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Abstract—In this paper, we present and analyze a multi-agent neighbors) and (b) the interaction between agents is non-
game theoretic model of conflicts in multi-cultural societes. Two  adaptive (except in [6]), e.g., agents will die with a certai
salient fa.ctors. (espon5|ble fqr wolgnce |n.mult|-cultura societies probability if they are in the neighborhood of opponent dgen
(that are identified in the social sciences literature) ared) ethno- . . ) .
religious identity of the population and (b) spatial structure Pr_they will m'gr.ate towards agents of only their t_ype. Since
(distribution) of the popuiation_ It has also been experim@ta”y It Is We" eStabllshed that the structure Of a SOC|a| network
shown by Lumsden that multi-cultural conflict can be viewed & of interacting population is not like a grid [8], we model
a Prisoner's Dilemma (PD) game. Using the above observatien the interaction topology among the agents as a graph. More-
we model the multi-cultural conflict problem as a variant of over, we model the interaction between agents as a repeated

the repeated PD game in graphs. The graph consists of labeled . 1 -
nodes corresponding to the different ethno-religious typs and prisoner’s dilemma (PD) game where the agents update their

the topology of the graph encode the spatial distribution ad ~Strategies. Thus, in this paper, we present a simple mgetia
interaction of the population. The agents play the game with game-theoretic model for studying conflict situations inltmu
neighbors of their opponent type and they update their straégies cultural societies.

based on neighbors of their same type. This strategy update  The primary cause of conflict in multi-cultural societies is

dynamics with different update neighborhood from game playng L .
neighborhood distinguishes our model from conventional mdels the fear of the minority population about loss (or suppres-

of PD games in graphs. We present simulation results showing Sion) of their ethno-religious identity to the majority gim
the effect of various parameters of our model to the propensy of Lumsden demonstrated this through a series of experiments i
conflict in a population consisting of two ethno-religious goups.  the context of the Cyprus conflict between Greek Cypriots and
Turkish Cypriots [9]. Both the Greek Cypriots and the Turkis
Cypriots gave higher value to maintaining their position on
right to self-determination(which is directly related to the
Ethno-religious conflict in multi-cultural societies hasem importance the groups have for their own ethno-religious
one of the major causes of loss of life and property in receidentity) than to compromise and modify their position even
history (e.g., violence in Yugoslavia [1], Sudan [2]). Teéras if the former meant war in the long run (that is detrimental to
been substantial empirical research in sociology and @bnflboth) and the latter meant peace (that is beneficial to bisth).
resolution literature on analyzing the causes of such mide other words, the payoff matrix of the conflict viewed a%a2
(see [3] and references therein). Apart from the ethn@jilis matrix game had the structure of the prisoner’s dilemma (PD)
identity, other social and economic factors identified ie thgame. In this paper, we use this insight of Lumsden combined
literature in violence prone areas are economic grievancedth the ethno-religious identity and the spatial struetof
competition for scarce natural resources, historicalguleats, the population to form a multi-agent game-theoretic model
territorial claims, influence of political/religious e, and for studying conflict in multi-cultural societies.
international influences. The spatial structure of theedéht We model the problem as a PD game on graphs where the
population groups is also correlated to the occurrence wddes of the graph are the agents and the edges between
violence [3], [4]. the agents represent interaction between them. Each agent
More recently, there has been focus on computational stuepresents a group of people (e.g., a household or a family).
of civil conflict in societies (see [5], [6], [7] and referea& The graph topology encodes the spatial distribution of the
therein), some of which have also studied societies with- mydopulation and the interaction between the different gsoofp
tiple ethno-religious groups [4], [6]. Although the propds the population is abstracted as the PD game. The nodes in the
computational models vary in detail, the common features gfaph have different labels denoting their ethno-religimen-
existing agent-based computational models are: (a) thetagdity. The agents play the game with members of their opponent
are assumed to be distributed on a grid and the interactigroups and they update their strategies based on the members
between agents are restricted to a neighborhood around tleditheir own group. We note that the different neighborhoods
position (usually their Moore-neighborhood, i.e., near&s we use for an agent for game playing and strategy updating is
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a departure from the standard model of PD games on gragledinition does not correspond to the standard definition of a
(where the game playing and strategy updating neighbosho®D game [14].

are assumed to be the same). Assuming that there are twdo demonstrate the importance of spatial structure of the
different ethno-religious types in the population, we prés population in ethnic conflicts, Lim et al. [4] proposed a
simulation studies (on synthetic data) showing the effdct mathematical model based on the dynamics of type separation
our model parameter variations. Type separation models were originally proposed to explain

Contributions: The main contributions of our paper arepattern formation in physical or chemical phase separation
(1) we introduce a simple and novel game theoretic modaiocesses and has been used in the social segregationtcontex
for studying ethno-religious conflict, and (2) we present-si in [15]. Lim at al. [4] assumed that the population consists
ulation studies showing the effect of various parameters of different types and occupy the nodes oR®& grid with
our model to a measure of the potential of conflict (that some empty nodes. The like agents move towards each other
defined by Equation 3). Since the model of the PD gameswhereas unlike agents move away from each other. This leads
graphs that we introduced is new, we also present theoretitaformation of patches of different types and a patch of one
results that (partially) characterize the long term sggtetype surrounded by agents of another type is predicted as a
update dynamics of our new PD game in graphs model. site of violence. Thus, they demonstrate the importancéef t
particular, we prove that the strategy of an agent may nspatial structure of the population for ethno-religiouslence
reach a fixed point by showing counter-examples of graphwdeling. However, it is not apparent whether it is possible
where the strategies of the agents oscillate. extend this model to take into consideration other factibes |

This paper is organized as follows: In Section II, we preseaffect of leaders or uneven distribution of natural resesrc
a brief overview of the literature related to conflict modgli  Lumsden conducted experiments to elicit the structure of
and PD games in graphs. In Section lll, we present the fornthke Cyprus conflict in game-theoretic terms [9]. He conctlde
definition of PD games in graphs and other definitions usditht the essential factors of the conflict can be captured as a
in the paper. In Section 1V, we present in detail our model fawo-party, two-choice game and showed that the payoff matri
multi-cultural conflict modeling based on PD game in graphef the game has the structure of the prisoner’s dilemma game.
Thereafter, in Section VI, we present simulation results. [The Prisoner’s Dilemma game is a well known model for many
Section VII we present a discussion of some limitations @cial choice situations. In this two-player game, eaclygla
our model and indicate ways to overcome them. Finally, imas two actions, cooperate (C) or defect (D). The payoffimatr
Section VIII, we provide our conclusions and outline probée for the game has the following characteristics: (a) the éagh
to be addressed in the future. payoff is obtained by the defector against the cooperatjr, (
the total payoff for mutual cooperation is the highest and (c
the defector’s extra income (relative to its income for nalitu

There has been a variety of social and economic causemperation) is less than the loss of the cooperator (please
put forward for ethnic conflicts based on empirical factdths see Section Il for a formal statement). In a single shot PD
research [3], [10], [11]. These causes can be divided ing@ame, each player should choose to defect and this is the Nash
three generic categories [3], [12] (a) non-material caliges equilibrium. However, the total payoff for both players g
ethno-religious identity, culture, history of violenceutnal case is lesser than the case when both play cooperate. In many
fear (b) material causes like uneven distribution of ndturaocial situations, cooperation emerges among self-istiete
resources, uneven economic development and (c) use of-ethpeople. The iterated PD game [16], [14] was proposed as a
religious identity based nationalism by political and g&dus model to capture this and it was shown that cooperation ohdee
elites. These factors are not independent of each other @mderges in iterated PD games where the number of iterations
can be thought of as factors that enhance the importanceaoé possibly infinite (for finite iterated PD games with the
ethno-religious identity in the population. Geographfeators number of iterations known to the players, defect should be
like territorial indivisibility and the spatial distribign of the the best strategy; this can be shown by backward induction
population has also been proposed as another reason far etising the NE solution of the single-shot PD game at the last
violence [3]. step).

Computational modeling for understanding/analyzingethn The PD game in graphs have also received attention in the
religious violence has received extensive attention 5], recent past. We will give a very brief discussion about the
[4], [6], [7], [13]. Although [5], [6], [7], [13] view civil vio- literature that is directly relevant to this work (for a more
lence as a result of pent-up grievances, they vary significanextensive review and discussion on evolutionary games on
in their details. [5], [6], [7] look at the conflict as a funati of graphs in general, see [17]). In this literature also, emecg
mass mobilization whereas [13] considers it as a function of cooperation has been demonstrated in social networks by
economic causes. However, all the models have the comnsmulation studies [18], [19], [20]. Santos et al. [19] preted
feature that they consider the agents to be distributed orsieulation studies showing the emergence of cooperation in
grid and interact with their neighbors in the grid graph.6h [ graphs of fixed topology for a range of values of the param-
the authors consider the interaction between the agenta asters in the payoff matrix. Their main goal was to study the
iterated game which they call as a PD game. However, thefifect of the variation of degree of the nodes on the evatutio
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of cooperation. Zimmermann at al. [20] presented simufatio PD game in fixed graphs with synchronized strategy update
results showing the evolution of cooperation in graphs witlk a repeated game where each iteration of the game proceeds
variable topology, where the dynamics of the network was the following two phases: (a) In the game playing phase
much slower than the dynamics of the strategies. In thisipapihe players play the PD game with all their neighbors with
the specific game model of PD games that we study is veayfixed strategy and compute their total payoff. (b) In the
similar to that in [19], [20]. One difference of our modelstrategy update phase, each player compares the payo#is of
from [20] is that we assume the network topology to be fixeits neighbors (including itself) and chooses the stratefgiyso

The main distinction of our model is that we consider twaeighbor with the highest payoff for the next iteration. ther
different types of agents form the nodes of the graph and thuerds, our strategy update rule imitate your best/wealthiest

the game-playing and strategy update neighborhood for theighbot

agents can be different. In this version of the game, the agents are not distinguished
by group labels, and the neighborhoods for game playing and
[1l. PRELIMINARIES strategy update are assumed to be same. As we shall discuss in

. . . ) ... the next section, in our model, we assigned agents to diftere
In this section we introduce the notations and deﬂmtmr&oups (so each agent will have a new property of group

that will be used in the remainder of the paper. label) and distinguish the game playing and strategy update
Undirected graph An undirected graph is an ordered pgjghhorhood of each agent based on its group label.
pair, G = (V, E), whereV = {v;,vs,...,v,} IS @ set ofn
nodes, and® C V x V is a set of edges. Two nodes and
v; are calledneighborsof each other if(v;, v;) € E. The set
N; = {v;|(vi,vj) € E} is the set ofv;’s neighbors, and\;| In this section, we present our agent-based model for
is defined as thelegreeof nodew;. DenoteN;" = A; U{v;}. conflict among different groups in multi-cultural socisti&Ve
Scale-free networkA scale-free network is a graph wheremnodel the whole multi-cultural population in a geographi-
the degree distribution of nodes follow a power law [8],,i.ecal region as a collection of agents. An agent represents a
Ny o d~7, whereN, is the number of nodes of degréeand collection of individuals. Since an individual interactstiw
~ is a constant called the power law degree exponent (typicaiew other individuals in a society, we model the collection
v € [2,3). of interacting population as a graph where the nodes are the
Prisoner's Dilemma Gameln its simplest form, the pris- agents and the edges denote interaction between the agents.
oner’s di|emma game is a Sing'e_shot two_p|ayer game Whép@ E.lssume that the pOpulation COI‘lSiSt.S of two differentathn
the players have two available strategies — cooperate (€}igious groups (i.e., there are two different types of esd
and defect (D). The payoff's of the players is given by th# the graph). The interaction between agents in two differe

IV. PROBLEM MODEL

following table groups is modeled as the prisoner’s dilemma game. In this
context, the strategy cooperate (C) implies the willingnes
c D the agent to compromise with the other group whereas the
Cloor | ai,b strategy defect (D) implies unwillingness to compromisghwi
D | bi,az | 61,09 the other group. Thus, the fraction of links between the two

where the index corresponds to the row player and the indeSfoups where both agents pldy can be used as a measure
2 to the column player. The entries in the payoff matrix of eacf t€nsion between the two groups.
player should satisfy; > o; > &; > a;,i = 1,2. The payoff's Network ConstructionAs stated in Section llI, for defining
of both players are usually assumed to be identical. In tHRe PD game on graphs we need to first define the graph on
paper, we assume, = o, = o, a; = as = a, 6, = 6 = 6. b which the game should be played. We use an undirected graph
represents the extent of an agent's playing defection,are. G = (V. E) to represent the agents of two groups and their
agent with higheb has more incentive to defect than an ageennectionsV' = {v;li = 1,...,n}. Let n; andn, be the
with lower b. For repeated PD games an additional constraiitmber of agents in the two groups, respectively with=
is 20 > a + b;,i = 1,2. We further follow the convention in 71 + n2. We constructz in two steps:
Nowak [14] and set, = 0, to reduce the number of parameters. 1) Construct the graph§; = (Vi, 1) andGs = (Va, E»)

PD Game in GraphsA PD game in a graph is a repeated for each group separately, whellé | = n; and|V;| =
game where the:-players form the nodes of the graph and ngo.
the game proceeds in two phases: (i) game playing phase (ii2) Construct the set of edgds; C 1, x V, such that each
strategy update phase. The parameters that define different agent in one group is connected to at least one agent
versions of PD games in graphs are: (a) topology of the in the other group. The edges are added by picking
graph (fixed or variable) (b) game playing and strategy updat two nodes from the two different groups uniformly at
neighborhood (c) strategy update rule (d) assumptions on random. Let the average number of edges connecting
synchronous or asynchronous strategy update. The ver§ion o an agent in one group to agents in the other group be
the PD game on graphs that is most relevant to this paper is k (a parameter that captures the degree of connectivity
defined below. between the two groups).



Thus, after the two steps of construction, we get the graphLet S(t) = [s1(t),. .., sn(t)] and P(t) = [p1(t), ..., pn(t)]
G = (V,E),withV =V;ul, andE = E1UE>UEs. Figure 1 the strategy vector and the aggregate payoff vector for all
illustrates the network structure 6f. By construction, in the agents at iteratior, respectively. The initial strategy vector
graph G, each agent has two types of neighborhood: (a)S(1) is randomly chosen so that the probability that one
neighborhood of agents of same typéS; = {v;|(v;,v;) € agent’s initial strategy is cooperation fs (which represents
E;, U Ey} and (b) neighborhood of agents of different typéhe initial fraction of cooperators). Figure 2 illustratdse

ND; = {vj|(vi,v;) € Es}. evolution of strategy vectaf(¢) and payoff vectorP(t).
N 7T TN Strategy S, 78,8, e
s/ Q N y Q . Vector
/ \ / \
/ \ \ / \ - \
/ O\,\ o
! O\O/ \} - : O/ \}
| | . | |
1 i . 1 i
\\\ / \Q /" \\\ ,O/ O, / Payoff I)1 P 5 P .........
AN / s AN / 3
@ N/ N \o N Vector
Se_ E; S~ Fig. 2. The evolution of5(t) and P(¢). The arrows represent the dependence
relationship of the variables. The value of the arrows’ idesibn is given by
G =V, E) G,=(V,, E) the values of the arrows’ origins.
1 1 2 2° 2
Fig. 1. The network structuré of the model G = (V1 UVa, EyUE>2UE3). Game playing and strategy update neighborhotd:our

On the _Ieft (or I’ight) oval is a sub-graph of netwofk; (or G2). Edges modely we chose our game p|ay|ng neighborhood for an

gzgngigtLr;%.nodes in the two ovals represény, the set of edges between agent as/\/’Di (i.e., agents in its neighborhood that are of
different type). Intuitively, this encodes the fact that aee

interested in inter-cultural disputes and not in disputéhin

LEIP]% culture. For the strategy update neighborhood we have

chosenV'S;. This encodes the assumption that an agent gives

more importance to the opinions of neighbors of its own type

update phase. We assume that the network structyris fixed dina th it t than th . f the oth
and the strategy update is synchronous. Each agent playsrﬁ%?r Ing the opposite type than the opinion o the othee _typ
for its own type. Mathematically, there is another posgipil

PD game with all agents of the other type in its neighborhog at the strategy update neighborhood for an agent can be all
i.e.,ND;isth layi ighborhood of h t.L SR ; .
.e., "D is the game playing neighborhood of each agen agents within its neighborhood, i.e\(S; U N'D;. However,

s;(t) denote the strategy of ageinat roundt, wheres;(¢) = 0 . . .
ilt) 9y g ilt) we have done some simulations showing that the results

impli ti ds;(t) = 1 implies defecti . ) . . o .
implies cooperationd) ands; (f) implies defection ) Il&tglned with the two choices are qualitatively very simila

We assume that at each iteration, each agent plays the sia : ;
strategy with all agents in its game playing neighborhoo .Iso see [21] for details). Therefore we do not consider the

The aggregate payoffy;(¢), of agenti in iterationt¢ can be second case any further in the paper.

computed by summing up the individual payoffs obtained from N our model of the PD game in graphs we have a sep-
playing with agents in\'D;. arate neighborhood for game playing and strategy update.

This is different from the conventional case where the game
pit) = (1 — s: (D)1 — 5:(1)) + bs; (1)(1 — s;(t playing and strategy update neighborhood is the same. We

() Z ( () #(®)) )¢ 5(0) make the distinction in the game playing and strategy update
neighborhood to encode the fact that there are two different
types of agents in the graph. We emphasize this difference

In the strategy update phase, each agemmitates the because the literature on PD games in graphs mostly talks

strategy of the agent with highest payoff at previous iterat about the_ emergence o_f cooperation, whereas we will show
from a setC; = C; U {v;} where(; is the strategy update that considering twq different types of agents lead to the
neighborhood. In this paper we choose the strategy upd§faergence of defection between the two groups. _
neighborhood of an agent to be the neighborhood containinglodel parametersThe PD game in graphs that we defined
agents of the same ethno-religious type, .= N'S; (we has a numb_er of parameters: (a) The parameters def_lmng the
will discuss another choice for this below). If there is morBaYoff matrixo,d,a,b, andb,. We have already mentioned
than one agent with the highest payoff, an agent randonifjat We choose = 0. We can also choose = 1 without
selects one of the agents and imitate its strategy. Thus @& 10Ss of generality. The main parameters of interesten th
strategy update for agentcan be written as: payoff matrix areb; andb,. They represent the payoff to an
agent of groupl (group2) when an agent in group (group
si(t) = s;(t—1) 1) compromises on its stand. According to the results in [9],
@) agents in smaller groups have more incentive to defect than
those in larger group. That i$, for agents in smaller group

Phases in each round of the gamis stated before, the

(iteration) consists of the game playing phase and theeglyat

Jjiv; END;
+ 3si(t)s; () 1)

wherej = arg max (pi(t — 1))
kec

i



is larger than for agents in larger group. So we distingish Figure 3 shows an example of oscillation with two agents in
values for the two group$;, b, and ifn; > no we haveb; < the middle switching their strategies forever (oscillatiwith

bs. We choose the value of the parameiethe payoff forD —  period 4). Agents in the first row belong to one group and
D pair, to be0.1. 6 does not change the results significantlpgents in the second row belong to the other group. The two
as long as it is much smaller than(increasing the value of agents in the middle column will alternate betwe@rand D

o will increase the fraction ofD — D links). (b) The ratio and their strategies will traverse all alternatives; 0), (D,D),

of population in the two groups,/n» is another parameter. (D, C) and (C, C). In Figure 3, the notatio or D means

(c) The initial fraction of cooperators in the PD game thahat the agent will switch strategy at next iteration; tradigt
roughly encodes the prevalent level of animosity between tdot-underlinedC or D means that the agent just switched
two groups (e.g., due to historical reasons or due to ocooere strategy at previous iteration; the ballor D means that the

of an external event). (d) The topology of the graphs and thgent's payoff has changed due to the fact that its neighgori
average number of edges from one group to another. This lagent from the other group has switched strategy. The four
parameter is an assumption that we make since we cansi@ites will repeat forevell

know the exact interaction patterns between individuakhe

population. In Section VI, we will present simulation resul D—C—C D—D—C
obtained by systematically varying these parameters. /|_ / /| /

Measure of Conflict PotentialThe measure of conflict D—D“—C D—D“—C
potential between two different groups should consider the Phase 1 Phase 2
interactions between agents in different groups, which can
be expressed as the strategy pairs for two neighboring sigent D—D—C D—C—C
belonging to different groups (in the steady state). So vee us /| / /| /
the fraction ofD — D links (two neighboring agents both play el T L c
defection) between two groups as a measure of the potential 7 =
of conflict between the two groups, which can be computed Phase 3 Phase 4
as follows:

Z(vi v;)EE; S S Fig. 3. Oscillation in our model with period.
Jaa = : ’| B (3)

Although we have shown above that there are cases where
V. ANALYSIS the strategy vectorS(t) do not reach a fixed point, there
are also cases when the strategy vector will reach a fixed
ﬁJoint. In fact, in our simulations we have observed that the
s?rategy vector reaches a fixed point in most cases. In denera
v?wether we will reach a fixed state depends on the initial
s

. . . . Strategy distribution and the structure of the graph. We can
gives the state evolution equations of the whole dynamlccai 9y grap

system. We will call the set of all possible states as theestat nstruct trivial examples of fixed states for the model by
M : P aé?tting identical the strategies of agents in the group @her

spactekof the sylstte\Ln. Smcileachl componte:nioé thel Sta}[f Ve&grstrategy update neighborhood is defined. For exampée, on
can taxe on only tWo possible vaues (184t) —vors ), the group of agents play’ while the other group of agents play
state space is discrete W.'th gard|nali’1’y. In this section, W€ Dorall agents play’ (or D). Itis easy to conclude that on a
will give partial characterization of the long term behavid complete graph, the steady state can only be trivial exanple

the state vectof(t) for the model as the iteration progresseso.f fixed states above. However, there can be many other non-

The first question one might ask for this dynamical system{s, .| fixed states on a general graph. Below we try to captur
whether the state vector will converge to a fixed state (odﬁxesome common features of them

point in the state space). Our main result here is that the sta Given a node, definel(i) asi's neighboring node whose

vectorS(t) whose components evolve according to equat'ons%rategyz' imitates. /(i) can be computed according to Equa-

may not converge to a fixed state, which means th? Systems, 2, and is time-varied until the system reaches a fixete sta
conflict measure in this model may fluctuate depending on t

network structure. ¥ a fixed state, if we keep each notland each edgg, (7))

_ i (imitation edgey and remove other edges @, we will get
Lemma 1:For the model of PD game in graphs defined i new graph

Section IV, ag — oo, the state vecto§(¢), may not converge
to a fixed point. G’ = (V,E') where E' = {(4,1(i))|i € V}
Proof: We will prove this lemma by constructing an example
of oscillation for the model in Section IV. At iteration the that represents imitation relation of agents in fixed st8ase
fact that the system has reached the oscillatory state ntleains we removed non-imitation edges @to form G’, G’ may not
the sequence of strategy vect¢t), ..., S(t+k—1)},k > 1 be a connected graph @& According to the strategy update
will repeat forever (wheré: is the period of the oscillation). rule, the imitation edges can not form any cycles.(@ocan

As discussed in Section 1V, the strategy vectgt) of all
the agents will evolve according to equation 2. We define t
state of each agent as its strategyand therefore the vector
S(t) is the state vector of the whole graph. Thus equation



be represented as a set of trees: V1. SIMULATION RESULTS

G' = Usi=1(s) Ti In this section, we present simulation results showing the

] o effect of changing the various parameters that define our
where T is a tree {mitation tree$ composed of root node moge|. As stated before, our measure of conflict is the facti
i imitating itself, all other nodes connecting tothrough ot p _ p links between the two groups. The parameters we
imitation edges in&’, and the imitation edges between them,,nsiger include: (i) the initial fraction of cooperatofs, (ii)
In'each imitation _tree, eac_h nerNlll have one parent node the number of nodes in the two groups, ns, (iii) the average
I(j). Al agents in each imitation tree will play the same&,,mber of edges from an agent in one group to the other group,
strategy and the payoff of any ancestor node must be gregtenng (iv) the payoffsi{, or by) to the agent playind when
than or equal to that of offspring nodes. So the imitatioesre j;5 opponent play€’.
can be classified as cooperative imitation tree or defectiverpe gefault values for the parameters in our simulation are:
imitation tree. o fo =05, n1 =ns =300, k=5, b = by = b= 1.5. When

Starting from an agentin the imitation tre€l;, we can trace \ye change the value of one parameter, other parameters have

the parent. node until we roegch the ;°9t ngdepi?rm achain yheir default values unless otherwise stated. The gratend
of agents:L(i) = {i = I°(i), (i), I°(2),...,I""'(i) = j} (3, used for the simulations are scale-free networks generated
Then we can conclude that there will not be edges crossifg sing the Barabasi-Albert algorithm [8]. The set of edges
each other between two chains derived from different inaitat E; between nodes i; and V, are generated randomly.
trees. o _ _ ~ However, we ensure that each nodelinis connected to at
_ Proposition 1: Considering two chains from different im-jeast one other node ifi, and the average number of edges
itation trees:L(i) with length p, and L(j) with Iebngt'h P2, petween the two groups is Each data point in the figures for
V0 < ap < ag <p1, 0< by < by < po, if {19(0),07(4)} €  fraction of final D — D links were generated using an average

B, {i=00),1" ()} ¢ E. o of 500 iterations on randomly generated graphs as described in
Proof: PIEOOT by contradiction. Supposg® (i), (j)} € E, section IV. In the simulation, we observed that after a tiets
{1e2(i), 1" ()} € E. time of 30 iterations, the strategy vector either converges to a

Since{l* (), 1"(j)} € E, we havepje.+1(;) > ppea ;) AlSO  fixed state or occasionally comes to an oscillation staté wit
according to the imitation rule, the payoff of any ancest@jmall magnitude and period. So we compute the fraction of
nodes must be no less than that of offspring nodes, so  final D— D links by averaging oves iterations after a transient
time of 30 iterations.

Figure 5 shows the effect of the fraction of initial coop-

From the equations above, we g&t.(;) > pp.+1(;). Since erators {.) on the final fraction ofD — D links for various
{192(3)), 1 ()} € E, 1**(5) will imitate [°2(i) instead of values ofb with the other parameters remaining constant. For

Doz (i) = Prer+1(i)s Piv2 (j) = Proa+1(y)

1"*+1(5), which contradicts the fact. (Even whem., = & givenb, as f. is increased, the final fraction ab — D
pii+1(;), according to the imitation rulei®z(i) has higher links between the two groups decrease (as expected). Haweve
priority to be imitated thari®+1(;).)m as the value ofb increases, even when the initial fraction
of cooperators is as high as9, our model still predicts a
L(i): i= lo(i) ll(l-) lz(i) 1G) I* (i) high fraction of finalD — D links (e.g., more thari.6, for

b = 1.5), implying that the model captures the potential of
conflict between two different groups. To verify that thiglise

cC— C (C v to the fact that we are considering two different groups in ou
model, we ran simulation on the same graphs where we do not
distinguish between the two types of agents (i.e., we sitaula
a conventional PD game). In those cases, we found (although
D—D—D.... we do not show it here) that the fraction of findl— D links

is quite small whenf. is high (as expected and reported in
L(j): j= 1°G) 1'(j) PG PG 1(j) the literature), which means cooperation will emerge there
: To investigate the influence of the number of nodes in
Fig. 4. When there is an edge I from 1% (4) to {*(j) between two chains the network on the evolution of conflict, we ran two sets of
there cannot be an edge betwdéiti) and ¥ (5). simulations by increasing (the number of nodes in each
group) from 100 to 1000, and increasing: (the number of
The characteristic of the steady state captured in Propomierage edges from an agent in one group to agents in the
tion 1 means that as iteration progresses, the network wither group) froml to 20, respectively. Figure 6 shows that
evolve to form some kind of tree structure of “organizationdifferentn do not influence the fraction of findd— D links for
based on the imitation relationship and the connectivitpiagn our model (it stays withir).78 to 0.79 asn varies from300 to
different trees should remain some kind of social hierarchy00). However, in Figure 7, we find that with increasing,
(tree levels) according to Proposition 1. the fraction of finalD — D links does increase wheh is



; ‘ cooperation encouraged agents to play defection instead of
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of initial fraction of cooperators of all agents for diffeteb from 1.1 to 1.9. 06
n =300,k = 5.
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sufficiently large k > 5). Sincek represents the connect|V|ty Fig. 8. The plot of fraction ofD — D links between two groups as function
of the two groups, we can see that in the conflict model, tR€s. » = 300, f. — 0.5, k = 5.

more interactions between two groups, the more conflictg the

will have. In the simulation above, we assume that both groups have
the same sizei; = no. Next we remove the assumption to
0815 : : ‘ ‘ ‘ ‘ ‘ ‘ consider the effect of having two group with different sizes

n1 # na. We fixed the size of the larger groun = 500, and
mcrease’ﬂ the relative size of the smaller group to the larger
one, fromO 1 to 0.9. Meanwhile according to the results in
[9], smaller groups are more defective than larger group, so
we distinguishb values for the two group$; < b,. Figure 9
shows the result when we change the relative size of the two
groups and values for them. From the figure, we can find
that the conflict will increase when the relative size of the t
groups decrease, e.g., the conflict is more drastic (théidrac
07 200 00 400 Theiﬁ‘)m berff“’n%des 700 800 900 1000 of D — D links is almost 1) between a larger group and a
smaller one with% size of the former.
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Figure 8 shows that when increases froml.1 to 1.9, VIl. Discussion
the fraction of final D — D links will increase. That is In the very simple model that we developed for studying
becausé represents the incentive of agents to play defectiooonflict in multi-cultural societies, we considered onlyeth
With higher b, the higher payoff values of defection versugffects of ethno-religious identity and spatial distribat of



the population. There are other important factors like (&@ecause the smaller groups have more incentive to defett tha

effect of leaders, (b) migration of population, and (c) wrev the larger groups [9].

distribution of natural resources, that should also be idensd There are various directions for extending this work. Cur-

for making the model more realistic. We state below theently we are working on exhaustive testing of our model in

possible extensions (or variations) of our model to takeehesimulation. A natural extension is to extend the model and

factors into account. analysis to more than two groups of different cultures. Vée al
Since we model the population of each type as a graph, wian to test our model on real world data (from conflicts in

can use the degree of the nodes of the graph as a measurgéugioslavia and Sudan) to see how well the fractioDof D

its social influence. Consequently, high degree nodes canlinés correlates with the actual occurrence of violentdieeits.

thought of as the agents with high influence on the population

i.e., the leader nodes. Thus by multiplying the payoff'stad t

agents at each stage by a factor proportional to the degree ofhis research was funded by ONR MURI grant

their nodes, we can ensure that the strategies of the leati§00140811186. We thank the reviewers of SocialCom 2009

nodes have high payoffs. Consequently, during the stratef§y valuable comments.
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