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ABSTRACT
Peer review is the backbone of scientific research. Yet peer review
is called “biased,” “broken,” and “unscientific” in many scientific
disciplines. This problem is further compounded with the near-
exponentially growing number of submissions in various computer
science conferences. Due to the prevalence of “Matthew effect” of
rich getting richer in academia, any source of unfairness in the peer
review system, such as those discussed in this tutorial, can consid-
erably affect the entire career trajectory of (young) researchers.

This tutorial will discuss a number of systemic challenges in
peer review such as biases, subjectivity, miscalibration, dishonest
behavior, and noise. For each issue, the tutorial will first present
insightful experiments to understand the issue. Then the tutorial
will present computational techniques designed to address these
challenges. Many open problems will be highlighted which are
envisaged to be exciting to the WSDM audience, and will lead to
significant impact if solved.

CCS CONCEPTS
• Information systems; • Computing methodologies → Arti-
ficial intelligence; Machine learning; • Human-centered comput-
ing → Collaborative and social computing;
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1 MOTIVATION
Peer review is a cornerstone of academic practice today and also
for years to come [45]. The peer review process is highly regarded
by the vast majority of researchers and considered by most to be
essential to the communication of scholarly research [39, 41, 70].
However, there is also an overwhelming desire for improvement [39,
54, 70].
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The following quote from Rennie [46], in a Nature commentary
titled “Let’s make peer review scientific” provides an apt summary
of the state of peer review today:
“Peer review is touted as a demonstration of the self-critical nature
of science. But it is a human system. Everybody involved brings
prejudices, misunderstandings and gaps in knowledge, so no one
should be surprised that peer review is often biased and inefficient.
It is occasionally corrupt, sometimes a charade, an open temptation
to plagiarists. Even with the best of intentions, how and whether
peer review identifies high-quality science is unknown. It is, in
short, unscientific.”

Problems in peer review have consequences much beyond the
outcome for a specific paper or grant, particularly due to the wide-
spread prevalence of theMatthew effect (“rich get richer”) in academia [37].
As noted by Triggle and Triggle [65] “an incompetent review may
lead to the rejection of the submitted paper, or of the grant application,
and the ultimate failure of the career of the author.” (See also [55, 63].)

The importance of peer review and the urgent need for improve-
ments, behooves research on principled approaches towards ad-
dressing problems in peer review, particularly at scale. In this tuto-
rial, we outline several directions of research on this topic, and also
highlight important open problems that we envisage to be exciting
to the community.

2 OUTLINE OF THE TUTORIAL
The tutorial will broadly cover six topics.
(1) Demographics: We will first discuss biases due to demograph-

ics. We will begin by discussing a remarkable semi-randomized
controlled trial [64] at the WSDM conference in testing for bi-
ases in single-blind (versus double blind) review. We will then
demonstrate [56] – by showing certain issues in the experi-
mental setup and tests from [64]– how one must be careful in
running any experiments or statistical tests for biases in any
such reasonably complex problem setting. We will subsequently
discuss a framework for such problems in the context of peer
review [56], and also present general principles that can be
applied to other sociotechnical systems. Finally, we will discuss
testing of biases using the text of the reviews [36]. Auxilliary
references: [8, 22, 43, 71].

(2) Miscalibration: Even in the absence of any demographic bias,
there is unfairness due to miscalibrations of individuals – e.g.,
some reviewersmay be strict, lenient, extreme,moderate etc. [53].
We will discuss the complexity of human miscalibration [7], fol-
lowed by three key approaches towards solving this problem:
Model-based approaches [4, 16, 19, 34, 44, 48], ranking-based
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approaches [2, 17, 21, 38, 40, 47], and a model-free rating-based
approach [68]. Auxilliary references: [52, Section 3.3], [13].

(3) Dishonest behavior: Since conference peer-review is competi-
tive, some participants gain advantage by gaming the system,
thereby rendering the application unfair for other honest par-
ticipants. We will first detail an insightful experiment [6] on
the behavior of human evaluators in competitive environments.
We will then overview a popular algorithmic building block
designed to prevent dishonest behavior in certain settings of
human-provided evaluations [1, 3, 12, 15, 24, 26, 29, 72]. We will
then evaluate a variant of this building block in the context of
peer review on data from ICLR 2017 and 2018 [72]. Auxilliary
references: [5, 11, 23, 25, 30, 35, 58].

(4) Assignment of reviewers: The assignment of reviewers to papers
is known to be one of the most important parts of evaluation,
and contributes significantly to the noise in the reviews. We will
detail the current methods of assigning reviewers to papers in
major ML/AI conferences [9]. We will then highlight problems
of unfairness in these assignment procedures, for instance, that
they are unfair interdisciplinary papers (both in theory and
practice). We will subsequently present alternative assignments
with theoretical guarantees [18, 28, 57], and empirical evalu-
ations on CVPR 2017, CVPR 2018, MIDL 2018 [28] and ICML
2020. Auxilliary references: [10, 14, 20, 33, 62].

(5) Subjectivity: It is well known that subjective opinions of indi-
vidual reviewers leads to unfairness to some participants. We
will first discuss this problem of “commensuration bias” [27, 32].
We will then describe an algorithmic framework designed using
machine learning and social choice theory to mitigate this bias
in the context of peer review, and also describe experiments in
IJCAI 2017 [42].

(6) Norms and policies: The presentation will conclude with a dis-
cussion on driving actual policy change. This will include exper-
iments conducted in the peer-review process of ICML 2020 on
(i) reviewer bias due to knowledge of previous rejections [61],
(ii) herding effects in reviewer discussion [59], and (iii) an ex-
periment with novice reviewers [60]. The findings from these
experiments are interesting on their own, and inform the poli-
cies that are set by the community. We will also discuss policy-
related issues pertaining to gender skew in conference paper
awards and the need for transparency [67], and biases due to
alphabetical orderings [66].

The tutorial will also discuss a number of open problems in each
of the aforementioned topics, as well as overarching issues such as
how to measure the quality of a peer review process [31, 52, 60, 69].

3 CONCLUSIONS
There are many sources of systemic biases and unfairness in peer
review. The need to improve peer review is important and urgent
for scholarly research to thrive. The current research on peer re-
view has only scratched the surface of this important and urgent
problem domain. There are lots of open problems which are ex-
citing, challenging, impactful, and allow for a broad spectrum of
theoretical, applied, and conceptual contributions.
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