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Abstract—In this paper, we present and analyze a multi-agent
game theoretic model of conflicts in multi-cultural societies. Two
salient factors responsible for violence in multi-cultural societies
(that are identified in the social sciences literature) are (a) ethno-
religious identity of the population and (b) spatial structure
(distribution) of the population. It has also been experimentally
shown by Lumsden that multi-cultural conflict can be viewed as
a Prisoner’s Dilemma (PD) game. Using the above observations,
we model the multi-cultural conflict problem as a variant of
the repeated PD game in graphs. The graph consists of labeled
nodes corresponding to the different ethno-religious types and
the topology of the graph encode the spatial distribution and
interaction of the population. The agents play the game with
neighbors of their opponent type and they update their strategies
based on neighbors of their same type. This strategy update
dynamics with different update neighborhood from game playing
neighborhood distinguishes our model from conventional models
of PD games in graphs. We present simulation results showing
the effect of various parameters of our model to the propensity of
conflict in a population consisting of two ethno-religious groups.

I. I NTRODUCTION

Ethno-religious conflict in multi-cultural societies has been
one of the major causes of loss of life and property in recent
history (e.g., violence in Yugoslavia [1], Sudan [2]). There has
been substantial empirical research in sociology and conflict
resolution literature on analyzing the causes of such violence
(see [3] and references therein). Apart from the ethno-religious
identity, other social and economic factors identified in the
literature in violence prone areas are economic grievances,
competition for scarce natural resources, historical precedents,
territorial claims, influence of political/religious elites, and
international influences. The spatial structure of the different
population groups is also correlated to the occurrence of
violence [3], [4].

More recently, there has been focus on computational study
of civil conflict in societies (see [5], [6], [7] and references
therein), some of which have also studied societies with mul-
tiple ethno-religious groups [4], [6]. Although the proposed
computational models vary in detail, the common features of
existing agent-based computational models are: (a) the agents
are assumed to be distributed on a grid and the interaction
between agents are restricted to a neighborhood around their
position (usually their Moore-neighborhood, i.e., nearest 8

neighbors) and (b) the interaction between agents is non-
adaptive (except in [6]), e.g., agents will die with a certain
probability if they are in the neighborhood of opponent agents
or they will migrate towards agents of only their type. Since
it is well established that the structure of a social network
of interacting population is not like a grid [8], we model
the interaction topology among the agents as a graph. More-
over, we model the interaction between agents as a repeated
prisoner’s dilemma (PD) game where the agents update their
strategies. Thus, in this paper, we present a simple multi-agent
game-theoretic model for studying conflict situations in multi-
cultural societies.

The primary cause of conflict in multi-cultural societies is
the fear of the minority population about loss (or suppres-
sion) of their ethno-religious identity to the majority group.
Lumsden demonstrated this through a series of experiments in
the context of the Cyprus conflict between Greek Cypriots and
Turkish Cypriots [9]. Both the Greek Cypriots and the Turkish
Cypriots gave higher value to maintaining their position on
right to self-determination(which is directly related to the
importance the groups have for their own ethno-religious
identity) than to compromise and modify their position even
if the former meant war in the long run (that is detrimental to
both) and the latter meant peace (that is beneficial to both).In
other words, the payoff matrix of the conflict viewed as a2×2
matrix game had the structure of the prisoner’s dilemma (PD)
game. In this paper, we use this insight of Lumsden combined
with the ethno-religious identity and the spatial structure of
the population to form a multi-agent game-theoretic model
for studying conflict in multi-cultural societies.

We model the problem as a PD game on graphs where the
nodes of the graph are the agents and the edges between
the agents represent interaction between them. Each agent
represents a group of people (e.g., a household or a family).
The graph topology encodes the spatial distribution of the
population and the interaction between the different groups of
the population is abstracted as the PD game. The nodes in the
graph have different labels denoting their ethno-religious iden-
tity. The agents play the game with members of their opponent
groups and they update their strategies based on the members
of their own group. We note that the different neighborhoods
we use for an agent for game playing and strategy updating is



a departure from the standard model of PD games on graphs
(where the game playing and strategy updating neighborhoods
are assumed to be the same). Assuming that there are two
different ethno-religious types in the population, we present
simulation studies (on synthetic data) showing the effect of
our model parameter variations.

Contributions: The main contributions of our paper are:
(1) we introduce a simple and novel game theoretic model
for studying ethno-religious conflict, and (2) we present sim-
ulation studies showing the effect of various parameters of
our model to a measure of the potential of conflict (that is
defined by Equation 3). Since the model of the PD games in
graphs that we introduced is new, we also present theoretical
results that (partially) characterize the long term strategy
update dynamics of our new PD game in graphs model. In
particular, we prove that the strategy of an agent may not
reach a fixed point by showing counter-examples of graphs
where the strategies of the agents oscillate.

This paper is organized as follows: In Section II, we present
a brief overview of the literature related to conflict modeling
and PD games in graphs. In Section III, we present the formal
definition of PD games in graphs and other definitions used
in the paper. In Section IV, we present in detail our model for
multi-cultural conflict modeling based on PD game in graphs.
Thereafter, in Section VI, we present simulation results. In
Section VII we present a discussion of some limitations of
our model and indicate ways to overcome them. Finally, in
Section VIII, we provide our conclusions and outline problems
to be addressed in the future.

II. RELATED WORK

There has been a variety of social and economic causes
put forward for ethnic conflicts based on empirical fact-based
research [3], [10], [11]. These causes can be divided into
three generic categories [3], [12] (a) non-material causeslike
ethno-religious identity, culture, history of violence, mutual
fear (b) material causes like uneven distribution of natural
resources, uneven economic development and (c) use of ethno-
religious identity based nationalism by political and religious
elites. These factors are not independent of each other and
can be thought of as factors that enhance the importance of
ethno-religious identity in the population. Geographicalfactors
like territorial indivisibility and the spatial distribution of the
population has also been proposed as another reason for ethnic
violence [3].

Computational modeling for understanding/analyzing ethno-
religious violence has received extensive attention recently [5],
[4], [6], [7], [13]. Although [5], [6], [7], [13] view civil vio-
lence as a result of pent-up grievances, they vary significantly
in their details. [5], [6], [7] look at the conflict as a function of
mass mobilization whereas [13] considers it as a function of
economic causes. However, all the models have the common
feature that they consider the agents to be distributed on a
grid and interact with their neighbors in the grid graph. In [6],
the authors consider the interaction between the agents as an
iterated game which they call as a PD game. However, their

definition does not correspond to the standard definition of a
PD game [14].

To demonstrate the importance of spatial structure of the
population in ethnic conflicts, Lim et al. [4] proposed a
mathematical model based on the dynamics of type separation.
Type separation models were originally proposed to explain
pattern formation in physical or chemical phase separation
processes and has been used in the social segregation context
in [15]. Lim at al. [4] assumed that the population consists
of different types and occupy the nodes of a2D grid with
some empty nodes. The like agents move towards each other
whereas unlike agents move away from each other. This leads
to formation of patches of different types and a patch of one
type surrounded by agents of another type is predicted as a
site of violence. Thus, they demonstrate the importance of the
spatial structure of the population for ethno-religious violence
modeling. However, it is not apparent whether it is possibleto
extend this model to take into consideration other factors like
effect of leaders or uneven distribution of natural resources.

Lumsden conducted experiments to elicit the structure of
the Cyprus conflict in game-theoretic terms [9]. He concluded
that the essential factors of the conflict can be captured as a
two-party, two-choice game and showed that the payoff matrix
of the game has the structure of the prisoner’s dilemma game.
The Prisoner’s Dilemma game is a well known model for many
social choice situations. In this two-player game, each player
has two actions, cooperate (C) or defect (D). The payoff matrix
for the game has the following characteristics: (a) the highest
payoff is obtained by the defector against the cooperator, (b)
the total payoff for mutual cooperation is the highest and (c)
the defector’s extra income (relative to its income for mutual
cooperation) is less than the loss of the cooperator (please
see Section III for a formal statement). In a single shot PD
game, each player should choose to defect and this is the Nash
equilibrium. However, the total payoff for both players in this
case is lesser than the case when both play cooperate. In many
social situations, cooperation emerges among self-interested
people. The iterated PD game [16], [14] was proposed as a
model to capture this and it was shown that cooperation indeed
emerges in iterated PD games where the number of iterations
are possibly infinite (for finite iterated PD games with the
number of iterations known to the players, defect should be
the best strategy; this can be shown by backward induction
using the NE solution of the single-shot PD game at the last
step).

The PD game in graphs have also received attention in the
recent past. We will give a very brief discussion about the
literature that is directly relevant to this work (for a more
extensive review and discussion on evolutionary games on
graphs in general, see [17]). In this literature also, emergence
of cooperation has been demonstrated in social networks by
simulation studies [18], [19], [20]. Santos et al. [19] presented
simulation studies showing the emergence of cooperation in
graphs of fixed topology for a range of values of the param-
eters in the payoff matrix. Their main goal was to study the
effect of the variation of degree of the nodes on the evolution



of cooperation. Zimmermann at al. [20] presented simulation
results showing the evolution of cooperation in graphs with
variable topology, where the dynamics of the network was
much slower than the dynamics of the strategies. In this paper,
the specific game model of PD games that we study is very
similar to that in [19], [20]. One difference of our model
from [20] is that we assume the network topology to be fixed.
The main distinction of our model is that we consider two
different types of agents form the nodes of the graph and thus
the game-playing and strategy update neighborhood for the
agents can be different.

III. PRELIMINARIES

In this section we introduce the notations and definitions
that will be used in the remainder of the paper.

Undirected graph: An undirected graphG is an ordered
pair, G = (V, E), whereV = {v1, v2, . . . , vn} is a set ofn
nodes, andE ⊆ V × V is a set of edges. Two nodesvi and
vj are calledneighborsof each other if(vi, vj) ∈ E. The set
Ni = {vj |(vi, vj) ∈ E} is the set ofvi’s neighbors, and|Ni|
is defined as thedegreeof nodevi. DenoteN+

i = Ni ∪ {vi}.
Scale-free network: A scale-free network is a graph where

the degree distribution of nodes follow a power law [8], i.e.,
Nd ∝ d−γ , whereNd is the number of nodes of degreed and
γ is a constant called the power law degree exponent (typically
γ ∈ [2, 3]).

Prisoner’s Dilemma Game: In its simplest form, the pris-
oner’s dilemma game is a single-shot two-player game where
the players have two available strategies – cooperate (C)
and defect (D). The payoff’s of the players is given by the
following table

C D
C σ1, σ2 a1, b2

D b1, a2 δ1, δ2

where the index1 corresponds to the row player and the index
2 to the column player. The entries in the payoff matrix of each
player should satisfybi > σi > δi > ai, i = 1, 2. The payoff’s
of both players are usually assumed to be identical. In this
paper, we assumeσ1 = σ2 = σ, a1 = a2 = a, δ1 = δ2 = δ. b
represents the extent of an agent’s playing defection, i.e., an
agent with higherb has more incentive to defect than an agent
with lower b. For repeated PD games an additional constraint
is 2σ > a + bi, i = 1, 2. We further follow the convention in
Nowak [14] and seta = 0, to reduce the number of parameters.

PD Game in Graphs: A PD game in a graph is a repeated
game where then-players form the nodes of the graph and
the game proceeds in two phases: (i) game playing phase (ii)
strategy update phase. The parameters that define different
versions of PD games in graphs are: (a) topology of the
graph (fixed or variable) (b) game playing and strategy update
neighborhood (c) strategy update rule (d) assumptions on
synchronous or asynchronous strategy update. The version of
the PD game on graphs that is most relevant to this paper is
defined below.

PD game in fixed graphs with synchronized strategy update
is a repeated game where each iteration of the game proceeds
in the following two phases: (a) In the game playing phase
the players play the PD game with all their neighbors with
a fixed strategy and compute their total payoff. (b) In the
strategy update phase, each player compares the payoff’s ofall
its neighbors (including itself) and chooses the strategy of its
neighbor with the highest payoff for the next iteration. In other
words, our strategy update rule is:imitate your best/wealthiest
neighbor.

In this version of the game, the agents are not distinguished
by group labels, and the neighborhoods for game playing and
strategy update are assumed to be same. As we shall discuss in
the next section, in our model, we assigned agents to different
groups (so each agent will have a new property of group
label) and distinguish the game playing and strategy update
neighborhood of each agent based on its group label.

IV. PROBLEM MODEL

In this section, we present our agent-based model for
conflict among different groups in multi-cultural societies. We
model the whole multi-cultural population in a geographi-
cal region as a collection of agents. An agent represents a
collection of individuals. Since an individual interacts with
few other individuals in a society, we model the collection
of interacting population as a graph where the nodes are the
agents and the edges denote interaction between the agents.
We assume that the population consists of two different ethno-
religious groups (i.e., there are two different types of nodes
in the graph). The interaction between agents in two different
groups is modeled as the prisoner’s dilemma game. In this
context, the strategy cooperate (C) implies the willingness of
the agent to compromise with the other group whereas the
strategy defect (D) implies unwillingness to compromise with
the other group. Thus, the fraction of links between the two
groups where both agents playD can be used as a measure
of tension between the two groups.

Network Construction:As stated in Section III, for defining
the PD game on graphs we need to first define the graph on
which the game should be played. We use an undirected graph
G = (V, E) to represent the agents of two groups and their
connections.V = {vi|i = 1, . . . , n}. Let n1 and n2 be the
number of agents in the two groups, respectively withn =
n1 + n2. We constructG in two steps:

1) Construct the graphsG1 = (V1, E1) andG2 = (V2, E2)
for each group separately, where|V1| = n1 and |V2| =
n2.

2) Construct the set of edgesE3 ⊆ V1 ×V2 such that each
agent in one group is connected to at least one agent
in the other group. The edges are added by picking
two nodes from the two different groups uniformly at
random. Let the average number of edges connecting
an agent in one group to agents in the other group be
k (a parameter that captures the degree of connectivity
between the two groups).



Thus, after the two steps of construction, we get the graph
G = (V, E), with V = V1∪V2 andE = E1∪E2∪E3. Figure 1
illustrates the network structure ofG. By construction, in the
graph G, each agenti has two types of neighborhood: (a)
neighborhood of agents of same typeNSi = {vj|(vi, vj) ∈
E1 ∪ E2} and (b) neighborhood of agents of different type
NDi = {vj |(vi, vj) ∈ E3}.

1 1 1( , )G V E 2 2 2( , )G V E

3E

…

Fig. 1. The network structureG of the model.G = (V1∪V2, E1∪E2∪E3).
On the left (or right) oval is a sub-graph of networkG1 (or G2). Edges
connecting nodes in the two ovals representE3, the set of edges between
two groups.

Phases in each round of the game:As stated before, the
PD game on graphs proceeds in rounds where each round
(iteration) consists of the game playing phase and the strategy
update phase. We assume that the network structure,G, is fixed
and the strategy update is synchronous. Each agent plays the
PD game with all agents of the other type in its neighborhood,
i.e.,NDi is the game playing neighborhood of each agent. Let
si(t) denote the strategy of agenti at roundt, wheresi(t) = 0
implies cooperation (C) andsi(t) = 1 implies defection (D).
We assume that at each iteration, each agent plays the same
strategy with all agents in its game playing neighborhood.
The aggregate payoff,pi(t), of agenti in iteration t can be
computed by summing up the individual payoffs obtained from
playing with agents inNDi.

pi(t) =
∑

j:vj∈NDi

σ(1 − si(t))(1 − sj(t)) + bsi(t)(1 − sj(t))

+ δsi(t)sj(t) (1)

In the strategy update phase, each agenti imitates the
strategy of the agent with highest payoff at previous iteration
from a setC+

i = Ci ∪ {vi} whereCi is the strategy update
neighborhood. In this paper we choose the strategy update
neighborhood of an agent to be the neighborhood containing
agents of the same ethno-religious type, i.e.,Ci = NSi (we
will discuss another choice for this below). If there is more
than one agent with the highest payoff, an agent randomly
selects one of the agents and imitate its strategy. Thus the
strategy update for agenti can be written as:

si(t) = sj(t − 1)

wherej = arg max
k∈C

+

i

(pk(t − 1)) (2)

Let S(t) = [s1(t), . . . , sn(t)] andP (t) = [p1(t), . . . , pn(t)]
the strategy vector and the aggregate payoff vector for alln
agents at iterationt, respectively. The initial strategy vector
S(1) is randomly chosen so that the probability that one
agent’s initial strategy is cooperation isfc (which represents
the initial fraction of cooperators). Figure 2 illustratesthe
evolution of strategy vectorS(t) and payoff vectorP (t).

             

1P 2P
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Fig. 2. The evolution ofS(t) andP (t). The arrows represent the dependence
relationship of the variables. The value of the arrows’ destination is given by
the values of the arrows’ origins.

Game playing and strategy update neighborhood:In our
model, we chose our game playing neighborhood for an
agent asNDi (i.e., agents in its neighborhood that are of
different type). Intuitively, this encodes the fact that weare
interested in inter-cultural disputes and not in disputes within
the culture. For the strategy update neighborhood we have
chosenNSi. This encodes the assumption that an agent gives
more importance to the opinions of neighbors of its own type
regarding the opposite type than the opinion of the other type
for its own type. Mathematically, there is another possibility
that the strategy update neighborhood for an agent can be all
agents within its neighborhood, i.e.,NSi ∪ NDi. However,
we have done some simulations showing that the results
obtained with the two choices are qualitatively very similar
(also see [21] for details). Therefore we do not consider the
second case any further in the paper.

In our model of the PD game in graphs we have a sep-
arate neighborhood for game playing and strategy update.
This is different from the conventional case where the game
playing and strategy update neighborhood is the same. We
make the distinction in the game playing and strategy update
neighborhood to encode the fact that there are two different
types of agents in the graph. We emphasize this difference
because the literature on PD games in graphs mostly talks
about the emergence of cooperation, whereas we will show
that considering two different types of agents lead to the
emergence of defection between the two groups.

Model parameters:The PD game in graphs that we defined
has a number of parameters: (a) The parameters defining the
payoff matrix σ, δ, a, b1 and b2. We have already mentioned
that we choosea = 0. We can also chooseσ = 1 without
any loss of generality. The main parameters of interest in the
payoff matrix areb1 and b2. They represent the payoff to an
agent of group1 (group2) when an agent in group2 (group
1) compromises on its stand. According to the results in [9],
agents in smaller groups have more incentive to defect than
those in larger group. That is,b for agents in smaller group



is larger than for agents in larger group. So we distinguishb
values for the two groups:b1, b2 and if n1 > n2 we haveb1 <
b2. We choose the value of the parameterδ, the payoff forD−
D pair, to be0.1. δ does not change the results significantly
as long as it is much smaller thanσ (increasing the value of
δ will increase the fraction ofD − D links). (b) The ratio
of population in the two groupsn1/n2 is another parameter.
(c) The initial fraction of cooperators in the PD game that
roughly encodes the prevalent level of animosity between the
two groups (e.g., due to historical reasons or due to occurrence
of an external event). (d) The topology of the graphs and the
average number of edges from one group to another. This last
parameter is an assumption that we make since we cannot
know the exact interaction patterns between individuals inthe
population. In Section VI, we will present simulation results
obtained by systematically varying these parameters.

Measure of Conflict Potential:The measure of conflict
potential between two different groups should consider the
interactions between agents in different groups, which can
be expressed as the strategy pairs for two neighboring agents
belonging to different groups (in the steady state). So we use
the fraction ofD−D links (two neighboring agents both play
defection) between two groups as a measure of the potential
of conflict between the two groups, which can be computed
as follows:

fdd =

∑
(vi,vj)∈E3

si · sj

|E3|
(3)

V. A NALYSIS

As discussed in Section IV, the strategy vectorS(t) of all
the agents will evolve according to equation 2. We define the
state of each agent as its strategysi and therefore the vector
S(t) is the state vector of the whole graph. Thus equation 2
gives the state evolution equations of the whole dynamical
system. We will call the set of all possible states as the state
space of the system. Since each component of the state vector
can take on only two possible values (i.e.,si(t) = 0 or 1 ), the
state space is discrete with cardinality2n. In this section, we
will give partial characterization of the long term behavior of
the state vectorS(t) for the model as the iteration progresses.

The first question one might ask for this dynamical system is
whether the state vector will converge to a fixed state (or fixed
point in the state space). Our main result here is that the state
vectorS(t) whose components evolve according to equation 2
may not converge to a fixed state, which means the system’s
conflict measure in this model may fluctuate depending on the
network structure.

Lemma 1:For the model of PD game in graphs defined in
Section IV, ast → ∞, the state vectorS(t), may not converge
to a fixed point.
Proof: We will prove this lemma by constructing an example
of oscillation for the model in Section IV. At iterationt, the
fact that the system has reached the oscillatory state meansthat
the sequence of strategy vectors{S(t), . . . , S(t+k−1)}, k > 1
will repeat forever (wherek is the period of the oscillation).

Figure 3 shows an example of oscillation with two agents in
the middle switching their strategies forever (oscillation with
period 4). Agents in the first row belong to one group and
agents in the second row belong to the other group. The two
agents in the middle column will alternate betweenC andD
and their strategies will traverse all alternatives: (C,D), (D,D),
(D, C) and (C, C). In Figure 3, the notationC or D means
that the agent will switch strategy at next iteration; the italic
dot-underlinedC or D means that the agent just switched
strategy at previous iteration; the boldC or D means that the
agent’s payoff has changed due to the fact that its neighboring
agent from the other group has switched strategy. The four
states will repeat forever.�

Phase  1 Phase  2 

Phase  3 Phase  4 

D D C

D C C

D D C

D D C

D C C

D C C

D C C

D D C

Fig. 3. Oscillation in our model with period4.

Although we have shown above that there are cases where
the strategy vectorS(t) do not reach a fixed point, there
are also cases when the strategy vector will reach a fixed
point. In fact, in our simulations we have observed that the
strategy vector reaches a fixed point in most cases. In general,
whether we will reach a fixed state depends on the initial
strategy distribution and the structure of the graph. We can
construct trivial examples of fixed states for the model by
setting identical the strategies of agents in the group where
the strategy update neighborhood is defined. For example, one
group of agents playC while the other group of agents play
D or all agents playC (or D). It is easy to conclude that on a
complete graph, the steady state can only be trivial examples
of fixed states above. However, there can be many other non-
trivial fixed states on a general graph. Below we try to capture
some common features of them.

Given a nodei, definel(i) as i’s neighboring node whose
strategyi imitates.l(i) can be computed according to Equa-
tion 2, and is time-varied until the system reaches a fixed state.
At a fixed state, if we keep each nodei and each edge(i, l(i))
(imitation edges), and remove other edges inG, we will get
a new graph

G′ = (V, E′) whereE′ = {(i, l(i))|i ∈ V }

that represents imitation relation of agents in fixed states. Since
we removed non-imitation edges inG to form G′, G′ may not
be a connected graph asG. According to the strategy update
rule, the imitation edges can not form any cycles. SoG′ can



be represented as a set of trees:

G′ = ∪i:i=l(i)Ti

where Ti is a tree (imitation trees) composed of root node
i imitating itself, all other nodes connecting toi through
imitation edges inE′, and the imitation edges between them.
In each imitation tree, each nodej will have one parent node
l(j). All agents in each imitation tree will play the same
strategy and the payoff of any ancestor node must be greater
than or equal to that of offspring nodes. So the imitation trees
can be classified as cooperative imitation tree or defective
imitation tree.

Starting from an agenti in the imitation treeTj , we can trace
the parent node until we reach the root nodej to form a chain
of agents:L(i) = {i = l0(i), l(i), l2(i), . . . , lp−1(i) = j}.
Then we can conclude that there will not be edges crossing
each other between two chains derived from different imitation
trees.

Proposition 1: Considering two chains from different im-
itation trees:L(i) with length p1 and L(j) with length p2,
∀0 ≤ a1 < a2 ≤ p1, 0 ≤ b1 < b2 ≤ p2, if {la1(i), lb2(j)} ∈
E, {la2(i), lb1(j)} /∈ E.
Proof: Proof by contradiction. Suppose{la1(i), lb2(j)} ∈ E,
{la2(i), lb1(j)} ∈ E.

Since{la1(i), lb2(j)} ∈ E, we havepla1+1(i) ≥ plb2 (j) Also
according to the imitation rule, the payoff of any ancestor
nodes must be no less than that of offspring nodes, so

pla2 (i) ≥ pla1+1(i), plb2 (j) ≥ plb1+1(j)

From the equations above, we getpla2 (i) ≥ plb1+1(j). Since
{la2(i)), lb1(j)} ∈ E, lb1(j) will imitate la2(i) instead of
lb1+1(j), which contradicts the fact. (Even whenpla2 (i) =
plb1+1(j), according to the imitation rule,la2(i) has higher
priority to be imitated thanlb1+1(j).)�
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Fig. 4. When there is an edge inE from la(i) to lb(j) between two chains
there cannot be an edge betweenlx(i) and ly(j).

The characteristic of the steady state captured in Proposi-
tion 1 means that as iteration progresses, the network will
evolve to form some kind of tree structure of “organization”
based on the imitation relationship and the connectivity among
different trees should remain some kind of social hierarchy
(tree levels) according to Proposition 1.

VI. SIMULATION RESULTS

In this section, we present simulation results showing the
effect of changing the various parameters that define our
model. As stated before, our measure of conflict is the fraction
of D − D links between the two groups. The parameters we
consider include: (i) the initial fraction of cooperators,fc, (ii)
the number of nodes in the two groups,n1, n2, (iii) the average
number of edges from an agent in one group to the other group,
k, and (iv) the payoffs (b1 or b2) to the agent playingD when
its opponent playsC.

The default values for the parameters in our simulation are:
fc = 0.5, n1 = n2 = 300, k = 5, b1 = b2 = b = 1.5. When
we change the value of one parameter, other parameters have
their default values unless otherwise stated. The graphsG1 and
G2 used for the simulations are scale-free networks generated
by using the Barabasi-Albert algorithm [8]. The set of edges
E3 between nodes inV1 and V2 are generated randomly.
However, we ensure that each node inV1 is connected to at
least one other node inV2 and the average number of edges
between the two groups isk. Each data point in the figures for
fraction of finalD−D links were generated using an average
of 500 iterations on randomly generated graphs as described in
Section IV. In the simulation, we observed that after a transient
time of 30 iterations, the strategy vector either converges to a
fixed state or occasionally comes to an oscillation state with
small magnitude and period. So we compute the fraction of
final D−D links by averaging over5 iterations after a transient
time of 30 iterations.

Figure 5 shows the effect of the fraction of initial coop-
erators (fc) on the final fraction ofD − D links for various
values ofb with the other parameters remaining constant. For
a given b, as fc is increased, the final fraction ofD − D
links between the two groups decrease (as expected). However,
as the value ofb increases, even when the initial fraction
of cooperators is as high as0.9, our model still predicts a
high fraction of finalD − D links (e.g., more than0.6, for
b = 1.5), implying that the model captures the potential of
conflict between two different groups. To verify that this isdue
to the fact that we are considering two different groups in our
model, we ran simulation on the same graphs where we do not
distinguish between the two types of agents (i.e., we simulate
a conventional PD game). In those cases, we found (although
we do not show it here) that the fraction of finalD−D links
is quite small whenfc is high (as expected and reported in
the literature), which means cooperation will emerge there.

To investigate the influence of the number of nodes in
the network on the evolution of conflict, we ran two sets of
simulations by increasingn (the number of nodes in each
group) from100 to 1000, and increasingk (the number of
average edges from an agent in one group to agents in the
other group) from1 to 20, respectively. Figure 6 shows that
differentn do not influence the fraction of finalD−D links for
our model (it stays within0.78 to 0.79 asn varies from300 to
1000). However, in Figure 7, we find that withk increasing,
the fraction of finalD − D links does increase whenk is
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Fig. 5. The plot of fraction ofD−D links between two groups as function
of initial fraction of cooperators of all agents for different b from 1.1 to 1.9.
n = 300, k = 5.

sufficiently large (k ≥ 5). Sincek represents the connectivity
of the two groups, we can see that in the conflict model, the
more interactions between two groups, the more conflicts they
will have.
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Fig. 6. The plot of fraction of d-d links between two groups asfunction of
the number of nodes in each group.fc = 0.5, k = 5, b = 1.5.
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Fig. 7. The plot of fraction ofD−D links between two groups as function
of k. n = 300, fc = 0.5, b = 1.5.

Figure 8 shows that whenb increases from1.1 to 1.9,
the fraction of final D − D links will increase. That is
becauseb represents the incentive of agents to play defection.
With higher b, the higher payoff values of defection versus

cooperation encouraged agents to play defection instead of
cooperation.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

 The defect−cooperate payoff value for the defector 

 F
ra

ct
io

n 
of

 d
−

d 
lin

ks
 b

et
w

ee
n 

2 
gr

ou
ps

 

 

Fig. 8. The plot of fraction ofD−D links between two groups as function
of b. n = 300, fc = 0.5, k = 5.

In the simulation above, we assume that both groups have
the same sizen1 = n2. Next we remove the assumption to
consider the effect of having two group with different sizes
n1 6= n2. We fixed the size of the larger groupn1 = 500, and
increasen2

n1
, the relative size of the smaller group to the larger

one, from0.1 to 0.9. Meanwhile according to the results in
[9], smaller groups are more defective than larger group, so
we distinguishb values for the two groups:b1 < b2. Figure 9
shows the result when we change the relative size of the two
groups andb values for them. From the figure, we can find
that the conflict will increase when the relative size of the two
groups decrease, e.g., the conflict is more drastic (the fraction
of D − D links is almost 1) between a larger group and a
smaller one with 1

10 size of the former.
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Fig. 9. The plot of fraction ofD−D links between two groups as function
of n2

n1
corresponding tob1 = 1.1 and b2 increased from1.1 to 1.7. fc =

0.5, k = 5.

VII. D ISCUSSION

In the very simple model that we developed for studying
conflict in multi-cultural societies, we considered only the
effects of ethno-religious identity and spatial distribution of



the population. There are other important factors like (a)
effect of leaders, (b) migration of population, and (c) uneven
distribution of natural resources, that should also be considered
for making the model more realistic. We state below the
possible extensions (or variations) of our model to take these
factors into account.

Since we model the population of each type as a graph, we
can use the degree of the nodes of the graph as a measure of
its social influence. Consequently, high degree nodes can be
thought of as the agents with high influence on the population,
i.e., the leader nodes. Thus by multiplying the payoff’s of the
agents at each stage by a factor proportional to the degree of
their nodes, we can ensure that the strategies of the leader
nodes have high payoffs. Consequently, during the strategy
update phase, the leaders will have more significant effect on
the strategies of the whole population compared to low degree
nodes. In other words, the willingness of the leaders to com-
promise or not will play a significant role in the potential of
conflict between the two groups. The migration of population
can be taken into consideration by using a variable topology
graph instead of a fixed topology graph. The migration of a
group of population would correspond to the breaking of some
existing edges and adding new edges corresponding to the new
spatial distribution. The effect of migration on an existing state
of potential conflict in the society can thus be studied. The
uneven distribution of resources can be taken into account by
using a value ofb, the incentive to defect as a function of
the space. For example, minority agents at places with uneven
distribution of natural resources may have a higher value of
b than at places where such inequity do not exist. We are
currently working on adding these features to our model.

VIII. C ONCLUSION

In this paper we developed and analyzed a model for
studying conflict in multi-cultural societies that is basedon the
prisoner’s dilemma games in graphs. Our model captures two
essential causes of multi-cultural conflict (a) ethno-religious
identity of the different groups and (b) spatial distribution of
the population. The prisoner’s dilemma game in graphs usually
encourages the evolution of cooperation but we show that
dividing the population into two groups lead to an increase
in the fraction ofD−D links in the two groups (which is our
measure of the tendency of conflict).

We evaluated our model by running several sets of simula-
tions showing the effect of different parameters defining our
model. We showed that the fraction ofD-D pairs is relatively
insensitive to the number of nodes in the two groups, i.e., the
number of agents. Thus the exact number of agents present in
the society is not very relevant to the tendency of conflict.
We found that, as expected, with higher initial fraction of
cooperators, there is a lower tendency of conflict. However,
the tendency of conflict increases with the number of edges
between two groups (which represents the interaction between
the groups of agents). We also showed that the tendency
of conflict is much more between two groups of different
size than between two groups of similar size. This is mainly

because the smaller groups have more incentive to defect than
the larger groups [9].

There are various directions for extending this work. Cur-
rently we are working on exhaustive testing of our model in
simulation. A natural extension is to extend the model and
analysis to more than two groups of different cultures. We also
plan to test our model on real world data (from conflicts in
Yugoslavia and Sudan) to see how well the fraction ofD−D
links correlates with the actual occurrence of violent incidents.
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