing marginal 
returns in economics        
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(β1 > 0, β2 < 0)
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0 Epidemic growth            
over time 

(β1 > 0, β2 > 0)1 2



Qualitative variables
How can we include qualitative (non-numeric) variables in our regression model?

Binary variables (e g gender): create a “dummy variable”Binary variables (e.g. gender): create a dummy variable  
that is 1 for one value of the variable and 0 for the other.  

For example, if we use a dummy variable Gender = 1 for females and Gender = 0 p , y
for males, the coefficient βj of Gender represents the expected difference between 

female and male salaries, holding all other independent variables constant.

Then β = 1295 means that we expect a female employee toThen βj = -1295 means that we expect a female employee to 
make $1295 less than a male employee, assuming the same 

amounts of experience, education, and employees supervised.



Qualitative variables
How can we include qualitative (non-numeric) variables in our regression model?

Binary variables (e g gender): create a “dummy variable”Binary variables (e.g. gender): create a dummy variable  
that is 1 for one value of the variable and 0 for the other.  

Multi-valued variable (e.g. department): create v – 1 dummy variables,Multi valued variable (e.g. department): create v 1 dummy variables, 
where v is the number of possible values of the qualitative variable.

Example: Employees can be from four different departments.

x1 = Years, x2 = Education, x3 = Gender, x4 = Supervised
x5 = 1 if employee from department 1, 0 otherwise
x6 = 1 if employee from department 2, 0 otherwise
x7 = 1 if employee from department 3, 0 otherwise

Salary = 27034 + 712 Years + 1549 Education - 1930 Gender 
+ 123 Supervised - 8199 Dept1 + 347 Dept2 - 3020 Dept3 123 Supervised 8199 Dept1  347 Dept2 3020 Dept3

Employees from Department 1 make $8,199 less than Department 4, etc.



Interaction models
One problem with the standard multiple regression model is that the variables 
cannot interact: a change in one independent variable always has the same 

effect on the dependent variable regardless of the values of the other variableseffect on the dependent variable, regardless of the values of the other variables.

The regression equation is
S l 30008 1122 Y 8125 D t1

Employees in Department 1 make an 
average of $8125 less, regardless ofSalary = 30008 + 1122 Years - 8125 Dept1 average of $8125 less, regardless of 
how long they’ve worked.  Salaries 
increase by an average of $1122/yr.

Employee Salaries by Department I f t th tt l t l th t

ry

70000

60000

50000

0
1

Dept1

p y y p In fact, the scatterplot reveals that 
employees in both departments 

make about the same starting salary, 
but salaries in Department 1 rise 

S
al

ar

40000

30000

p
more slowly with experience.

How can we represent this in our model?

Years of Employment
302520151050

20000



Interaction models
To represent interactions between two variables, we can include 
an interaction term xj equal to the product of the two variables.

Salaries increase by an average of 

y = β0 + β1 x1 + β2 x2 + β3 (x1x2)

Salary = 27750 + 1344 Years + $524/yr for employees in Department 1, 
versus $1344/yr for other employees.

Employee Salaries by Department

Salary = 27750 + 1344 Years + 
596 Dept1 – 820 YearsDept1

Employees in Department 1 make $596 
more minus $820 per year of employment

ry

70000

60000

50000
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1

Dept1

p y y p

Predictor             Coef  SE Coef     T        P
Constant           27750      1657  16.74   0.000
Years 1343 5 132 4 10 14 0 000

more, minus $820 per year of employment.
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Years               1343.5     132.4  10.14   0.000
Dept1                    596      3406    0.17   0.862
YearsDept1       -819.9     254.8  -3.22   0.002

S = 5766 07 R Sq = 74 4% R Sq(adj) = 72 5%
Years of Employment

302520151050
20000 S = 5766.07   R-Sq = 74.4% R-Sq(adj) = 72.5%

(vs. R2 = 68.0% for model without interaction)



Interaction models
To represent interactions between two variables, we can include 
an interaction term xj equal to the product of the two variables.

We observe a positive interaction 

y = β0 + β1 x1 + β2 x2 + β3 (x1x2)

Salary = 25138 + 458 Years + 1512 between years of employment and 
years of education, suggesting that 

more educated employees may 
advance in salary faster over time.

Salary = 25138 + 458 Years + 1512 
Education + 35.3 YearsEducation

For a fixed amount of education x2, 
$ $

Predictor      Coef  SE Coef       T           P
Constant    25138       2662     9.44     0.000
Years 458 0 259 5 1 76 0 085

salary increases by ($458 + $35.30 x2) 
per year of employment.  We would 

expect the salary of an employee with 10 
years education to increase by $811/yr.

Years          458.0      259.5     1.76     0.085
Education  1512.1      558.7     2.71     0.010
YrsEd          35.33      35.83     0.99     0.330

S = 5740 16 R Sq = 74 6% R Sq(adj) = 72 8%

However, the amount of interaction is 
not large enough to be significant.

S = 5740.16   R-Sq = 74.6% R-Sq(adj) = 72.8%
(vs. R2 = 74.0% for model without interaction)



Multicollinearity
When two or more of the independent variables in the multiple 

regression model are strongly correlated, serious problems can result.

Consider the trends in U.S. population and population density over time:
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U.S. Population vs. Population Density
80

70

U.S. Population Density

250

U.S. Population

U
.S

. P
op

ul
at

io
n 

(m
il

li
on

s)

200

150

100

50P
op

ul
at

io
n 

D
en

si
ty

60

50

40

30

20

10

0

U
.S

. P
op

ul
at

io
n 

(m
il

li
on

s) 200

150

100

50

0

Population Density
706050403020100

0

Year
20001950190018501800

-10

Year
20001950190018501800

-50

Population = 15 + 3 64 Population Density – 0 016 Year

If you suspect multicollinearity, check for significant correlations 
between pairs of independent variables and remove one of the

Population  15 + 3.64 Population Density 0.016 Year

between pairs of independent variables, and remove one of the 
correlated variables from the regression.  Minitab also checks for more 

complicated forms of multicollinearity between 3 or more variables. 



Multicollinearity
When two or more of the independent variables in the multiple 

regression model are strongly correlated, serious problems can result.

Salary = 43191 – 9190 Dept1 – 5642 Dept2 – 2526 Dept3

If we had included Dept4 in the regression model, we know that p g ,
Dept1 + Dept2 + Dept3 + Dept4 = 1, so we have multicollinearity.

We could add any multiple of (Dept1 + Dept2 + Dept3 + Dept4 – 1) to the model:

Salary = 33191 +        810 Dept1 +   4358 Dept2 +   7474 Dept3 + 10000 Dept4
= 23191 +    10810 Dept1 + 14358 Dept2 + 17474 Dept3 + 20000 Dept4, etc.

If you suspect multicollinearity, check for significant correlations 
between pairs of independent variables and remove one of the

This is why we only include v – 1 dummy variables instead of v: to avoid multicollinearity.

between pairs of independent variables, and remove one of the 
correlated variables from the regression.  Minitab also checks for more 

complicated forms of multicollinearity between 3 or more variables. 



Model building
Which subset of the independent variables, higher-order 

terms, interaction terms, etc. should we include?

There is no definitive answer here, but one possibility is to 
start out with all variables then remove insignificant variables 

one by one (don’t remove them all simultaneously!)one by one (don t remove them all simultaneously!)

Another option is to use Minitab to 
perform a stepwise regression analysis.p p g y

y = Salary
x1 = Years
x Education

Salary = 24868 + 700 Years + 
1858 Education – 7714 Dept1

Stepwise regression 
using α = .05 produces 

th tix2 = Education
x3 = Gender
x4 = Supervised
x5 = Dept1

Remove second (p-value = .174)
Remove fourth (p-value = .103)

the same equation.

Stepwise regression using 
α = 15 also includes5 p

x6 = Dept2
x7 = Dept3

Remove first (p-value = .862)
Remove third (p-value = .140)

α  .15 also includes 
Supervised and Dept3.



Model building
Once we have a reasonable subset of variables to examine, 

we can consider higher-order and interaction terms.

Add Years^2? No, p = .598
Add Education^2? No, p = .299
Add Dept1^2? No, dummy variable.
Add Years*Education? No, p = .294
Add Years*Dept1? Yes, p = .001
Add Education*Dept1? Yes p = 008

{Years, Education, 
Dept1}

Add Education Dept1? Yes, p = .008 

Final equation: Salary = 22130 + 797 Years + 2201 Education + 4282 Dept1 
– 379 (Years*Dept1) – 1588 (Education*Dept1)(R2 = 890)

Keep in mind that testing so many variables increases our risk of 
T I It ld b b tt t l t t f th hi h d

(R  .890)

Type I errors.  It would be better to only test for the higher-order 
terms and interactions that we believe are most likely to occur.


