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ABSTRACT

There is an urgent need to improve peer review, particu-
larly due to the explosion in the number of submissions es-
pecially at ML and Al venues. Peer review faces a number
of challenges including noise, calibration, subjectivity, and
strategic behavior. This paper presents a survey of our re-
cent works towards addressing these challenges. Our works
take a principled approach to tackle these issues, towards
developing an algorithmic toolkit for improved peer-review
processes. Our algorithms focus on achieving objectives of
fairness, accuracy, and robustness in these goals. We supple-
ment our algorithms with strong theoretical guarantees as
well as empirical evaluations on conference data. The ideas,
results, and insights of this work as applicable broadly to a
variety of applications beyond peer review.

1. INTRODUCTION

Peer review is a cornerstone of academic practice today and
also for years to come [1]. The peer review process is highly
regarded by the vast majority of researchers and considered
by most to be essential to the communication of scholarly
research (2} |3} 4]. However, there is also an overwhelming
desire for improvement |4} |2; 5].

An empirical evaluation of the peer-review process was re-
cently preformed in a remarkable experiment conducted by
the program chairs of the Neural Information Processing
Systems (NeurIPS) 2014 conference [6]. Here, 10% of the
submissions were assigned to two independent committees,
each tasked with the goal of accepting 22% of the papers.
It was found that 57% of papers accepted by one committee
were rejected by the other. Such a high level of inconsistency
is a major concern, particularly due to the widespread preva-

lence of the Matthew effect (“rich get richer”) in academia |7].

Indeed, various past studies show that small changes in peer
review quality can have extensive consequences not only for
the submitted papers but also for the career trajectories of
the authors [8;|9].

The following quote from Drummond Rennie, in a Nature
commentary titled “Lets make peer review scientific” |10,
provides an apt summary of the state of peer review today:

“Peer review is touted as a demonstration of the self-
critical nature of science. But it is a human system.
FEverybody involved brings prejudices, misunderstandings
and gaps in knowledge, so no one should be surprised that

peer review 1s often biased and inefficient. It is occasion-
ally corrupt, sometimes a charade, an open temptation
to plagiarists. Even with the best of intentions, how and
whether peer review identifies high-quality science is un-
known. It is, in short, unscientific.”

The need to improve peer review is particularly urgent due
to the explosion in the number of submitted papers in vari-
ous fields. Conferences in machine learning and artificial in-
telligence are experiencing a near-exponential growth in the
number of submissions, but a significantly slower growth
in terms of the number of expert reviewers. The increase
in number of submissions is also large in many other fields
beyond computer science: according to McCook [11] “Sub-
missions are up, reviewers are overtazred, and authors are
lodging complaint after complaint”.

Despite the importance of peer review and the urgent need
for improvements, there is surprisingly little work on prin-
cipled approaches towards addressing these problems par-
ticularly at scale. The goal of this research is to address
these important and challenging problems in peer review in
a principled and practical manner.

For concreteness, we consider the setting of peer review in
conferences, where a set of papers are submitted at a given
time and must be evaluated within a strict time frame. That
said, a number of ideas, results, and insights in this work
generalize to various applications such as crowdsourcing,
A/B testing, peer grading, recommender systems, hiring,
college admissions, and many others.

This paper presents a survey of some of our recent works
addressing the issues of noise, miscalibration, subjectivity,
and strategyproofness. In these works, our focus is on the
following objectives:

e Fairness: Treat all papers as equal as possible.
e Accuracy: Maximize correctness of decisions.

e Robustness to modeling assumptions: Recognizing
that humans are inherently complex, make minimal as-
sumptions on how people behave.

Our works provide both theoretical guarantees as well as
empirical evaluations towards these goals.

2. SUBJECTIVITY

Joint work with R. Noothigattu and A. Procaccia [12].

It is known that different reviewers have different, subjective
opinions about the relative importance of various criteria in



judging papers [13; [14; |15} |16; |17]. On the other hand,
in order to ensure fairness, every paper should ideally be
judged by the same yardstick. For instance, suppose three
reviewers consider “improvement of at least 10%” as most
important, whereas most members of the community have
a high emphasis on “novelty”. Then a highly novel paper
that yields a 5% improvement over the state of the art may
be rejected if reviewed by these three reviewers but would
have been accepted by any other set of reviewers. Indeed, as
revealed in the survey [18|, more than 50% of reviewers say
that even if the community thinks a certain characteristic
of a manuscript is good, if the reviewer’s own opinion is
negative about that characteristic, it will count against the
paper; about 18% say this can also lead them to reject the
paper.

2.1 Problem setting

In this work, we first provide a framework for a principled
aggregation of subjective opinions in peer review. Let R
denote the set of all reviewers and P denote the set of all
papers. Each reviewer i reviews a subset of papers, denoted
by P(i¢) C P. Each reviewer assigns scores to each of their
papers on k different criteria, such as novelty, experimental
analysis, and technical quality, and also gives an overall rec-
ommendation. For simplicity (and rescaling as necessary),
we assume that all scores lie in the interval [0,1]. We de-
note the criteria scores given by any reviewer ¢ to any paper
§ € P(i) as x;; € [0,1]%, and the overall recommendation as
Yij € [Oa 1]

We further assume that each reviewer has a monotonic func-
tion in mind that they use to compute the overall recommen-
dation for a paper from its criteria scores. By a monotonic
function, we mean that given any two score vectors x and x’,
if x is greater than or equal to x’ on all coordinates, then the
function’s value on x must be at least as high as its value on
x'. We let Fj the set of all coordinate-wise non-decreasing
functions from R* to R.

Inspired by empirical risk minimization, we compute the
function in Fj that minimizes the L(p,q) loss |19} |20} 21}
22| on the data. In more detail, given hyperparameters p, g €
[1, 0], we compute
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This learned mapping frepresents the community’s weight-
ing of the different criteria. Once the function f has been
computed, we propose to apply it to every review, that is,
for every reviewers i and papers a to obtain a new overall
recommendation f(x”)

Under this framework, the question that then arises is: What
values of p and ¢ to use?

2.2 Solution

We take an axiomatic approach based on social choice the-
ory. We impose three simple requirements (or “axioms”) on
the learning algorithm: (1) Consensus: if all reviewers map
some x € R* to the same y € R then the learnt mapping
must have f(x) = y. (2) Efficiency: if a paper A is “obvi-
ously” better than paper B from the review data then the
learnt mapping must respect that. (3) Strategyproofness: No

reviewer should be able to bring the learnt mapping closer
to her/his own subjective preference by manipulating the
provided reviews.

Recall that our goal is to reduce the space of possible choices
of p,q € [1, 0] by means of imposing these axioms, thereby
then leading to a principled choice. On the other hand, it
is often the case in social choice theory [23;24; 25 that im-
position of only a few such natural axioms leads to results
of non-existence of any solutions. For our problem at hand,
we show that surprisingly, the three aforementioned natural
axioms are satisfied by exactly one choice of the hyperpa-
rameters.

THEOREM 1. L(p,q) aggregation, where p,q € [1,00], sat-
isfies consensus, efficiency, and strategyproofness if and only
ifp=q=1

We also perform an empirical analysis using our framework
(Equation [If with p = ¢ = 1). We employ a dataset of re-
views from [JCAI 2017. First, we observe that writing and
relevance do not have a significant influence (Figure [I(a)).
Really bad writing or relevance is a significant downside,
excellent writing or relevance is appreciated, but everything
else in between in irrelevant. Second, technical quality and
significance exert a high influence (Figure . Finally, we
compute the overlap between the set of top 27.27% papers
selected by our method with the actual 27.27% accepted
papers. We find that the overlap is 79.2%, which we think
is quite interesting— our approach does make a significant
difference, but the difference is not so drastic as to be dis-
concerting.

(a) Varying ‘writing quality’ (b) Varying ‘significance’
and ‘relevance’ and ‘technical quality’

3. MISCALIBRATION

Joint work with J. Wang [26].

It is well known [27} 28; |29; [30; 31; |32] that the same rating
score may have different meanings for different individuals.
For instance, if reviewers are asked to provide scores in the
interval [0, 1], some reviewers may be lenient and usually
provide scores greater than 0.5 whereas some others may
be strict and rarely give scores greater than 0.5. Or some
reviewers are more moderate whereas others provide scores
at the extremes of the allowed interval. Such mismatches
cause additional difficulty in the final acceptance decisions
as well as lead to unfairness [33|: “the existence of disparate
categories of reviewers creates the potential for unfair treat-
ment of authors. Those whose papers are sent by chance
to assassins/demoters are at an unfair disadvantage, while
zealots/pushovers give authors an unfair advantage.”

In the literature, there are two popular approaches towards
this problem miscalibration. The first approach [34; |35;



36; 137; 138; 139] is to make simplifying assumptions on the
nature of the miscalibration, for instance, assuming that
these miscalibration is linear or affine. The research follow-
ing this approach designs algorithms to learn “parameters”
of the miscalibration. However, it is known that such as-
sumptions are frequently violated (see |29] and references
therein). Then these algorithms can be “significantly harm-
ful” in practice [40]. A second approach [41} 31; [27; 30;
42} 28] towards handling miscalibrations is to either directly
elicit rankings from reviewers or convert the scores into rank-
ings. This approach is often believed to be the only resort
when the underlying calibration functions may be arbitrary.
The question that we thus ask is whether this folklore belief
is true — if the miscalibration functions can be arbitrary
(or adversarially chosen) then is there any algorithm based
on ratings that can perform better than using the rankings
alone?

3.1 Problem setting

For brevity, consider a simplified setting with two reviewers
and two papers. The two papers have some “true” scores
x] # x5 € [0,1] that are a priori unknown. Each reviewer
i € {1,2} has a “miscalibration” function f; : [0,1] — [0, 1]
which is a priori unknown. The miscalibration function
means that if a reviewer ¢ reviews a paper with true score
z* € [0, 1], then the reviewer reports a score i provides the
score y = f;(x). The functions fi and fo are arbitrary (and
can be chosen by an adversary) — the only constraint we
impose on these functions is strict monotonicity.

Now suppose one different paper each is assigned to each
reviewer uniformly at random. Let y; and y2 respectively
denote the scores for paper 1 and paper 2 given by their re-
spective reviewers. Then given the data comprising (y1,y2)
and the knowledge of who reviewed which paper, the goal
then is to identify the paper with the higher true score.
Observe that each reviewer reviews only one paper, and
hence using a “ranking” elicited from each reviewer is vacu-
ous. Thus any ranking-based algorithm can attain a proba-
bility of success no more than 0.5. The key question now is
whether it is possible to do any better using ratings.

3.2 Solution

We show that surprisingly, counter to the popular belief,
there exists an algorithm which performs strictly better than
rankings even if the miscalibration of ratings is arbitrary or
adversarially chosen.

THEOREM 2. There is a computationally-efficient, ran-
domized algorithm which succeeds with probability strictly
greater than 0.5 for any miscalibration functions and any
true scores of the two papers.

The proposed algorithm is simple to describe. Then the al-
gorithm declares the paper with the higher reviewer-provided-
score as “better” with probability M

While our algorithm is randomized, we also show that every
deterministic rating-based estimator fails to improve upon
rankings. Finally, we extend our positive results from the
2 X 2 setting to more general application settings.

4. NOISE
Joint work with I. Stelmakh and A. Singh [43].

Data from people is often noisy due to lack of expertise. In
peer review, the assignment of the reviewers to papers de-
termines the expertise of the reviewer who will review any
paper. It is also known [44} [14] that unique and novel works,
particularly those interdisciplinary in nature, face signifi-
cantly higher difficulty in gaining acceptance. A primary
reason for this undesirable state of affairs is the absence of
sufficiently many good “peers” to aptly review interdisci-
plinary research [45]. Our focus is thus to design algorithms
to assign reviewers to papers that can help combat this noise.
Indeed, the importance of the reviewer-assignment stage of
the peer-review process cannot be overstated: quoting [46],
“one of the first and potentially most important stage is the
one that attempts to distribute submitted manuscripts to
competent referees.”

4.1 Problem setting

An assignment algorithm takes as input a “similarity” s;; €
[0,1] between every reviewer ¢ and paper j. A higher value
of the similarity indicates a better review by the reviewer for
that paper. The popular approach to assigning reviewers to
papers is to maximize the similarity of the assigned review-
ers summed across all papers and reviewers. This approach
is followed in [47; |48} |49; 50|, conference management sys-
tems such as EasyChair, HotCRP, and the Toronto Paper
Matching System or TPMS [51] used in all top AT and ML
conferences.

The issues discussed above strongly motivate the dual goals
of the reviewer assignment procedure we consider in this
paper — fairness and accuracy.

We consider the notion of max-min fairness |52} |53} |54} |55].
In our context, max-min fairness posits maximizing the sum-
similarity for the paper having the least qualified reviewers.
It guarantees that no paper is discriminated in favor of luck-
ier counterparts — even the most idiosyncratic paper with
a small number of competent-enough reviewers will receive
as good treatment as possible.

A main goal of the conference peer-review process is to select
the set of “top” papers for acceptance. Thus, it is important
that the assignment of papers to referees is built to achieve
the accuracy of the final decisions. However, all prior works
on paper assignment problem known to us (such as the ref-
erences above) focus on developing algorithms that optimize
the assignment for certain deterministic objectives. In con-
trast, we take the first approach to connect the quality of
the assignment to the accuracy of the entire conference peer-
review process.

4.2 Solution

We first show that popular assignment approach discussed
above can be quite “unfair”. For instance, consider a setting
with 3 papers and 3 reviewers, where each reviewer must re-
view 1 paper and each paper must be reviewed by 1 reviewer.
Consider similarities given by:

PAPER @ PAPER O PAPER ¢
REVIEWER 1 1 1 1
REVIEWER 2 0 0 1/5
REVIEWER 3 1/4 1/4 1/2

The popular assignment approach will assign reviewers 1,
2, and 3 to papers a, b, and c respectively. Under this as-
signment, paper b is assigned a reviewer with insufficient
expertise to evaluate the paper.



We present a novel algorithm called PEERREVIEW4ALL to
assign reviewers to papers. Our algorithm is based on a con-
struction of multiple candidate assignments which cater to
different structural properties of the similarities and a judi-
cious choice between them provides the algorithm appealing
properties.

We then analyze PEERREVIEW4ALL in terms of its fair-
ness and statistical accuracy. As an example of fairness,
for the similarities in the table above, PEERREVIEW4ALL
assigns reviewers 1, 2, and 3 to papers a, ¢, and b respec-
tively. PEERREVIEW4ALL thus ensures that every paper has
a reviewer with similarity at least 1/5. This “fair” assign-
ment does not discriminate against the disadvantaged paper
b (and a) for improving the review quality of the already
benefiting paper c.

For analyzing statistical accuracy, we consider a popular sta-
tistical model |34} 56 [57] which assumes existence of some
true objective score for every paper. We also propose a new
model that incorporates subjectivity in the reviews. For
both models, we analyze the minimax risk, studying the
loss in terms of “incorrect” acceptance decisions

THEOREM 3. PEERREVIEW4ALL is max-min fair up to
a constant factor, and is minimax optimal up to constant
factors under both objective and subjective-score models.

PEERREVIEW4ALL thus simultaneously achieves fairness and
statistical accuracy. Interestingly, our results suggest that
fairness is the right prory towards statistical accuracy.

5. STRATEGIC BEHAVIOR

Joint work with H. Zhao, Y. Xu and X. Shi [5§].
Peer-review is susceptible to strategic manipulations. A re-
viewer may be able to increase the chances of acceptance
of their own submissions by manipulating the reviews (e.g.,
providing lower scores) for other papers. A recent empirical
study [59] examined the strategic behavior of people in com-
petitive peer review, and concluded that *...competition in-
centivizes reviewers to behave strategically, which reduces the
fairness of evaluations and the consensus among referees.”
See [60] for more anecdotes. As Thurner and Hanel [61]
posit, even a small number of selfish, strategic reviewers can
drastically reduce the quality of scientific standard.

It is thus highly important to protect peer review from any
possible strategic manipulations. We define strategyproof-
ness in terms of a “conflict graph”, which is a fixed graph
given to us. A conflict graph is a bipartite graph with all
reviewers and papers as its vertices, and has an edge be-
tween a reviewer vertex and a paper vertex if the reviewer
has a conflict with the paper. Examples of conflicts include
authorship conflicts (e.g., the reviewer is an author of that
paper), institutional conflicts, etc. Now strategyproofness
means that no reviewer must be able to influence the final
ranking of her/his conflicted papers by manipulating the re-
views that she/he provides.

A number of past works [62; 63} |64} |65; 66; 67} 68] con-
sider designing strategyproof procedures of “peer grading”
in MOOCs and classrooms. There are two key differences
between these peer-grading settings and the peer-review set-
ting we consider. First, the peer grading setting involves
conflict graphs of degree at most 1, that is, every reviewer
conflicts with at most one paper and every paper has at
most one author. On the other hand, even if one considers

only authorship conflicts in conference peer review, every au-
thor may submit multiple papers and any paper may have
multiple authors, thus requiring strategyproofness with re-
spect to more general graphs. Second, these prior works do
not account for “heterogeneity” in the papers and review-
ers with the motivation that all students in peer grading
take the same course. On the other hand, conference pa-
pers and reviewers are more diverse in terms of their exper-
tise and subject matter. Hence any peer-review framework
must have significant flexibility to accommodate the various
intricacies. These differences make the peer-review setting
strictly more general and significantly more challenging.

5.1 Problem setting

We now present our framework for strategyproof peer re-
view. There are two design elements in this framework: an
assignment of reviewers to papers, and an algorithm to ag-
gregate the reviews to yield a final ranking of the papers.
These must be designed to meet strategyproofness. In addi-
tion, we require the algorithms to satisfy “unanimity” which
is popular in social choice theory [23] as a basic requirement
for any algorithm. Unanimity in our context necessitates
that if the papers can be partitioned into two sets such that
for all pairs of papers p; in the first set and p2 in the second
set, all reviewers reviewing both p; and ps rank p; higher
than pa, then the final aggregate must also rank p; higher
than pa.

5.2 Solution

Our solution first assigns papers to reviewers in which one
can use any assignment algorithm subject to the constraint
that there is mo path in the conflict graph between any as-
signed reviewer-paper pair. This assignment requires that
the conflict graph can be partitioned into large enough dis-
connected components. Once the reviews are in, our frame-
work allows for any arbitrary aggregation within each par-
tition. Given the rankings of the papers in each partition,
we finally interleave papers in a simple alternating fashion
to obtain the final ranking.

THEOREM 4. Our algorithm guarantees strategyproofness
and unanimity.

We complement our positive results with negative theoret-
ical results where we prove that under slightly stronger re-
quirements, it is impossible for any algorithm to be both
strategyproof and efficient.

Finally, we perform an empirical analysis using data from
ICLR 2017. We show that the condition on the partitioning
of the graph indeed holds in ICLR 2017. We further demon-
strate a simple trick to make the partitioning method more
practically appealing under conference peer-review settings.

6. DISCUSSION

The need to improve peer review is important and urgent for
scholarly research to thrive. We are developing a toolkit of
algorithms — with provable guarantees — towards this goal.
In addition to the works surveyed in this paper, our work
has addressed other problems in peer review including de-
veloping tools to test for biases [69], and methods for more
efficient use of human time and effort |70|, with several
others underway. Finally, we are also conducting outreach
with an aim to drive positive policy change — please see
researchonresearch.blog.


https://researchonresearch.blog
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