
The Weighted Majority AlgorithmNick Littlestone �Manfred K. Warmuth yUCSC-CRL-91-28RevisedOctober 26, 1992Baskin Center forComputer Engineering & Information SciencesUniversity of California, Santa CruzSanta Cruz, CA 95064 USA
�This research was primarily conducted while this author was at the University of Calif. at SantaCruz with support from ONR grant N00014-86-K-0454, and at Harvard University, supported by ONRgrant N00014-85-K-0445 and DARPA grant AFOSR-89-0506. Current address: NEC Research Institute, 4Independence Way, Princeton, NJ 08540. E-mail address: nickl@research.nj.nec.com.ySupported by ONR grants N00014-86-K-0454 and N00014-91-J-1162. Part of this research was donewhile this author was on sabbatical at Aiken Computation Laboratory, Harvard, with partial support fromthe ONR grants N00014-85-K-0445 and N00014-86-K-0454. Address: Department of Computer Science,University of California at Santa Cruz. E-mail address: manfred@cs.ucsc.edu.



1AbstractWe study the construction of prediction algorithms in a situation in which a learner facesa sequence of trials, with a prediction to be made in each, and the goal of the learner isto make few mistakes. We are interested in the case that the learner has reason to believethat one of some pool of known algorithms will perform well, but the learner does notknow which one. A simple and e�ective method, based on weighted voting, is introducedfor constructing a compound algorithm in such a circumstance. We call this method theWeighted Majority Algorithm. We show that this algorithm is robust in the presence oferrors in the data. We discuss various versions of the Weighted Majority Algorithm andprove mistake bounds for them that are closely related to the mistake bounds of the bestalgorithms of the pool. For example, given a sequence of trials, if there is an algorithmin the pool A that makes at most m mistakes then the Weighted Majority Algorithm willmake at most c(log jAj+m) mistakes on that sequence, where c is �xed constant.



2 1. Introduction1 IntroductionWe study on-line prediction algorithms that learn according to the following protocol.Learning proceeds in a sequence of trials. In each trial the algorithm receives an instancefrom some �xed domain and is to produce a binary prediction. At the end of the trialthe algorithm receives a binary label, which can be viewed as the correct prediction forthe instance. We evaluate such algorithms according to how many mistakes they make[Ang88,BF72,Lit88,Lit89b]. (A mistake occurs if the prediction and the label disagree.) Wealso brie
y discuss the case in which predictions and labels are chosen from the interval[0; 1].In this paper1 we investigate the situation where we are given a pool of predictionalgorithms that make varying numbers of mistakes. We aim to design a master algorithmthat uses the predictions of the pool to make its own prediction. Ideally the master algorithmshould make not many more mistakes than the best algorithm of the pool, even though itdoes not have any a priori knowledge as to which of the algorithms of the pool make fewmistakes for a given sequence of trials.The overall protocol proceeds as follows in each trial: The same instance is fed to allalgorithms of the pool. Each algorithmmakes a prediction and these predictions are groupedtogether to form the instance that is fed to the master algorithm. The master algorithmthen makes its prediction and receives a label, which it passes to the whole pool. We makeno probabilistic assumptions about the choice of the instances and the labels; that is, thebounds we prove in this paper on the predictive performance of various algorithms all holdfor a worst case sequence of instances and labels.Our goal can be thought of as one of constructing learning algorithms that learn totake advantage of patterns in the input in order to make few mistakes. The scheme that wepresent for combining algorithms is general in the sense that, whatever types of patterns arehandled by algorithms in the pool, these patterns are handled by the resulting combinationof algorithms. We present two types of results: relative and absolute. The relative resultsgive the number of mistakes of the master algorithm as a function of the number of mistakesof the pool members; these results do not depend on any details about the patterns handledby the algorithms. To apply the relative results we want to start with a pool of algorithmsthat contains one or more members capable of handling whatever input we face withoutmany mistakes. If this pool is not too big, then the combination algorithm formed byapplying the master algorithm to the pool will not make many mistakes. If, in addition, allof the algorithms in the pool are e�cient and the pool is su�ciently small then the resultingalgorithm will be computationally e�cient.For the absolute results we make particular assumptions about the input and look fora pool that will do well under these assumptions. We take a particular interest in patternsin the information seen by the learner in which labels (usually) depend functionally onthe instances. The function that maps from the instances to the labels is called the targetfunction. We say that a trial is consistent with a particular target function f if the labelof the trial is given by the value of f at the instance of the trial. Given a class of potential1Notable di�erences of this paper from earlier versions of the paper [LW89a,LW89b] include more generalderivations of bounds for various versions of the Weighted Majority Algorithm (Section 5) and the insertionhere of some previously omitted proofs (Sections 7 and 8). In addition, we have modi�ed algorithm WMI(now called WMI2 , Section 4), and have included some new results about in�nite pools in Section 7. Wehave also ampli�ed the discussion of the randomized algorithm WMR (Section 6).



1. Introduction 3target functions (a target class), we are interested in algorithms that make few mistakeswhen presented with any sequence of trials that is consistent with a target function chosenfrom the class. We sometimes also put additional structure on target classes, and ask thatalgorithms make fewer mistakes for some functions in a class (for example, functions thatwe consider simpler) than for others. In this paper we will discuss the construction of suchalgorithms for various target classes by applying master algorithms to pools that have beentailored for the given target classes.We also want to be able to handle cases in which the data seen by the learner is noisyor for some other reason is not quite consistent with any function in the target class, oreven any function at all. The number of anomalies of a sequence of trials with respect to agiven target function is de�ned to be the number of trials that are not consistent with thefunction. The number of anomalies of a sequence of trials with respect to a given targetclass is the least number of anomalies of that sequence with respect to a member of theclass. We will be interested in algorithms that are able to learn target classes in the presenceof anomalies, that is, in algorithms that are able to make few mistakes on any sequence oftrials that has few anomalies with respect to the target class. We will look at the rate ofgrowth of the number of mistakes with the number of anomalies.There is a straightforward way to construct a canonical algorithm for learning anyparticular �nite target class of computable functions. A pool of algorithms is formed fromthe functions of the target class. Each function f of the target class is represented by analgorithm of the pool that computes f ; at each trial the prediction made for an instance x bythat pool member is just f(x) (such an algorithm pays no attention to the labels). We willrefer to pools of this type interchangeably as pools of algorithms and as pools of functions.The Halving Algorithm [Ang88,BF72] (it is given this name in [Lit88]) can be interpretedas a master algorithm that learns a target class using such a pool. For each instance,the Halving Algorithm predicts according to the majority of all consistent functions of thepool. (A function is consistent if its values agree with the labels on all instances seen in theprevious trials.) Note that the functions that are not consistent have been eliminated fromthe decision process. Each time the master algorithm makes a mistake a majority of theconsistent functions are eliminated. If the sequence of trials is such that there is a consistentfunction in the pool F then the Halving Algorithm makes at most log2 jF j mistakes. Thistype of scheme has been previously studied by Barzdin and Freivalds [BF72,BF74], whoworked with a variation that applies to in�nite pools of functions.We would like an algorithm that will still function well in the presence of anomalies.If the number of anomalies of a sequence of trials with respect to a pool of functions isnon-zero, the Halving Algorithm will eventually eliminate all functions of the pool, andthere will be no functions left to base the future predictions on. The new master algorithmwe develop here, called the Weighted Majority Algorithm (WM) is more robust2.We describe the deterministic version of the Weighted Majority Algorithm as it appliesto �nite pools of arbitrary prediction algorithms making binary predictions. (Later we willgive other versions of the algorithm in which these quali�cations are varied.)Weighted Majority Algorithm (WM): Initially a positive weight is associated with eachalgorithm (function) of the pool. (All weights are initially one unless speci�ed otherwise.)Algorithm WM forms its prediction by comparing the total weight q0 of the algorithms of2Related ideas for working with pools of learning algorithms have been developed within the frameworkof inductive inference in the limit [FSV89,Pit89,PS88].



4 1. Introductionthe pool that predict 0 to the total weight q1 of the algorithms predicting 1. WM predictsaccording to the larger total (arbitrarily in case of a tie). When WM makes a mistake3, theweights of those algorithms of the pool that disagreed with the label are each multiplied by a�xed � such that 0 � � < 1.If WM is applied to a pool of functions with � = 0 and the initial weights equal,then it is identical to the Halving Algorithm. If � > 0, then WM gradually decreases thein
uence of functions that make a large number of mistakes and gives the functions thatmake few mistakes high relative weights. No single inconsistency can eliminate a function.Suppose that WM is applied to a pool F of functions and that the sequence of trials hasm anomalies with respect to F . In this case WM makes no more than a constant timeslog jF j+m mistakes, where the constant depends on the �xed parameter �. In the case thatthe Vapnik-Chervonenkis dimension [VC71,BEHW89] of F is 
(log jF j) our lower boundsimply that WM is optimal (except for a multiplicative constant).For the general case where WM is applied to a pool A of algorithms we show thefollowing upper bounds on the number of mistakes made in a given sequence of trials:1. O(log jAj+m), if one algorithm of A makes at most m mistakes.2. O(log jAjk +m), if each of a subpool of k algorithms of A makes at most m mistakes.3. O(log jAjk + mk ), if the total number of mistakes of a subpool of k algorithms of A isat most m.Note that if the subpool size k is 
(jAj) then the bounds for cases 2 and 3 are O(m)and O(mk ), respectively. We give an example of how Case 1 can be applied. Suppose thatthe instance domain is f0; 1gn. Boolean functions of the following form are called r-of-kthreshold functions: f(x1; : : : ; xn) = 1 i� Pkj=1 xij � r, where k, r and the distinct ij areintegers in the range from 1 to n. Suppose we wish to design a prediction algorithm thathas a small mistake bound for the target class of all r-of-k threshold functions (as r andk vary in the range 1 � r � k � n). The algorithm Winnow [Lit88] (the Fixed Thresholdalgorithm of [Lit89b]) can be used, with a bound of O(kn logn) mistakes. We can obtainthis bound without a priori knowledge of r or k. If we know an upper bound r0 on the valueof r, the mistake bound of Winnow can be improved to br0 = O(kr0 logn), which growsonly logarithmically in n when k and r0 remain small. The improvement of the mistakebound to br0 is obtained by choosing parameters for Winnow that depend on r0. Let Ar0denote Winnow when tuned to r0. If Ar0 receives a sequence that is not consistent with anyr-of-k threshold function such that r � r0, then the number of mistakes that it makes mightgreatly exceed br0 .We can overcome not knowing r by applying WM to the pool fA2ig0�i�dlog2 ne. Fromthe results presented in this paper, it follows that the number of mistakes made in thismanner for a sequence consistent with an r-of-k threshold function will be bounded by aconstant times log logn + br, which is O(kr log n).The applications of the Weighted Majority Algorithm that we consider fall into twocategories. The �rst category is illustrated by the previous example, where it is used tocombine a small number of algorithms to produce a combination that is computationallye�cient with good mistake bounds. Examples such as this one show that the WeightedMajority Algorithm is a powerful tool for constructing new e�cient learning algorithms.3The mistake bounds that we prove in this paper will actually hold for two versions of WM, one thatmodi�es weights only when a mistake is made (this version is given here) and one that modi�es the weightsat every trial by the multiplicative changes described.



1. Introduction 5It can be used in cases where there are several types of prediction algorithms available,or there is a choice of parameters for a learning algorithm, and the learner is unsure as towhich choice is the best. The resulting algorithm will be e�cient whenever the pool consistsof a small number of e�cient algorithms. The second category of use involves applying theWeighted Majority Algorithm to pools of functions. This use gives mistake bounds thatgrow at close to the optimal rate as the number of anomalies grows and establishes the bestthat can be achieved in this respect for deterministic algorithms. Many function classesof interest will, however, be too large to make this use of WM computationally practical.Note that a smaller pool size is required for e�ciency than for small mistake bounds, sinceall of the pool algorithms need to be simulated, while the number of mistakes grows onlylogarithmically with the size of the pool.In Section 2 we prove mistake bounds for the Weighted Majority Algorithm WM whichshow that in some sense it can be used to select the predictions of the right subpool ofalgorithms. In Section 3 we discuss a modi�cation of WM that never decreases its weightsbelow a certain lower threshold. This variant of WM , which we call WML, has evenstronger selective capabilities. Suppose that we are given a sequence of trials such thatthere is one algorithm in the pool that makes few mistakes (say m1) for an initial segmentof the sequence and a second algorithm that makes m2 mistakes for a second segment ofsequence, and so forth. Assume the original sequence is partitioned into s segments. WMLhas no a priori knowledge as to how many segments there are, when the di�erent segmentsbegin, and which algorithms perform well in each segment. We can show that the numberof mistakes made by WML is bounded by a constant times (s log jAj +Psi=1mi), wherethe constant depends on the parameters of the algorithm. For example, suppose that thealgorithms of the pool are functions and each segment of the sequence is consistent withsome function of the pool. Intuitively this means that the sequence is labeled according tosome target function of the pool but at the end of each segment the target function changes.Each time the target changes to a new function, there is a cost of O(log jAj) mistakes inthe mistake bound for WML. We describe the details of this modi�cation in Section 3.In Section 4 we investigate a second variant of WM which deals with countably in�nitepools of algorithms, indexed by the positive integers. Barzdin and Freivalds [BF72,BF74],considering pools of (recursive) functions, show that there is an algorithm that makes atmost log2 i+log2 log i+o(log log i) mistakes when given any sequence of trials consistent withthe i-th function. We use an adaptation of their method applicable to pools of algorithmseven in the case that no algorithm in the pool is consistent with the sequence of trials (i.e.every algorithm makes mistakes). We describe a variant WMI2 of the Weighted MajorityAlgorithm that has the property that for any countably in�nite pool, any sequence oftrials, and every index i, the number of mistakes it makes is bounded by a constant times(log i+mi), where mi is the number of mistakes made by the i-th algorithm of the pool onthe given sequence of trials.We give a number of upper bounds obtainable when di�erent initial weights for thealgorithms are used. The variant WMI2 incorporates a method of Barzdin and Freivaldsthat lets one deal explicitly with computational imprecision.An application of these techniques to deal with an unknown parameter can be foundin [HSW90]. The classes DIFF(C;B) discussed in that paper have the property that eachfunction in such a class has a certain \depth," which is a non-negative integer. The basicalgorithm given in that paper requires as input an estimate of the depth of the target.Mistake bounds are derived [HSW90, Figure 10] under the assumption that this estimate



6 1. Introductionis at least as large as the actual depth; to obtain a good bound it must not be too muchlarger than the actual depth. A version of WMI2 was used to deal with the case wherea good estimate of the depth is unavailable. Algorithm WMI2 was applied to an in�nitepool, where every algorithm in the pool was the basic algorithm, with each pool memberusing a di�erent estimate of the depth. Algorithm WMI2 was used since there was no apriori upper bound on the depth, and thus a �nite pool would not su�ce. This constitutesanother example where the weighted majority techniques lead to an e�cient algorithm forlearning a parameterized function class, provided that an e�cient algorithm is know whenthe parameter is given.In Section 5 we generalize WM to WMG which is able to handle pools whose membersproduce predictions chosen from the interval [0; 1]. WMG uses the weighted average of thepredictions of the pool members to form its own prediction: it predicts 1 if the averageis larger than 12 , 0 if the average is less than 12 and either 0 or 1 if the average is 12 .The predictions of WMG and the labels are still binary. In the same section we alsoprove bounds for a continuous variant WMC of WM which allows the predictions of thealgorithms of the pool and the master as well as the labels to be in [0; 1]. WMC simplypredicts with the weighted average of the predictions of the pool members. The purposeof Section 5 is a uni�ed treatment of the proofs of all upper bounds for WMG, WMC aswell as a randomized version WMR introduced in Section 6. In the concluding section, wegive a table that compares all of the varieties of the Weighted Majority Algorithm that wediscuss. Simple but specialized proofs for each of the upper bounds for WMG and WMRare provided in the appendix.In Section 6 we discuss the properties of the randomized version WMR of the WeightedMajority Algorithm. The main result of this section is an expected mistake bound forWMR.The proof relies on the lemmas used to prove bounds for WMG and WMC in the previoussection. Like the deterministic algorithms WMG and WMC, the randomized algorithmWMR also uses the weighted average of the predictions of the pool members for making itsprediction: it predicts 1 with probability equal to the average. An alternate interpretationof the randomized algorithm involves making each prediction by choosing a member of thepool at random (with probability proportional to its current weight) and predicting 1 withprobability equal to the prediction of the chosen pool member. The randomized versionof the algorithm has the property that the weights can be updated so that the rate atwhich WMR is expected to make mistakes in the long run can be made arbitrarily closeto the rate at which the best prediction algorithm in the underlying pool makes mistakes.With an appropriate measure of loss the same holds for the deterministic algorithm WMCwhose predictions are allowed to be in [0; 1]. This represents an improvement by a factor oftwo over the limiting mistake bound we give for the deterministic algorithm WMG whosepredictions must be binary.We consider in Sections 7 and 8 the special case in which the basic algorithm WM isapplied to pools of functions. In Section 7, we assume that the pool contains a functionconsistent with all of the trials. Let Mi be a bound on the number of mistakes made byWM if the ith function in the pool is consistent. Changing the initial weights can be used todecrease some of the Mi at the expense of increasing others. For certain classes of functionswe characterize what sets of Mi are possible mistake bounds for the Weighted MajorityAlgorithm, and show that for these classes of functions no other algorithm can do better.In Section 8 we consider the case in which no function in the pool is consistent with allof the trials; we prove a lower bound on the rate at which the mistake bounds must grow



2. Proving Mistake Bounds for the Weighted Majority Algorithm 7as the number of anomalous trials grows. We compare that lower bound with the upperbounds that we obtain from the Weighted Majority Algorithm. Under certain conditionsthe Weighted Majority Algorithm is provably a small constant factor from optimal. Wemake a similar comparison for the randomized algorithm WMR.The concluding section, Section 9 gives an overview of the various algorithms introducedhere and mentions a number of directions for future research.DeSantis, Markowsky and Wegman [DMW88] applied an algorithm similar to WMC toa countably in�nite pool (as in WMI2) in a completely di�erent setting. For a countablyin�nite indexed pool of conditional probability distributions the goal is to iteratively con-struct a \master" conditional probability distribution which assigns a probability to theexamples seen so far that is close to the highest probability assigned to the examples byany conditional probability distribution in the pool.More recent work on learning classes of Boolean functions is given in [HKS91,HO91].This work presents a Bayesian approach that considers average case upper bounds on theloss of prediction algorithms and gives upper bounds on the loss in terms of the Vapnik-Chervonenkis dimension [VC71,BEHW89]. The Bayes optimal classi�cation algorithm thatthey consider is a special case of the Weighted Majority algorithm WM, and the randomizedversion WMR is the Gibbs algorithm of [HO91]. Furthermore our algorithmWMR is similarto a learning procedure studied in [LTS89]. However the analysis given there is very di�erentfrom ours.Notations and assumptions: In this paper we design various master algorithms thatuse the predictions of the pool of algorithms to make their own predictions. Each algorithmin the pool is given an initially positive and always non-negative weight that is updated atthe end of each trial. The default values for all initial weights are 1. The total initial weightof all algorithms in the pool is denoted by winit and the total �nal weight after all exampleshave been processed by wfin.For logarithms, we use \ln" to denote natural logarithms and \log2" to denote logarithmsto the base 2. Where the choice of base is not signi�cant, such as in big-O and little-onotation, and in formulas consisting of ratios of logarithms, we omit designation of thebase; for ratios we intend that the same base be chosen for numerator and denominator.Throughout the paper we shall implicitly assume that all sequences of instances and labelsare �nite. Note that if a �xed mistake bound holds for all �nite sequences, then it mustalso hold for all in�nite sequences.2 Proving Mistake Bounds for the Weighted Majority AlgorithmIn this section we prove the bounds on the number of mistakes for the basic WeightedMajority Algorithm WM . For this and the next two sections the predictions of the algo-rithms in the pool and the master algorithm must all be binary (that is, in f0; 1g). Recallthe description of WM given in the introduction. For a given trial, we use q0 and q1 todenote the total weight of the algorithms in the pool that predict 0 and 1, respectively.44Two generalizations WMG and WMC of this deterministic master algorithm WM are given in Section5. Both master algorithms allow the predictions of the algorithms in the pool to be continuous in [0; 1]instead of only binary. The predictions ofWMG must be binary and the predictions ofWMC are allowed tobe continuous in [0; 1]. Theorem 5.1 gives the same bounds for WMG as Theorem 2.1 and a slightly betterbound is given for WMC in Theorem 5.2.



8 2. Proving Mistake Bounds for the Weighted Majority AlgorithmThe parameter � is the factor by which weights are multiplied in case of a mistake and isalways in the range 0 � � < 1. We suppose that we run WM with a pool A of predictionalgorithms, indexed with the integers from 1 through jAj. We use the notation introducedat the end of Section 1.All proofs are surprisingly simple. We will show that after each trial in which a mistakeoccurs the sum of the weights is at most u times the sum of the weights before the trial, forsome u < 1. In trials where no mistake occurs the total weight may only decrease. Thuswinitum � wfin must hold, where m is the number of mistakes of WM . This implies thatm is at most log winitwfinlog 1u . The proof below uses u = 1+�2 :Theorem 2.1: Let S be any sequence of instances and binary labels. Let m be the numberof mistakes made by WM on the sequence S when applied to a pool A. Then m � log winitwfinlog 21+� .Proof. By the above discussion we only need to show that in trials in which WM makesa mistake the ratio of the total weight after the trial to the total weight before the trial is atmost 1+�2 . Before the trial the total weight is q0 + q1. Suppose, without loss of generality,that in this trial the learner's prediction was 0, and thus q0 � q1. In this case the totalweight after this trial will be �q0 + q1 � �q0 + q1 + 1��2 (q0 � q1) = 1+�2 (q0 + q1).Note that wfin �Pni=1 wi�mi , where wi denotes the initial weight of the ith algorithmin the pool, andmi denotes the number of mistakes made by that algorithm on the sequenceS. When � = 0, we use the convention 00 = 1. As discussed in the introduction, if � = 0and the initial weights are equal, then WM is the Halving algorithm. In that case, if all miare positive then wfin = 0 and the bound of the theorem becomes vacuous.For the following corollaries we assume that � > 0, and also that all initial weights are1. Otherwise, our assumptions and notation are as in the theorem.Corollary 2.1: Assume that A is a pool of n prediction algorithms and that mi is thenumber of mistakes made by the i-th algorithm of the pool on a sequence S of instances withbinary labels. Then WM when applied to pool A with equal initial weights makes at mostlogn+mi log 1�log 21+� mistakes on the sequence S, for 1 � i � jAj.Proof. This follows from the above theorem and the fact that winit = n and wfin � �mi .Note that if the initial weights were not assumed to be equal then log n in the abovebound would need to be replaced by log winitwi , where wi is the initial weight of the ithalgorithm.Corollary 2.2: Assume that A is a pool of n prediction algorithms and that there is asubpool of A of size k such that each of the algorithms of the subpool makes at most mmistakes on a sequence S of instances with binary labels. Then WM when applied to poolA with equal initial weights makes at most log nk+m log 1�log 21+� mistakes on the sequence S.Proof. This follows from the above theorem and the fact thatwinit = n and wfin � k�m.



3. Shifting Target 9Corollary 2.3: Assume that A is a pool of n prediction algorithms and that there is asubpool of A of size k such that all algorithms of the subpool together make at most bmmistakes in total on a sequence S of instances with binary labels. Then WM when appliedto pool A with equal initial weights makes at most log nk+ bmk log 1�log 21+� mistakes on the sequence S.Proof. Without loss of generality, let the �rst k algorithms of A be the subpool. ThusPkl=1ml � bm and wfin � Pkl=1 �ml . Since the latter sum is at least k� bmk , it easy to derivethe bound of the corollary using the previous theorem.Similar bounds to those of the above corollaries can be proven for the case when � = 0and the number of mistakes m of the subpool is 0. In that case the upper bound on thenumber of mistakes made by WM becomes log2 nk .3 Shifting TargetThe crux of what we have shown so far is that if 0 < � < 1, then WM selects the rightinformation from a pool of algorithms: � < 1 allows it to home in on the right informationand � > 0 assures that any change that is made is gradual; any update that leads awayfrom the goal can be reversed. There is a cost for changing the weights only gradually sincethe algorithm does not home in as fast.We now modify WM so that its recovery capabilities are made even stronger. Supposethat a particular unknown subpool of a pool of algorithms has good predictive performance(as characterized in the above corollaries). However, after a number of trials a di�erentsubpool has good performance and the performance of the original subpool degrades. Thena third subpool takes over and so forth. We want to modify WM so that it keeps track ofpredictions of the right subpool without too many additional mistakes. In what follows weonly consider subpools of size one. (Generalizations in the spirit of the above corollaries areeasily obtained.) Thus the scenario is that one algorithm of the pool makes few mistakesfor an initial number of trials. After that some other algorithm of the pool performs wellfor a number of trials and so forth. The modi�ed Weighted Majority algorithm WML hasno a priori knowledge as to which algorithm's prediction is currently accurate or for howmany trials.Weighted Majority Algorithm WML: The algorithm has two �xed parameters �and 
 with the ranges 0 < � < 1 and 0 � 
 < 12, respectively. Each algorithm of thepool A receives a positive initial weight. The algorithm WML is identical to WM exceptthat whenever the original algorithm updates a current weight (by multiplying it by �), themodi�ed algorithm only makes the update if the weight before the update is larger than 
jAjtimes the total weight of all algorithms at the beginning of the trial.Note that in the case 
 = 0, WML is identical to WM .Lemma 3.1: Let S be any sequence of instances with binary labels and let m0 be theminimum number of mistakes made on the sequence S by any one of a pool A of nalgorithms. If the initial weight of each algorithm is at least �
n times the total initialweight, then WML when applied to pool A makes at most log n�
+m0 log 1�log 1u mistakes on S,where u = 1+�2 + (1� �)
. Furthermore, the �nal weight of each algorithm is at least �
ntimes the total �nal weight.



10 4. Selection From an In�nite PoolProof. Assume without loss of generality that the prediction of WML was 0 in atrial in which a mistake was made. Thus weights of pool members predicting 0 are to bedecreased. Let q0 and q1 be the total weight at the beginning of the trial of the algorithmspredicting 0 and 1 respectively. Let q� be the total weight of the algorithms of the poolthat predicted 0 but whose weights are not changed during this trial because they aretoo small. By assumption q� � 
(q0 + q1). Then the total weight after the trial will be�(q0 � q�) + q� + q1 � 1+�2 (q0 + q1) + (1� �)q�. The ratio of this total to the total beforethe trial is bounded by 1+�2 + (1 � �)
. Since we have assumed that 
 < 12 , this boundis less than 1. Thus a bound for WML follows from the argument at the beginning of theprevious section using the fact that the �nal sum of weights is at least �
n winit�m0 .It is easy to see that since the total weight is never increased, and individual weights arenot decreased if they are too small, the �nal weight of each algorithm will have the speci�edrelation with the total �nal weight.We can apply the above lemma to subsequences of a sequence of trials and get thefollowing.Theorem 3.1: Let S be a sequence of instances with binary labels and let S1; � � � ;Sk be anypartitioning of S into k subsequences. Let li be the number of trials in the i-th subsequence.Let A be any pool of n algorithms and let mi be the minimum number of mistakes made byany algorithm of the pool A on the subsequence Si, for 1 � i � k. If all initial weights ofthe algorithms are at least �
n times the total initial weight, then WML when applied to poolA makes at most Pki=1min(fli; log n�
+mi log 1�log 1u g) mistakes on S, where u = 1+�2 + (1� �)
.Proof. We simply apply the previous lemma to each subsequence Si.4 Selection From an In�nite PoolIn this section we assume that there is a countably in�nite pool of algorithms indexedwith some computable indexing (that is, we assume that there exists a simulation algorithmfor the pool that can simulate any algorithm of the pool, given its index). We assume thatthe i�th algorithm makes at most mi mistakes for a sequence of instances and labelsS. We will develop a version of the Weighted Majority Algorithm that makes at mostinfi�1(c(log2 i+mi)) mistakes on S, where c is a constant that depends on the parameters ofthe algorithm.Assume for the moment that the original algorithm WM could keep track of in�nitelymany weights and suppose, for example, that the initial weight associated with the ith poolmember is wi = 1i(i+1) , for i � 1. Then the total initial weight is winit = P1i=1wi = 1.For each i we have that the �nal sum of the weights is at least wi�mi = �mii(i+1) . ApplyingTheorem 2.1 we get that WM makes at most infi�1( log i(i+1)+mi log 1�log 21+� ) mistakes when appliedto the countably in�nite pool on the sequence S:The above approach is 
awed because we obviously can't run WM on in�nitely manyweights. Instead, we construct an algorithm WMI2 that uses an increasing initial segment



4. Selection From an In�nite Pool 11of \active" weights5. This algorithm and its analysis is based on techniques introduced byBarzdin and Freivalds [BF74] (they consider only the � = 0 case). These techniques, inaddition to dealing with an in�nite pool size, also allow one to work with �nite-precisionapproximations to the weights in calculating the predictions of the algorithm. Though wedo not consider this issue elsewhere in the paper, the analysis of this algorithm can be takenas an example of how to take approximate computations into account.6Weighted Majority Algorithm WMI2 : The algorithm is run on a countably in�nitepool of algorithms, indexed with the positive integers. It has one �xed parameter � in therange 0 � � < 1. It is also given two computable functions, W and cW de�ned on the positiveintegers (W needs only to be computable to arbitrary precision); the �rst is used to determinethe initial weights, and the second is some function satisfying cW (i) � P1j=iW (j) andlimi!1cW (i) = 0. (Since there is 
exibility in the choice of cW we can assume for conveniencethat it is chosen so that it is exactly computable.) This algorithm is similar to WM . Insteadof working with the weights of all of the algorithms, WMI2 works with only the weights of anactive subpool in each trial. The prediction of the algorithm is based solely on the predictionsof the active subpool and only weights corresponding to algorithms of the active subpool aresubject to change. The active subpool consists of pool members with indices 1 through l, forsome l that is determined by the algorithm. The value of l is initialized to zero. Then initiallyand at the conclusion of any trial in which a mistake is made it is increased, if necessary,until the inequality cW (l + 1) � um+1(1��)(m+1)(m+2)cW (1) is satis�ed, where u = 1+�2 and m isthe number of mistakes that have been made. When l is increased the weights of the newlyactive algorithms are initialized. The initial weight of the i-th algorithm of the pool is set toW (i). To make a prediction, WMI2 computes the sum q0 of the weights of the active poolmembers predicting 0 for the current instance, and the sum q1 of the weights of the activepool members predicting 1. Suppose that a total of m mistakes have been made in previoustrials. If q0 > q1 + um+1 bW (1)(1��)(m+1)(m+2) then WMI2 predicts 0; if q1 > q0 + um+1 bW (1)(1��)(m+1)(m+2)then WMI2 predicts 1. If neither of these inequalities holds, WMI2 is allowed to predict 0or 1. (This allows WMI2 to use �nite-precision approximations to q0 and q1.) After thelabel is received in a trial in which WMI2 has made a mistake, the weight of each activepool member that disagreed with the label is multiplied by �. The �nal action of each trialin which a mistake is made is to increase l as necessary, as described earlier.When the sums of tails of the series P1i=1W (i) are easy to compute, it is natural totake cW (i) = P1j=iW (j). When this is done, cW (1) is the sum of the initial values ofthe full in�nite sequence of weights. Note that instead of storing the current weights, animplementation of WMI2 can store the number of mistakes made by each pool member(while active) and use this information to calculate q0 and q1 to the necessary precision.Theorem 4.1: Let S be any sequence of instances with binary labels on which the ithalgorithm Ai makes at most mi mistakes (for all i � 1). Let W and cW be computablefunctions satisfying the inequality given in the description of WMI2 . After any initialsequence of trials, let !i be the current value of the i-th weight of WMI2 , for i � l, and let5We use the name WMI2 to distinguish this algorithm from the similar algorithm called WMI in earlierversions of this paper [LW89a,LW89b]. The version presented here improves the best mistake bound that canbe obtained from the algorithm to match the essentially optimal bound of Barzdin and Freivalds [BF72,BF74]in the case where � = 0 and there exists a consistent pool member.6The earlier version, WMI [LW89a,LW89b], does not take �nite precision into account.



12 4. Selection From an In�nite Pool!i = W (i) for i > l. Let u = 1+�2 . Then the following holds for WMI2 when applied to thecountably in�nite pool A on the sequence S:1. At the beginning of any trial the size of the active pool is the minimum l such thatcW (l + 1) � um+1(1��)(m+1)(m+2)cW (1), where m is the number of mistakes that have beenmade by WMI2 in prior trials.2. After any initial sequence of trials in which m mistakes have been made by WMI21Xi=1 !i � �2� 1m + 1�umcW (1):3. If 0 < � < 1, then the total number of mistakes made by WMI2 is at mostinfi�1( log( bW (1)=W (i))+mi log 1�+log 2log 1u ). If � = 0 and for some i, mi = 0, then the totalnumber of mistakes made by WMI2 is bounded by 1 + log2(cW (1)=W (i)).Proof of 1. This follows immediately from the construction of WMI2 .Proof of 2. We prove this by induction on m. It clearly holds for m = 0. Supposethat the claim holds for some m � 0 and consider the trial in which the (m+ 1)-st mistakeis made. Let q0 be the sum of the weights, at the beginning of that trial, of the active poolmembers predicting 0, let q1 be the sum of the weights of the active members predicting1, and let q� be the sum of the (future initial) weights of the inactive members. Thusq� = P1i=l+1W (i) � cW (l + 1) � um+1(1��)(m+1)(m+2)cW (1). Suppose that WMI2 predicted 0.(An analogous argument applies in the case that WMI2 predicted 1.) Thus we must haveq1 � q0 + um+1 bW (1)(1��)(m+1)(m+2) . The (m + 1)-st mistake causes the total weight P1i=1 !i to beupdated to�q0 + q1 + q� � �q0 + q1 + 1� �2  q0 � q1 + um+1cW (1)(1� �)(m+ 1)(m+ 2)!+ q�= 1 + �2 (q0 + q1 + q�) + (1� �2 )(q� + um+1cW (1)(1� �)(m+ 1)(m+ 2))� 1 + �2 �2� 1m+ 1�umcW (1) + 1� �2 � 2u(1� �)(m+ 1)(m+ 2)�umcW (1)= �2� 1m+ 2�um+1cW (1)as desired.Proof of 3. First we consider the case 0 < � < 1. Since the i-th algorithm in the poolmakes at mostmi mistakes, the �nal sum of the weightsP1i=1 !i is at least �miW (i). By 2,if WMI2 makes m mistakes then the �nal sum of the weights is at most 2umcW (1). Solvingthe resulting inequality for m gives the desired upper bound on m. When mi = 0, then the�nal sum of the weights is at least W (i). When � = 0, then u = 12 . Thus if WMI2 makesm mistakes in this case then W (i) � 2�12�mcW (1), which yields the desired bound.As we vary our choices of initial weights we encounter a trade-o� between the size ofthe mistake bound that we obtain and the size to which the active pool may grow.7 We7If the same weight sequence is used, the earlier algorithm WMI [LW89a,LW89b] uses a slightly smalleractive pool, at the expense of a slightly larger mistake bound. See [LW89a,LW89b] for the correspondingversions of Corollaries 4.1, 4.2, and 4.3.



4. Selection From an In�nite Pool 13examine this trade-o� in the following corollaries, which follow immediately. For brevity,we omit statement of the results for � = 0. Some results regarding the � = 0 case are givenat the end of the next section.Corollary 4.1: Let S be any sequence of instances with binary labels on which the ithalgorithm makes at most mi mistakes (i � 1). Let W (i) = 1i(i+1) and cW (i) =P1j=iW (j) =1i . Then the following holds for WMI2 when applied to the countably in�nite pool A on thesequence S:1. After m mistakes have been made by WMI2 the size of the active pool isl(1� �)(m+ 1)(m+ 2)( 21+� )m+1m� 1.2. If � > 0 the total number m of mistakes made by WMI2 is at mostinfi�1� log2(i(i+1))+mi log2 1�+1log2 21+� �.In the introduction of this section we derived a bound for running WM on in�nitelymany weights. The bound for this infeasible algorithm is identical to the one given inthe above corollary except for the absence of 1 in the numerator. Note that in the abovecorollary the pool size grows exponentially in m, which is of course an improvement over anin�nite pool size. In Section 7, we will study the best that can be done when � = 0, withoutregard to computational complexity; we will give a weight sequence that gives a somewhatsmaller mistake bound than the bound of this corollary. There we will be uninterested inthe pool size. For the rest of the current section we will take the point of view of oneinterested in practical application of this algorithm, for whom questions of computationale�ciency, and therefore of the size of the active pool, are important. We thus do not wantthe pool size to grow exponentially in the number of mistakes that are made (particularlyin cases where the number of mistakes grows linearly with the number of trials, which canbe expected, for example, when the learner faces noisy data; see Section 8).By choosing a di�erent weight sequence one can assure that the pool size grows onlylinearly in m, but this increases the rate of growth of the mistake bound with the index i:in the above corollary the dependence on the index i is logarithmic; below it is linear.Corollary 4.2: Let S be any sequence of instances with binary labels on which the ithalgorithm makes at most mi mistakes (i � 1). Let W (i) = �12�i and cW (i) = P1j=iW (j) =�12�i�1. Then the following holds for WMI2 when applied to the countably in�nite pool Aon the sequence S:1. After m mistakes have been made by WMI2 the size of the active pool isllog2(1� �) + log2((m+ 1)(m+ 2)) + (m+ 1) log2 1um.2. The total number m of mistakes made by WMI2 is at most infi�1( i+mi log2 1�+1log2 21+� ).Observe that the weights chosen in both corollaries might be useful for particularapplications. For example, if mi = 
(i), then choosing the weights as a sequence decreasingexponentially with i (as done in the second corollary) only increases the mistake bound by a



14 4. Selection From an In�nite Poolconstant factor over the bound using the choice of weights given in the �rst corollary. Thusat the cost of increasing the mistake bound by a constant factor a signi�cantly smaller poolsize is obtained using the exponentially decreasing weight sequence.In general, when given an in�nite sequence of algorithms Ai with mistake bounds mi, itis reasonable to choose the initial weights such that1. P1j=1W (j) is �nite and2. the two summands log(cW (1)=W (i)) and mi log 1� of the numerator of the bound onthe total number of mistakes given in Part 3 of the above theorem are roughly equal.The following corollary gives a weight sequence that is useful when mi grows exponentiallywith i. A very similar version has been applied in [HSW90].Corollary 4.3: Let S be any sequence of instances with binary labels on which the ithalgorithm makes at most mi mistakes (i � 1). Let W (i) = �12�2i�1 and cW (i) = 2 �12�2i�1.Then the following holds for WMI2 when applied to the countably in�nite pool A on thesequence S:1. After m mistakes have been made by WMI2 the size of the active pool isllog2[log2(1� �) + log2((m+ 1)(m+ 2)) + (m+ 1) log2 21+� + 1]m.2. The total number m of mistakes made by WMI2 is at most infi�1(2i�1+mi log2 1�+1log2 21+� ).Proof. Given the inequality cW (i) �P1j=iW (j) then parts 1 and 2 of the corollary area straightforward application of parts 1 and 3, respectively, of the previous theorem. Toshow the above inequality we bound the in�nite sum from above by the geometric serieswith ratio 12 and �rst summand �12�2i�1 :1Xj=i �12�2j�1 � 1Xj=2i�1 �12�j = 2�12�2i�1 :We give an example making use of the results of this corollary. The example is ageneralization of the r-of-k threshold function example given in the introduction. Weassume that we are to learn a class of target functions using an algorithm A that takesa single parameter q. Associated with each target function are two parameters k � 1 and r(these can be thought of, if one likes, as measures of the complexity of the target function).We assume that algorithm A has the property that whenever its parameter q is at least kthen the number of mistakes made by A is bounded by B(q; r) = q � g(r), for any targetfunction with parameters k and r. If the parameter q < k, then B(q; r) is not assumedto be a bound on the number of mistakes (in fact, the number of mistakes the algorithmmakes might be unbounded). Assume that g(r) � r0 for all choices of r.A bound of this form will be minimized if we choose the parameter q = k. (We arenot claiming that the algorithm will necessarily make the fewest mistakes for a given targetfunction when q = k, but that the best bound that we can obtain from the informationgiven will be obtained when q = k. If our bounds accurately re
ect the behavior of thealgorithm then this will indeed be a good choice of q.) Our goal here is to construct analgorithm that makes a number of mistakes close to B(k; r), without knowing k, for any kand r and any target function with parameters k and r chosen from the target class.



5. Generalized Analysis 15Under the assumptions that we have made, the mistake bound for A(q) is at most2B(k; r) for any q in the range k � q � 2k. Because of this, it su�ces for our purposesto apply WMI2 to the in�nite pool of algorithms A(1), A(2), A(4), A(8), : : :. Though theoptimal choice of q may not be included in this pool, an algorithm is included whose boundis at most twice the bound for the optimal choice.The mistake bound given to us for the i-th algorithm of this pool is mi = B(2i�1; r) =2i�1g(r) for any i such that 2i�1 � k. This bound grows exponentially in i. Thus theweights given in Corollary 4.3 will serve us well.By Corollary 4.3 we get a mistake bound of2i�1�1 + g(r) log2 1��+ 1log2 21+�where i is the least positive integer such that 2i�1 � k. By assumption g(r) � r0. Thus theabove expression is bounded byB(2i�1; r)� 1r0 + log2 1��+ 1log2 21+�Since B(q; r) = q � g(r), and there exists some i such that k � 2i�1 < 2k, we obtain a bound2B(k; r)� 1r0 + log2 1��+ 1log2 21+�which is O(B(k; r)). The active pool size of this algorithm grows logarithmically in thenumber of mistakes that have been made.5 Generalized AnalysisIn this section we introduce two new master algorithms WMG and WMC. The originalalgorithm WM is a special case of the generalized version WMG. The generalized analysisgiven here for the new variants will also be used in the next section for deriving boundsfor the randomized version WMR of WM . The purpose of this section is to give a uni�edanalysis for all three versions WMG, WMC and WMR. Separate direct and simple proofsfor the upper bounds of WMG and WMR are provided in the appendix.Assumptions for WMG and WMC: Both new algorithms allow the predictions ofthe algorithms of the pool to be chosen from [0; 1] (instead of being binary as for WM).The predictions of WMG must be binary while the predictions of WMC are allowed to bechosen from the interval [0; 1]. The labels associated with the instances are assumed to bebinary for WMG and in [0; 1] for WMC.The update step of the Weighted Majority Algorithm and its variants is the step in whicheach weight is multiplied by some factor. In algorithm WM this step only occurs duringtrials in which a mistake is made. However, it is easy to see that the same mistake boundwe have given will be obtained if updates are performed in every trial.



16 5. Generalized AnalysisUpdate criteria for WMG and WMC: WMC updates at every trial (the samecriterion is used for WMR introduced in the next section). For WMG an update step isexecuted either in every trial or only in trials in which a mistake occurs.8We introduce notation to enable us to refer to values that occur in each trial in whichan update step occurs. We use the term update-trial j to refer to the jth trial in whichan update step occurs. We assume that there are a total of t such trials. (Thus t eitherdenotes the total number of trials or the total number of mistakes, depending on the updatecriterion.) We assume that the master algorithm is applied to a pool of n algorithms, lettingx(j)i denote the prediction of the ith algorithm of the pool in update-trial j. Let �(j) denotethe prediction of the master algorithm in update-trial j, �(j) denote the label of update-trialj and w(j)1 ; : : : ; w(j)n denote the weights at the beginning of update-trial j. (Consequently,w(t+1)1 ; : : : ; w(t+1)n denote the weights following the �nal trial.) We assume that all initialweights w(1)i are positive.Let s(j) =Pni=1 w(j)i and 
(j) = Pni=1 w(j)i x(j)is(j) :Thus s(1) = winit and s(t+1) = wfin.Prediction of WMC and WMG: In the case ofWMC the prediction �(j) equals 
(j).For WMG, �(j) is 1 when 
(j) is greater than 12 and is 0 when 
(j) is less than 12 (eitherprediction is allowed if 
(j) = 12).If predictions are continuous then the notion of mistake has to be replaced by a quantitythat measures how far the prediction is from the correct label. In this paper we will usethe absolute loss. If an algorithm predicts x in a trial with label �, we say that its lossin that trial is jx � �j; this de�nition applies both to algorithms in the pool and to themaster algorithm. We denote the total loss of the master algorithm over all trials by m,and the total loss over all trials of algorithm i of the pool by mi. Since an update occursin at least those trials in which the master algorithm makes a mistake, the total loss ofthe master algorithm is m = Ptj=1 j�(j) � �(j)j. Algorithms in the pool may incur loss intrials without updates, so, unless updates occur in all trials, we cannot get the total lossof algorithms in the pool by summing over update trials. Instead, we have the inequalitymi � Ptj=1 jx(j)i � �(j)j. Note that in the case where both the predictions of the poolmembers and the labels are binary, the losses of the pool members become numbers ofmistakes, and similarly if both the predictions of the master algorithm and the labels arerestricted to being binary then the loss of the master becomes a measure of its mistakes.More than one form of the update is possible. We will specify a class of possible updates;our bounds apply to all members of the class. All updates in the class coincide with theupdate of WM given in the introduction in the special case that the pool members produceboolean predictions.Update step for WMG and WMC: In an update step of WMG and WMC (andthe randomized version WMR of the next section) each weight w(j)i is multiplied by some8More precisely, bounds forWM and WMG hold as long as an update step occurs in every trial in whicha mistake occurred and possibly in some trials in which no mistake occurred; for simplicity, we restrictdiscussion to the extreme cases mentioned.



5. Generalized Analysis 17factor F that depends9 on �, x(j)i , and �(j):w(j+1)i = F w(j)i ; where F can be any factor that satis�es�jx(j)i ��(j) j � F � 1� (1� �)jx(j)i � �(j)j: (5.1)The following lemma implies that such a factor exists; in particular either the upper or thelower bound given for F can be chosen as the update factor. Recall that we de�ned 00 toequal 1.Lemma 5.1: For � � 0 and 0 � r � 1, �r � 1 + r(� � 1).Proof It is easy to check the inequality for the case of � = 0. If � > 0 then the inequalityfollows from the convexity of �r as a function of r for any � > 0. Convexity implies thatfor 0 � r � 1, �r � (1� r)�0 + r�1, which is another way of writing the inequality.The next lemma is the basic lemma used to derive bounds for the loss of the masteralgorithms WMG and WMC (and for the expected loss of WMR of the next section).Lemma 5.2: Assume that w(1)i > 0 for i = 1; : : : ; n. Assume 0 � � < 1, 0 � �(j) � 1, and0 � x(j)i � 1 for j = 1; : : : ; t and i = 1; : : : ; n. Assume w(j+1)i � w(j)i (1� (1��)jx(j)i � �(j)j)for j = 1; : : : ; t and i = 1; : : : ; n. Then if � = 0 and j
(j)��(j)j = 1 for some j in f1; : : : ; tgthen wfin = 0. Otherwiseln wfinwinit � tXj=1 ln(1� (1� �)j
(j)� �(j)j)Proof First we deal with the case where � = 0 and there is a trial j such thatj
(j) � �(j)j = 1. In this case, we have 
(j) = 1 � �(j). For this to occur, for any isuch that w(j)i > 0 we must have jx(j)i ��(j)j = 1. This forces the use of update factors thatmake w(j+1)i = 0 for all i. Thus wfin = 0, as desired. Where this case does not occur, wehave from Inequality 5.1 thats(j+1) � nXi=1w(j)i (1� (1� �)jx(j)i � �(j)j) = s(j) � (1� �) nXi=1w(j)i jx(j)i � �(j)j:By the triangle inequality, the above is bounded above bys(j) � (1� �)j nXi=1w(j)i (x(j)i � �(j))j = s(j) � (1� �)j
(j)s(j) � �(j)s(j)j= s(j)(1� (1� �)j
(j)� �(j)j):Thus s(t+1) � s(1) tYj=1(1� (1� �)j
(j)� �(j)j)9Theorems 5.1 and 5.2 can be obtained without requiring that F satisfy the lower bound speci�ed inInequality 5.1 (but since the bounds of these theorems grow as wfin shrinks, the bounds may becomeuninteresting if F is too small). Both bounds on F of Inequality 5.1 are used to obtain Corollaries 5.1 and5.2.



18 5. Generalized AnalysisTaking logarithms gives the desired result.We use the above lemma to obtain the same bound for WMG as we did for WM inTheorem 2.1. Recall that for WMG, �(j); �(j) 2 f0; 1g but the x(j)i are allowed to be chosenfrom [0; 1]. For the case where the x(j)i are discrete as well, the algorithms WM and WMGare identical.Theorem 5.1: Let S be any sequence of instances with binary labels. Suppose the algorithmWMG (updating in every trial or only when mistakes are made) is run with 0 � � < 1 onthe sequence S and m is the total number of mistakes of WMG when applied to some poolof prediction algorithms. Then m � log winitwfinlog 21+� .Proof If � = 0 and j
(j)��(j)j = 1 for some j in f1; : : : ; tg, then wfin = 0 and the boundbecomes vacuous. Otherwise, let m(j) be 1 if WMG makes a mistake in update-trial j, and0 otherwise. The total number of mistakes made by WMG is m = Ptj=1m(j). (For theversion of WMG that only updates when a mistake is made, we are only paying attentionto trials in which a mistake is made; thus m(j) is 1 for all j.) Note that if 
(j) < 12 thenm(j) = �(j), and if 
(j) > 12 then m(j) = 1� �(j).Since log(1� (1� �)j
(j) � �(j)j) � 0, we havetXj=1 log(1� (1� �)j
(j)� �(j)j) � Xj s.t. m(j)=1 log(1� (1� �)j
(j)� �(j)j)� m log(1� 12(1� �)) = m log(12 + 12�)It is easy to see that the conditions for the application of Lemma 5.2 apply and thuslog wfinwinit � m log 1 + �2 :A simple proof of the above bound that does not rely on Lemma 5.2 is given in theappendix. The method there is to rede�ne q0 and q1 and essentially use the proof ofTheorem 2.1.From the de�nition of the total loss mi of the ith algorithm and the de�nition of theupdate step (Inequality 5.1) we have w(t+1)i � w(1)i �mi and wfin � Pni=1 w(1)i �mi . Theseinequalities become equalities if an update occurs in each trial and all update factors aremade as small as allowed. Using these inequalities, corollaries in the spirit of corollaries 2.1to 2.3 could easily be derived. We will only state the one corresponding to Corollary 2.1.For this corollary assume all initial weights are equal and � > 0.Corollary 5.1: Assume that A is a pool of n prediction algorithms and that mi is the totalloss of the i-th algorithm of the pool on a sequence S of instances with binary labels. ThenWMG when applied to pool A with equal initial weights makes at most logn+mi log 1�log 21+� mistakeson the sequence S, for 1 � i � jAj.



5. Generalized Analysis 19In general, the larger the lower bound used for wfin the better the upper bound providedby the above theorem. If in each update the smallest allowable factor is used (Inequality5.1) then wfin �Pni=1 w(1)i �mi . However if the largest factor is used in each update we getwfin �Pni=1w(1)i Qtj=1(1� (1��)jx(j)i ��(j)j) which may be much larger than the previouslower bound on wfin when � is close to 0. The upper bounds we will derive for WMC andWMR will have the same form as the one given in the above theorem for WMG. Thus thesame comments on the lower bound of wfin will apply to those bounds as well.The next lemma will be used for deriving bounds for WMC (and for WMR in the nextsection).Lemma 5.3: If the conditions of Lemma 5.2 are satis�ed, thentXj=1 j
(j) � �(j)j � ln winitwfin1� � :Proof The lemma follows from the observation that ln(1� (1� �)j
(j)� �(j)j) � �(1��)j
(j) � �(j)j and Lemma 5.2.Recall that for WMC all predictions and labels are allowed to be in [0; 1] and that theprediction of WMC in trial j is �(j) = 
(j). Lemma 5.3 gives an upper bound on the totalloss m of WMC . In the next section we will see that this bound is identical to the boundon the expected total loss we obtain for WMR in Theorem 6.1. Recall that both WMCand WMR update in every trial. For WMC we assume that all instances and labels aredeterministic.Theorem 5.2: Let S be any sequence of instances and labels with labels in [0; 1]. Let m bethe total loss of WMC on the sequence S when applied to some pool of prediction algorithms.Then m � ln winitwfin1�� .Proof The theorem follows immediately from Lemma 5.3.It is interesting to compare the above bound for WMC (continuous prediction) to thebound obtained in Theorem 5.1 forWMG (discrete prediction). The latter bound is similarin form: ln winitwfinln 21+� . The numerators of both bounds are identical. The denominators bothapproach zero when � approaches 1. However, the denominator of the bound for WMC islarger for � less than 1. The ratio of the denominators approaches 2 as � approaches 1,making the bound for WMC better than the bound for WMG by nearly a factor of two for� close to 1.Corollary 5.2: Assume that A is a pool of n prediction algorithms and that mi is the totalloss of the i-th algorithm of the pool on a sequence S of instances with labels in [0; 1]. If weapply WMC to pool A with equal initial weights, then it will have a total loss of at mostlnn+mi ln 1�1�� on the sequence S, for 1 � i � jAj.



20 6. Randomized Predictions6 Randomized PredictionsIn this section we give a randomized version of WM called WMR.Assumptions for WMR: The predictions of the pool members are in [0; 1]. Theprediction of WMR is binary but probabilistic. The labels associated with the instancesare binary.We will use the notation introduced in the previous section. Recall that at trial j WMCpredicts 
(j) = Pni=1 w(j)i x(j)iPni=1 w(j)i which is the weighted average prediction of the pool members.Also WMG predicts 1 when 
(j) > 12 and 0 when 
(j) < 12 (and either when 
(j) = 12).Prediction of WMR: The new randomized algorithm WMR simply predicts 1 withprobability 
(j).Note that if the predictions x(j)i of the members of the the pool are binary then 
(j) =q1q0+q1 where q0 is the total weight of all algorithms predicting 0 at trial j and q1 is de�nedsimilarly.Update criterion of WMR: Like WMC, WMR updates in every trial.Update step of WMR: The update step of WMR is the same as the update step ofWMG and WMC described in the previous section (Inequality 5.1).Bounds on the performance of WMR depend on adequate independence between therandomization performed by WMR and the choice of the instances and labels. We willobtain bounds on the expected number of mistakes made by WMR under the followingassumption, which we will refer to as the weak independence condition:E(�(j)j(x(1); �(1)); : : : ; (x(j); �(j))) = 
(j) (a.s.)for j = 1; : : : ; t. (Here we use conditional expectations with respect to random variables,as described, for example, in [Bil86,Shi84]. The notation (a.s.) stands for \almost surely,"that is, with probability 1.) The variables appearing in the condition are de�ned in Section5. Note that this de�nition allows each of the x(j)i and �(j) to be random variables. Ifthey are deterministically chosen, then all of the weights and 
(j) are deterministic and theconstruction of the algorithm guarantees that the weak independence condition holds. (Inthat case, for the weak independence condition to hold, it su�ces that E(�(j)) = 
(j) forall j, which follows from the construction of the algorithm.)In addition to bounds on the expected number of mistakes, we will also give a boundon the probability that the total number of mistakes exceeds the expected number by somemargin. For this bound, we make the following assumption that we will refer to as thestrong independence condition:E(�(j)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1)) = 
(j) (a.s.)for j = 1; : : : ; t. Note that in addition to conditioning on the past predictions, we are alsonow conditioning on the entire past, present, and future sequence of instances and labels.Satisfaction of the strong independence condition implies satisfaction of the weak one.These independence conditions hold under a variety of assumptions about the way therandomization of WMR is performed and the way the instances and labels are chosen. Wecan assume that the instances and labels are generated either deterministically or randomlywithout paying any attention to the predictions of the algorithm. For the weak independence



6. Randomized Predictions 21condition, we can also let them depend arbitrarily on the predictions made by the algorithmin previous trials. In the case that the generation of the instances and labels is independentof the randomization of the algorithm, the weak independence condition will hold evenif the random choices of the algorithm are not independent of each other. For example,one way to implement the randomization of WMR is to choose a real number r uniformlyfrom the range [0; 1] and to predict 1 if 
(j) � r. For the purpose of obtaining expectedmistake bounds, it does not matter whether the random numbers used in each trial arechosen independently or not; in fact, a single choice of r can be made initially, and thissame number can be used for each trial. In this case, the randomization of the algorithmis con�ned to this single choice. If instead a new value for r is chosen independently ineach trial (and independently of the choice of the instances and labels), then the strongindependence condition holds.There is another way to perform the randomization. One can make each predictionby choosing a member of the pool at random, with probability proportional to its currentweight, and then predicting 1 if that pool member predicts 1 and 0 if it predicts 0. If thepool member's prediction is strictly between 0 and 1, then the prediction is determined bya biased coin 
ip with the probability of predicting 1 equal to the value of the predictionof the chosen pool member. As above, the probability of predicting 1 is 
(j). If the randomchoices made by this version of WMR are independent of each other and of the choices ofthe instances and labels then the strong independence condition holds.In the special case when � = 0 and all predictions of the pool members are binary, Maasshas observed in independent research [Maa91] that it su�ces to make new random choicesin just the trials in which a mistake has been made. If a mistake is not made in a trial, thenone uses the same pool member for prediction in the next trial. Maass views the algorithmWMR for this special case with the \lazy" update criterion from a di�erent perspectivethan ours and has obtained an elegant derivation of the lnn bound on the expected numberof mistakes made by WMR when there is an algorithm in the pool of n algorithms (withequal initial weights) that is consistent with all examples.In the appendix we show that if the random choices at the end of each trial with amistake are independent then the strong independence condition holds for WMR with thelazy update criterion and the restrictions that � = 0 and all predictions of the pool membersare binary.In this section we only show the weaker result that the weak independence conditionholds, and we further restrict the instances and predictions of the pool members to bedeterministic. We assume equal initial weights. Theorem 6.1 gives the ln n bound on theexpected number of mistakes if there is a pool member consistent with all examples. Sincethe instances and predictions of the pool members are deterministic, to show that the weakindependence condition holds it su�ces to show that E(�(j)) = 
(j). Thus it is su�cient toshow that at each trial the member with which we predict is equally likely to be any of theremaining consistent pool members. (The choice of pool member is not independent fromone trial to the next.)We use induction on the trial number to prove this claim. The claim clearly holds atthe �rst trial. Note that since the sequence of instances and the algorithms of the pool aredeterministic, the determination of which pool members are consistent at each trial is nota probabilistic event. The probability of choosing a particular inconsistent pool memberfor a response at a given trial is 0. The probability of choosing a particular consistent poolmember is the sum of the probability that it was the chosen member at the previous trial,



22 6. Randomized Predictionsplus the probability that a mistake was made at the previous trial times the probability ofchoosing the particular member at this trial. If there were n1 consistent members beforethe previous trial and n2 before the current trial, then from the induction hypothesis theprobability of making a mistake at the previous trial is n1�n2n1 . Thus the probability ofchoosing a particular consistent member at this trial is 1n1 + n1�n2n1 1n2 = 1n2 , proving theclaim.The following theorem gives a bound on the expected number of mistakes made byWMR if the weak independence condition holds.Theorem 6.1: Let S be any sequence of instances with binary labels. Let m be the numberof mistakes made by WMR on the sequence S when applied to some pool of predictionalgorithms.Then under the weak independence condition we have E(m) � E(ln winitwfin )1�� .Proof By the weak independence conditionE(j�(j) � �(j)j j (x(1); �(1)); : : : ; (x(j); �(j))) = j
(j)� �(j)j:Thus E(j�(j)��(j)j) = E(j
(j)��(j)j). Thus E(m) = E(Ptj=1 j�(j)��(j)j) = E(Ptj=1 j
(j)��(j)j). The desired bound follows immediately from Lemma 5.3.If the predictions of the algorithms of the pool and the labels are all chosen deter-ministically, then the weights are also deterministic; the bound of Theorem 6.1 becomesE(m) � ln winitwfin1�� .This bound is identical to the bound on the total loss proven for WMC (Theorem 5.2).The comparison made at the end of Section 5 with the bound of WMG also applies here.The bound for WMR, like the bound for WMC, is better than the bound for WMG bynearly a factor of two for � close to 1. In the case of WMC this improvement was obtainedby allowing predictions from the interval [0; 1]; here predictions are binary (as for WMG)and the improvement comes from the randomization. Recently, Vovk [Vov90b,Vov90a] hasshown that with a di�erent rule for computing the randomized prediction one can obtainthe somewhat better expected mistake bound ln winitwfin2 ln 21+� , exactly a factor of 2 better thanour deterministic bound. The bound obtained here and Vovk's bound for his algorithmapproach each other as � approaches 1.We also obtain the following corollary, analogous to Corollary 5.1 for WMG.Corollary 6.1: Assume that A is a pool of n prediction algorithms and that mi is the totalloss of the i-th algorithm of the pool on a sequence S of instances with binary labels. IfWMR is applied to pool A with equal initial weights, then the expected number of mistakesis at most logn+E(mi) log 1�1�� on the sequence S, for 1 � i � jAj.Proof This follows immediately from Theorem 6.1 and the fact that wfin �Pni=1 w(1)i �mi .In the case that the strong independence condition holds, Cherno� bounds can be usedto obtain bounds on the probability that the actual number of mistakes is much larger thanthe expected number.



6. Randomized Predictions 23We will use a theorem regarding Cherno� bounds applied to supermartingales that isgiven in [Lit89a]. Let (X;A; P ) be a probability space and let G1; : : : ;Gn be �-algebrascontained in A and let S1; : : : ; St be a sequence of random variables on this probabilityspace. Then the sequence (S1;G1); : : : ; (Sn;Gn) is a supermartingale if G1 � � � � � Gn, Si isGi-measurable for i = 1; : : : ; n, E(jSij) is �nite for i = 1; : : : ; n, and E(Si+1jGi) � Si (a.s.)for i = 1; : : : ; n� 1.Theorem 6.2: [Lit89a] Let (X;A; P ) be a probability space and let G � G0 � G1 � � � � �Gt be �-algebras contained in A. Let �1; : : : ; �t be a sequence of random variables on thisprobability space such that 0 � �i � 1 for each i, and let c1; : : : ; ct be G-measurable randomvariables with 0 � ci � 1 for i = 1; : : : ; t. LetSj = jXi=1(�i � ci)and let S0 = 0. Let � = 1t Ptj=1 cj. Let � be a G-measurable random variable. Then if thesequence ((S0;G0); : : : ; (St;Gt)) is a supermartingale, then the following statement holds atalmost every point in X for which 0 < � < 1. If 0 � � � � thenP (St � �tjG) � e��2t=(3�)We obtain the following bound.Theorem 6.3: Let S be any sequence of instances with binary labels and let A be somepool of prediction algorithms. Suppose that WMR, applied to A, is run on this sequence.Let m be a random variable giving the number of mistakes made. Suppose that the strongindependence condition holds. If S contains t instances, and if b and a are functions of(x(1); �(1)); : : : ; (x(t); �(t)) such that E(mj(x(1); �(1)); : : : ; (x(t); �(t))) � b (a.s.) and 0 < a �1, then P (m > (1 + a)bj(x(1); �(1)); : : : ; (x(t); �(t))) � e�a2b=3 (a.s.)Proof Suppose there are t trials. Let �j = j�(j) � �(j)j. Thus m = Ptj=1 �j . Let cj =E(�j j(x(1); �(1)); : : : ; (x(t); �(t))) + 1t (b�E(mj(x(1); �(1)); : : : ; (x(t); �(t)))). Thus Ptj=1 cj = b.Let Sj = Pji=1(�i � ci) and let S0 = 0. Let G = G0 denote the �-algebra generated by(x(1); �(1)); : : : ; (x(t); �(t)), and for j = 1; : : : ; t, let Gj denote the �-algebra generated by Gand �1; : : : ; �j. Note that Sj is Gj-measurable and since 
(j) is a function of the instancesand labels it is G-measurable. Note also that E(�j jG) and E(�j j(x(1); �(1)); : : : ; (x(t); �(t)))are two ways of writing the same thing. Under the strong independence assumption wehave for j = 1; : : : ; n� 1E(�j � cj jGj�1) = j
(j) � �(j)j � cj (a.s.)This is G-measurable, and thus equals E(�j � cj jG) = E(�j jG)� cj � 0 (a.s.). ThusE(Sj jGj�1) = Sj�1 +E(�j � cj jGj�1)� Sj�1 (a.s.)



24 7. Pools of FunctionsThus if we let � = ab=t and � = b=t the hypotheses of Theorem 6.2 are satis�ed, yieldingP ( tXj=1(�j � cj) � abjG) � e��2t=(3�)which is one way of writing the desired inequality.We will give an application of this theorem in Section 8. There the instances and labelsare deterministically chosen. One use of the theorem for random instances and labels isin a case where there exists some constant b0 such that P (b � b0) � 1 � � for some small�. Then P (m > (1 + a)b and b � b0j(x(1); �(1)); : : : ; (x(t); �(t))) � e�a2b0=3 (a.s.) and thusP (m > (1 + a)b) � e�a2b0=3 + �.7 Pools of FunctionsIn this section we consider the case in which the Weighted Majority Algorithm is appliedto a pool of functions. (All functions are from the instance domain to f0; 1g.) We can thinkof such a pool of functions as a pool of prediction algorithms by interpreting a functionf in the pool as the prediction algorithm that predicts f(x) for any trial with instancex. The results in this section apply to the case where there exists a function in the poolthat is consistent with the sequence of trials. In this section we consider only deterministicalgorithms for the case when all predictions are binary; the only master algorithm wework with is WM (This section is independent of Sections 5 and 6). We study what canbe achieved by the Weighted Majority Algorithm if one desires to obtain better mistakebounds for some functions in a pool of algorithms at the expense of worse bounds forothers. We show that under certain (rather strong) restrictions on the target class, WMis an optimal (deterministic) algorithm in a strong sense: given any deterministic on-lineprediction algorithm A, there exists a way to choose initial weights forWM so that for eachfunction in the target class the mistake bound for WM is at least as small as the mistakebound for A. (Note that this is stronger than just saying that the worst case mistake boundfor WM for the target class is no larger than the worst case bound for A for the targetclass.)At the end of this section we turn from �nite to in�nite target classes, giving resultsregarding what sequences of mistake bounds are possible for arbitrary target classes.Theorem 7.1: Let '1; : : : ; 'n be a pool of functions with range f0; 1g and let M1; : : : ;Mnbe non-negative integers such that Pni=1 2�Mi < 2. If algorithm WM is applied to the poolwith initial weights wj = 2�Mj and with � = 0, and if the sequence of trials is consistentwith some function 'i of the pool, then the algorithm makes at most Mi mistakes.Proof From Theorem 2.1, we obtain the following upper bound on the number of mistakesof WM : log2 nXj=1 2�Mj � log2 2�Mi < 1 +Mi:Since both Mi and the number of mistakes made are integers, this gives the desired bound.



7. Pools of Functions 25We next show that in one special case the Weighted Majority Algorithm is optimal.We say that a set of f0; 1g-valued functions, '1; : : : ; 'n, each with domain X , is shatteredby X if ('1(x); : : : ; 'n(x)) ranges over all of f0; 1gn as x ranges over X . This notion ofshattering has been considered by Assouad [Ass83]. It is dual to the notion of shatteringused to de�ne the Vapnik-Chervonenkis dimension of a concept class [VC71,BEHW89]. Ifa pool of functions is shattered by its domain, then there is a lower bound matching theabove upper bound for the number of mistakes made by any deterministic algorithm.Note that the applicability of the optimality result that follows is limited. A simplecounting argument shows that for a domain X to shatter a function class requires the sizeof the function class to be no greater than log2 jX j.We �rst give two lemmas that we will need.Lemma 7.1: Suppose that r1; : : : ; rn are positive real numbers such that the quotient ri=ri+1is an integer for i = 1; : : : ; n � 1. Then if 0 < s � Pni=1 ri and s=r1 is an integer, thereexists an m � n such that Pmi=1 ri = s.Proof If r1 = s then we are done. Otherwise, r1 < s. Let j be the largest integer such thatPj�1i=1 ri < s. By hypothesis, j � 1 < n so j � n. From the choice of j we have Pji=1 ri � s.It will complete the proof of the lemma to show that it is also the case thatPji=1 ri � s. Tosee this, note that there must exist integers l and l0 such that Pj�1i=1 ri = lrj and s = l0rj .Since we are assuming that lrj < l0rj we must have Pji=1 ri = (l + 1)rj � l0rj = s, asdesired.Lemma 7.2: Given r1; : : : ; rj > 0, suppose that log2 r1; : : : ; log2 rj are integers (not nec-essarily positive) and suppose that l is an integer such that maxi ri � 2l � Pji=1 ri. Thenthere exists a set K � f1; : : : ; jg such that Pi2K ri = 2l.Proof Let r01; : : : ; r0j be a permutation of r1; : : : ; rj such that r01 � � � � � r0j . Let ki = log2 r0i.Then r0i=r0i+1 = 2ki�ki+1 , which is an integer for i = 1; : : : ; j�1. Similarly, 2l=r01 is an integer.Thus by Lemma 7.1 there exists some m such that Pmi=1 r0i = 2l.Theorem 7.2: Let f'1; : : : ; 'ng be any collection of f0; 1g-valued functions that is shat-tered by its domain (the domain can be �nite or in�nite), let A be any deterministic on-linelearning algorithm, and for i = 1; : : : ; n let Mi denote the maximum number of mistakes Amakes on any sequence consistent with 'i. Assume that all of these Mi are �nite. ThenPni=1 2�Mi < 2:Proof We will �rst give a rough outline of the proof. An adversary constructs a sequenceof trials for the learning algorithm. The adversary assigns to each function 'i in the targetclass a weight that is equal to 2�Mi . These weights remain �xed, except that after each trialis generated the adversary sets to zero the weights of those functions that are not consistentwith the trials that have been generated. The adversary picks instances and labels so thatthe learner makes a mistake at each trial and so that, no matter what the learning algorithmdoes, the sum of the weights of the consistent functions decreases by approximately a factorof two at each trial. Eventually, since consistent functions are eliminated at each trial, theremust be a consistent function 'j whose weight is a substantial fraction of the sum of theweights of the remaining consistent functions. If we let s =Pni=1 2�Mi , then the sum of theweights of the remaining consistent functions will be roughly s2�t, where t is the number



26 7. Pools of Functionsof trials that have been generated. The weight of the consistent function 'j will be 2�Mj .Our argument will show that for this j the value of s2�t=2�Mj is bounded by some smallconstant, call it c for now. The learner will have made t mistakes; since 'j is consistentwith all of the trials, we must have t � Mj . Thus we have s=c � 2t�Mj � 1. When we �llin the details this will give the bound of the theorem.We now give the details of the proof. The adversary maintains weights correspondingto the functions '1; : : : ; 'n in variables u1; : : : ; un. Initially for each i, ui = 2�Mi . Thetrials are generated by repeating the following procedure; each iteration other than the�nal one generates one trial. Let r denote the number of the trial to be generated duringthe current iteration. For the �rst iteration r = 1 and it is incremented by 1 at eachiteration. At the beginning of the rth iteration, the adversary sets kr = blog2Pni=1 uic.Thus 2kr � Pni=1 ui < 2kr+1. (Note that kr is not necessarily positive.) If maxi ui > 2kr�1then the adversary stops without generating any further trials. A total of r�1 trials will havebeen generated. Otherwise, we apply Lemma 7.2, with the ri in the lemma correspondingto the current values of the ui. (In iterations after the �rst, some of the ui will be zero; itthat case we apply the lemma to the subsequence consisting of the ui that are non-zero.)Since maxi ui � 2kr�1 <Pni=1 ui, this lemma tells us that there exists some K � f1; : : : ; ngsuch that Pi2K ui = 2kr�1. The adversary chooses an instance x for the current trial suchthat 'i(x) = 0 for i 2 K and 'i(x) = 1 if i =2 K. This is possible because the target classis shattered by the domain. It chooses the label � so that it is not equal to the predictionof algorithm A. (We will argue later that there will be at least one function in the targetclass consistent with all pairs of instances and labels chosen by the adversary.) Thus thelearner makes a mistake at each trial. In preparation for the next iteration, the adversarysets ui to zero if 'i(x) 6= �, for each i.The adversary continues to generate trials by repeating this strategy until it terminatesas described. In a moment, we will argue that it does indeed terminate. First note thatat the rth iteration, Pni=1 ui � 2kr . If the strategy does not terminate at the beginning ofthis iteration, then for the set K determined during this iteration, Pi2K ui = 2kr�1. Thuswe also have Pi=2K ui � 2kr�1. Hence when the adversary updates the ui at the end of theiteration, it will decrease Pni=1 ui by at least 2kr�1. Furthermore, the new value of Pni=1 uiwill be at least 2kr�1. The strategy must terminate since at least one non-zero ui is set tozero during each iteration.For r > 1, the argument of the previous paragraph tells us that at the beginningof the rth iteration, Pni=1 ui � 2kr�1�1. Since at that time 2kr+1 > Pni=1 ui we havekr + 1 > kr�1 � 1. Therefore, kr � kr�1 � 1. Hence kr � k1 � (r � 1). This holds evenif termination occurs at the beginning of iteration r. If a total of t trials are generated,then termination occurs at the beginning of the (t + 1)st iteration, at which time we havemaxi ui > 2kt+1�1 � 2k1�(t+1).We now show how to choose a target function 'j . Choose j such that at the beginning ofiteration t+ 1 we have uj = maxi ui. Since uj > 0 it is still at its initial value. Substitutingthe de�nitions of uj and k1 into the inequality at the end of the previous paragraph, weobtain 2�Mj > 2blog2Pni=1 2�Mic�(t+1)From this we get



7. Pools of Functions 27t+ 1�Mj > $log2 nXi=1 2�Mi%Since uj is non-zero at termination, the function 'j must have been consistent with all ofthe labels and therefore could be the target function. Since the learner has made t mistakes,we must have t �Mj , so $log2 nXi=1 2�Mi% < 1Thus log2 nXi=1 2�Mi < 1so nXi=1 2�Mi < 2as desired.Suppose that for some set of integers M1; : : : ;Mn we want to construct a learningalgorithm that makes no more than Mi mistakes if the target function turns out to be'i for i = 1; : : : ; n. When the domain shatters the target class f'1; : : : ; 'ng, the followingcorollary tells us that if any algorithm can accomplish this, then there is a way to choosethe initial weights for WM that will do so.Corollary 7.1: Let f'1; : : : ; 'ng be a collection of functions with range f0; 1g that is shat-tered by the domain X. Suppose that A is an on-line learning algorithm and that M1; : : : ;Mnare positive integers such that A makes at most Mi mistakes when given a sequence of trialsconsistent with 'i, for i = 1; : : : ; n. Suppose algorithm WM is applied to the pool '1; : : : ; 'nwith initial weights wj = 2�Mj and with � = 0. If there exists an i in the range 1; : : : ; nsuch that the sequence of trials is consistent with 'i, then WM makes at most Mi mistakes.Proof From Theorem 7.2 we have Pni=1 2�Mi < 2. Thus we obtain the desired mistakebound from Theorem 7.1.We also can obtain interesting results for in�nite pools, using algorithm WMI2 .Theorem 7.3: Let M1;M2;M3; : : : be an in�nite sequence of non-negative integers. As-sume that the values Mi are given by a computable function of i. Then we have (a) =)(b) =) (c) =) (d), where (a), (b), (c), and (d) are the following statements:(a) P1i=1 2�Mi is �nite and its value can be computed to arbitrary precision.(b) There exists c 2 R such that for all domains X and computably indexed collectionsof total recursive functions '1; '2; '3; : : : on X there exists an on-line predictionalgorithm A such that for all positive integers i, for all sequences of trials consistentwith 'i, the algorithm A makes at most Mi + c mistakes.(c) For all domains X and computably indexed collections of total recursive functions'1; '2; '3; : : : on X there exists c 2 R, j > 0, and an on-line prediction algorithmA such that for all integers i � j, for all sequences of trials consistent with 'i, thealgorithm A makes at most Mi + c mistakes.(d) P1i=1 2�Mi is �nite.



28 7. Pools of FunctionsIt is interesting to state the contrapositive of the last implication: If P1i=1 2�Mi diverges,then there exists a domain X and a computably indexed collection of total recursivefunctions '1; '2; '3; : : : such that for all c 2 R and j > 0, and for all on-line predictionalgorithms A there exists an integer i � j for which there is a sequence of trials consistentwith 'i on which the algorithm A makes greater than Mi+ c mistakes. Since this holds forall positive j, in fact there exist in�nitely many such i.Proof Statement (c) is weaker than (b). Thus to prove the theorem it su�ces todemonstrate that (a) implies (b) and that (c) implies (d). To see that (a) implies (b)we construct an on-line prediction algorithm A using WMI2 . We apply WMI2 to the pool'1; '2; : : : with initial weights 2�Mi . We can construct the function cW needed by WMI2by using our ability to compute the sum of the initial weights to arbitrary precision. This,coupled with our ability to compute initial partial sums of the weights lets us computeupper bounds on P1j=i 2�Mj that approach 0 as i goes to in�nity. We set the parameter �of WMI2 to zero. Then if 'i is consistent with a sequence of trials, then Theorem 4.1 givesa bound of log2 cW (1) +Mi + 1. We can thus take c = log2 cW (1) + 1.(c) implies (d): We choose the domain X to consist of all �nite strings of 0's and 1's.We choose the collection of functions '1; '2; : : : to be the functions de�ned by 'i(x) = 1if the string x is of length at least i, and if the ith bit of x is 1; otherwise 'i(x) = 0.Choose c and j appropriately to obtain the mistake bounds promised by the hypothesis (c).Notice that for any n � j, the collection 'j ; : : : ; 'n is shattered by the domain. Thus forthe algorithm A to have the given mistake bounds we must have Pni=j 2�(Mi+c) < 2, byTheorem 7.2. Thus the partial sums of P1i=1 2�Mi are increasing and bounded above, sothe series converges to a �nite sum as desired.The algorithm that we use for parts (b) and (c) is thus a version ofWMI2 . As indicatedin the preceeding proof, we can take the constant c of part (b) to be log2 cW (1) + 1. Thevalue of cW (1) is some computable upper bound on P1i=1 2�Mi . By making this upperbound su�ciently precise, we can take c to be log2P1i=1 2�Mi + 2. (Here the additiveconstant 2 could be replaced by any constant greater than 1.) If we are to choose aconstant c that will work regardless of the target class, then the proof indicates that wemust have Pni=1 2�(Mi+c) < 2 for all n. Thus we must have P1i=1 2�(Mi+c) � 2, that is,c � log2P1i=1 2�Mi � 1. This theorem lets us rederive some of the results of Barzdin andFreivalds [BF72,BF74], given in the following corollary.Corollary 7.2: ([BF72,BF74]) For any algorithm A and function f , let M(A; f) denotethe maximum number of mistakes made by A on any sequence of trials consistent with f .Given any domain X,(a) for every computably indexed collection of total recursive functions '1; '2; : : : onX there exists an on-line prediction algorithm A such that M(A;'1) is �nite andM(A;'i) = log2 i+ log2 log i+ o(log log i), for i > 1.(b) there exists a computably indexed collection of total recursive functions '1; '2; : : : onX such that for every on-line prediction algorithm A there exist in�nitely many i suchthat M(A;'i) > log2 i+ log2 log i.Proof Part (a) follows immediately from Theorem 7.3 and the fact that P1i=2 1i ln i(ln ln i)2converges. Part (b) follows from Theorem 7.3 and the fact that P1i=2 1i ln i diverges. (See



8. Anomalies 29the statement of the contrapositive of the �nal implication of the theorem that appearsimmediately following the theorem.)We also obtain the following result given in slightly weaker form in [BF74]. (Their lowerbound is log2 n � 3.)Theorem 7.4: There exists a domain X and a computably indexed class of total recursivefunctions '1; '2; : : : such that for any n � 1 and any on-line prediction algorithm A thereexists a sequence of trials consistent with some function from f'1; : : : ; 'ng on which Amakes at least blog2 nc mistakes.Proof We choose the domain and target class as in the proof of the implication (c) =)(d) of Theorem 7.3. Thus if Mi is a mistake bound for the given algorithm for sequencesconsistent with 'i we have Pni=1 2�Mi < 2. Let M = maxi2f1;:::;ngMi. Then n2�M < 2. ThusM > log2 n� 1. Since M is an integer, this implies that M � blog2 nc, as desired.8 AnomaliesWe continue to consider pools of functions, now without the requirement of shatteringimposed in part of the previous section. In this section we consider the case where thereis no function in the pool that is consistent with all of the trials. With respect to a givenfunction, we de�ne the number of anomalies in a sequence of trials to be the number oftrials that are inconsistent with that function. Given a pool of functions F , we will say thata sequence has � anomalies if � is the minimum number of anomalies of the sequence withrespect to any function in F . In this case we cannot necessarily say that particular trialsare anomalous; for example, there may be two functions in F minimizing the number ofanomalies, and they may be consistent with di�erent trials. As in the previous section, wewill assume that all functions in the pool are f0; 1g-valued. In this section we will considerthe randomized algorithm WMR as well as WM . We will assume that the instances andlabels are chosen deterministically.Note that there are two types of situations in which anomalies arise: one in which thesequence of trials is in fact consistent with some target function, but not with any functionin the pool, and the other in which the same instance appears in the sequence with di�erentlabels at di�erent appearances. The latter may occur if there are errors in the instancesor the labels, or if there is insu�cient information reported in each instance to uniquelydetermine the appropriate label. Our upper bounds apply in both types of situations. Ourlower bounds are for the second type of situation.We give a lower bound that shows that the rate at which the mistake bound forthe deterministic version of WM grows with the number of anomalies can be made (byappropriate choice of �) arbitrarily close to the best possible for deterministic predictionalgorithms. We also show that the rate at which the expected mistake bound for WMRgrows can be made arbitrarily close to the best possible rate of growth for randomizedalgorithms. Given some class of functions F , let S� be the collection of all sequences oftrials S that have at most � anomalies. We de�ne opt(F; �) to be the minimum over alldeterministic algorithms A of the maximum over all sequences S 2 S� of the number ofmistakes made by A on S. Thus the value opt(F; �) is thus the best bound for the classF that can be obtained (deterministically) in the presence of � anomalies. We de�neoptRAND(F; �) to be the minimum over all algorithms (including randomized algorithms)



30 8. AnomaliesA of the maximum over all sequences S 2 S� of the expected number of mistakes made byA on S. The randomization used by A is assumed to be independent of the choice of thesequence.Theorem 8.1: For all target classes F and all � � 0, if jF j > 1 then opt(F; �) � opt(F; 0)+2�.Proof Let k = opt(F; 0). Since jF j > 1, k � 1. Saying that opt(F; �) � k+2� is equivalentto saying that for any deterministic learning algorithm A, there exists a function f 2 Fand a sequence of trials having at most � anomalies with respect to f , such that A makesat least k + 2� mistakes when presented with that sequence of trials. Given an algorithmA, we will show how an adversary can choose a function and a sequence of instances suchthat A makes at least k + 2� mistakes.We will use the notion of a mistake tree used in [Lit88,Lit89b]. A mistake tree for a poolof functions F over a domain X is a binary tree each of whose nodes is a non-empty subsetof F and each of whose internal nodes is labeled with a point of X . Its root is F . Givenany internal node F 0 labeled x, the left child of that node, if present, must be the subsetof F 0 consisting of all functions in F 0 that are 0 at x. (The left child can be present onlyif this subset is non-empty.) The right child, if present, must be the set of functions in F 0that are 1 at x. (Again, this subset must be non-empty for the right child to be present.)A complete k-mistake tree is a mistake tree that is a complete binary tree of height k. (Wede�ne the height of a tree to be the length in edges of the longest path from the root to aleaf.) It is shown in [Lit88,Lit89b] that for any pool of functions F there exists a completeopt(F; 0)-mistake tree.The adversary's strategy is divided into two stages. For the �rst stage, the adversarykeeps track of a current mistake tree. Initially this is a complete k-mistake tree for F . Ifk = 1, the adversary proceeds immediately to the second stage. Otherwise, the �rst instancechosen by the adversary is the label of the root of the tree. Whatever the algorithm predicts,the adversary tells the algorithm that its prediction is wrong. This response of the adversaryeliminates some functions as possible target functions. One of the two subtrees of the rootof the adversary's current mistake tree is a complete k � 1 mistake tree for the remainingcandidate functions. The adversary sets its current mistake tree to that subtree. It choosesthe next instance to be the label of the root of the new current tree. The adversary continuesin this manner, forcing the algorithm to be wrong at each instance. After j mistakes, theadversary's current tree is a complete k� j mistake tree for the remaining candidate targetfunctions. As long as j < k, the root of the current tree has two children corresponding tonon-empty subclasses of F ; thus the adversary can choose a point (the label of the root) atwhich it can force the algorithm to make a mistake. The adversary continues with the �rststage until k � 1 mistakes have been made.At the end of the �rst stage, there will be an instance x and a pair of functions f1 andf2 in F both of which are consistent with the �rst k � 1 trials such that f1(x) 6= f2(x).(The instance x is the label of the root of the �nal 1-mistake tree of the adversary, andthe functions f1 and f2 can be chosen from the left and right children of the root.) Theadversary now generates 2� + 1 trials, each with the same instance x. For each trial theadversary chooses the label to be unequal to the prediction of the algorithm. Supposewithout loss of generality that for the majority of the second-stage trials the generatedlabels are consistent with f1. Then at most � of the trials are inconsistent with f1. Thuswe have found a sequence of trials with at most � anomalies with respect to F on whichthe algorithm has made 2� + k mistakes, as desired.



8. Anomalies 31In the case of � anomalies, our mistake bound forWM is log jF j+� log 1�log 21+� (see Corollary 2.2,k = 1). As � approaches 1, the coe�cient of � approaches the optimal value of 2. However,at the same time the coe�cient of log jF j approaches in�nity. Thus some compromise isneeded. For � = 12 , we have the bound log2 jF j+�log2 43 . For some concept classes opt(F; 0) =log2 jF j; for others it is strictly less, and there is an additional gap between the lower boundthat we give and our bound for WM .We can establish a lower bound for randomized algorithms by essentially the sameargument. The lower bound applies even in the case that the choice of the instances andlabels is made without any dependence on the predictions of the algorithm, and thus it alsoapplies to the model in which such dependence is allowed.Theorem 8.2: For all target classes F and all � � 0, if jF j > 1 then optRAND(F; �) �12opt(F; 0) + �.Proof We describe how to adapt the proof of Theorem 8.1. We require the adversaryto compute the sequence of instances and labels ahead of time, since we do not want thesequence to depend on the random choices made by the algorithm. We can, however, assumethat the adversary has full knowledge of the algorithm. The adversary proceeds exactly asabove, except that instead of choosing labels as above, it determines the probability that thealgorithm will predict 1 at the current trial, given the preceding sequence of instances andlabels chosen by the adversary. (The probability is not conditioned on previous responsesof the algorithm.) The adversary chooses the label 0 if and only if this probability exceeds12 . Thus at each trial the expected number of mistakes is at least 12 , giving a lower boundone-half the size of the lower bound we obtained for deterministic algorithms.Suppose we run WMR with 0 < � < 1 on a pool of size n with equal initial weightsand that there are � anomalies. Let m denote the number of mistakes made by WMR.Corollary 6.1 gives an upper bound on the expected number of mistakes ofE(m) � ln n+ � ln 1�1� �In this section we have shown that the best possible value of the coe�cient of � in theupper bound for any algorithm is 1. Its value in the upper bound for WMR can be madearbitrarily close to 1 by choosing � su�ciently close to 1.It is also interesting to look at the upper bound given by Theorem 6.3 in this situation.Since the instances and labels are here assumed to be chosen deterministically, by Theorem6.3 for 0 < a � 1P (m > (1 + a) lnn1� � + �(1+ a) ln(1=�)1� � ) � e�a2(ln n+� ln(1=�))3(1��)By making � close to 1 and a close to 0, the factor (1+a) ln(1=�)1�� multiplying � can be madearbitrarily close to 1. A natural assumption is that the number of anomalies grows inproportion to the number of trials. In that case, after su�ciently many trials, with �su�ciently close to 1, we will have high con�dence that the ratio of the number of mistakesto the number of anomalies is not much more than 1. (By contrast, in the bound for thedeterministic algorithm WM , the factor multiplying � is always greater than 2.)



32 9. ConclusionMaster Predictions of Predictions of Labels Bound CommentsAlgorithm Pool Members Master AlgorithmWM binary binary binary ln winitwfinln 21+�WML binary binary binary (Thm 3.1) for shifting targetWMI2 binary binary binary (Thm 4.1) for in�nite poolsWMG [0; 1] binary binary ln winitwfinln 21+�WMC [0; 1] [0; 1] [0; 1] ln winitwfin1��WMR [0; 1] binary binary ln winitwfin1�� randomized predictionsTable 9.1: Summary of Weighted Majority Versions9 ConclusionWe have investigated various master prediction algorithms that use the predictions ofa pool of algorithms to make their own predictions. Initially each member of the poolis given a positive weight. The weight of a pool member represents the \belief" of themaster algorithm in the predictions of the member. These weights are updated dependingon how good the predictions of the corresponding algorithms are. In all our algorithms theprediction of the master is based on the weighted average of the predictions of the poolmembers.In the most basic master algorithm all predictions of the pool members and the masteras well as the labels of the examples are required to be binary. For that algorithm the mastersimply predicts in the same way as the weighted majority of the pool members do. Variousvariants of this basic algorithm have been introduced that allow continuous predictions andlabels in [0; 1]. We have also given a probabilistic variant. Table 9.1 gives a summary.We have developed upper bounds for the predictive performance of the master algorithmsin terms of the performance of the algorithms in the pool. We have applied WM in varioussettings (corollaries 2.1 to 2.3). Similar corollaries hold for all variants. The simplestcorollary gives a bound on the performance of the master as a function of the best algorithm(specialist) in the pool (Corollary 2.1). We have given a version WML of WM that workswell for cases where di�erent pool members are specialists for various sections of the trialsequence. Probabilistic versions and versions that allow continuous predictions which alsohave the capability of tracking the specialist can easily be developed. The same holds forthe version WMI2 of WM that allows the pool to be countably in�nite. Furthermore itwould be easy to combine the capabilities of tracking the specialist and handling in�nitepool size into a single algorithm.We have tried to keep the exposition simple in that each master algorithm focuses on onesetting in which weighted majority techniques are useful. We have developed a uni�ed proofmethod for all bounds as well as given simple direct proofs that sometimes seem unrelated.



10. Acknowledgments 33Note that each of the master algorithms spends little computation time beyond thatrequired for simulating the algorithms in the pool (which might be done in parallel).The number of operations required in each trial to compute the prediction of the masteralgorithm and to update the weights, if necessary, is linear in the size of the pool for allalgorithms other than WMI2 , where it is linear in the size of the active subpool plus thetime required to compute cW .As discussed in the introduction our techniques can be used to �nd the best setting ofparameters of a given algorithm and to establish loss bounds for learning classes of functions.Our methods justify the following philosophy: For a given application �nd a large pool ofcandidate prediction algorithms which might work well for the application and combinetheir predictions using one of the master algorithms presented. (The practical size of thepool will depend on available computational resources.) The additional loss of the masterover the best pool member is essentially only logarithmic in the size of the pool and there isonly minimal computational overhead aside from running all pool member in parallel. Onemight design schemes for removing algorithms from the pool if their weight degeneratesafter a reasonable number of examples have been processed and schemes for replacing theremoved algorithms by new trial candidates. However if the trial sequence is non-stationaryin that a previously bad algorithm may become a specialist at a later point, then algorithmsshould be removed only temporarily.One might also design master algorithms for case where not all algorithms of the poolare available during the initial trials but the algorithms of the pool \wake up" and \fallasleep" at various times. Finally one could use our master algorithms for designing simplenetworks of algorithms. In each node the input predictions are combined into an outputprediction by using one of the master algorithms. The simplest network would be a treewith the algorithms of the pool at the leaves and WM algorithms at the internal nodes.In case of a mistake the weights of the subpool of the children of the root which predictedwrong are updated and recursively, for all nodes whose weights were updated, the weightsof the subpool of their children that predicted wrong are updated. Does this hierarchicalapplication have any advantage over a single master that combines all predictions of thepool?In all master algorithms presented the parameter � (0 � � < 1) measures how drasticthe update is. (The smaller � the more drastic the update.) We always kept � constantfor all trials. Particularly when there is statistical noise on the examples, it might beadvantageous to slowly increase � with time.10 AcknowledgmentsWe thank David Haussler, David Helmbold and Wolfgang Maass for valuable discussions.References[Ang88] Dana Angluin. Queries and concept learning. Machine Learning, 2:319{342,1988.[Ass83] PatrickAssouad. Densit�e et dimension. Ann. Inst. Fourier, Grenoble, 33(3):233{282, 1983.



34 References[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-muth. Learnability and the Vapnik-Chervonenkis dimension. JACM, 36(4):929{965, 1989.[BF72] J. M. Barzdin and R. V. Freivalds. On the prediction of general recursivefunctions. Sov. Math. Dokl., 13:1224{1228, 1972.[BF74] J. M. Barzdin and R. V. Freivalds. Prognozirovanie i predel'nyi sintez e�ektivnoperechislimykh klassov funktsii (prediction and limit synthesis of e�ectivelyenumerable classes of functions). In J. M. Barzdin, editor, Theory of Algorithmsand Programs, volume 1, pages 101{111. Latvian State University, 1974. (inRussian).[Bil86] Patrick Billingsley. Probability and Measure. Wiley, New York, 1986.[DMW88] Alfredo DeSantis, George Markowski, and Mark N. Wegman. Learning proba-bilistic prediction functions. In Proceedings of the 1988 Workshop on Compu-tational Learning Theory, pages 312{328, Published by Morgan Kaufmann, SanMateo, CA, 1988.[FSV89] R. V. Freivalds, C. H. Smith, and M.Velauthapillai. Trade-o� among parametersa�ecting inductive inference. Information and Computation, 82:323{349, 1989.[HKS91] David Haussler, Michael Kearns, and Robert Schapire. Bounds on the samplecomplexity of Bayesian learning using information theory and the VC dimen-sion. In Proceedings of the Fourth Annual Workshop on Computational LearningTheory, pages 61{74, Published by Morgan Kaufmann, San Mateo, CA, 1991.[HO91] David Haussler and Manfred Opper. Calculation of the learning curve of Bayesoptimal classi�cation algorithm for learning a perceptron with noise. In Proceed-ings of the Fourth Annual Workshop on Computational Learning Theory, pages75{87, Published by Morgan Kaufmann, San Mateo, CA, 1991.[HSW90] David Helmbold, Robert Sloan, and Manfred K. Warmuth. Learning nesteddi�erences of intersection-closed concept classes. Machine Learning, 5:165{196,1990. Special issue for the Second Annual Workshop on Computation LearningTheory, 1989, Santa Cruz, California.[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A newlinear-threshold algorithm. Machine Learning, 2:285{318, 1988.[Lit89a] Nick Littlestone. From on-line to batch learning. In Proceedings of the SecondAnnualWorkshop on Computational LearningTheory, pages 269{284, Publishedby Morgan Kaufmann, San Mateo, CA, 1989.[Lit89b] Nick Littlestone. Mistake Bounds and Logarithmic Linear-threshold LearningAlgorithms. PhD thesis, Technical Report UCSC-CRL-89-11, University ofCalif., Santa Cruz, 1989.[LTS89] Esther Levin, Naftali Tishby, and Sarah A. Solla. A statistical approach tolearning and generalization in layered neural networks. In Proceedings of theSecond Annual Workshop on Computational Learning Theory, pages 245{258,Published by Morgan Kaufmann, San Mateo, CA, 1989.[LW89a] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.In Proceedings of the 30th Annual Symposium on the Foundations of ComputerScience, pages 256{261. IEEE, 1989.



Appendix 35[LW89b] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm.Technical Report UCSC-CRL-89-16, University of Calif. Computer ResearchLaboratory, Santa Cruz, CA 95064, 1989.[Maa91] WolfgangMaas. On-line learning with an oblivious environment and the power ofrandomization. In Proceedingsof the Fourth AnnualWorkshop on ComputationalLearning Theory, pages 167{175, Published by Morgan Kaufmann, San Mateo,CA, 1991.[Pit89] Lenny Pitt. Probabilistic inductive inference. JACM, 36(2):383{433, 1989.[PS88] L. Pitt and C. H. Smith. Probability and plurality of aggregations of learningmachines. Information and Computation, 77(1):77{92, 1988.[Shi84] Albert Nikolaevich Shiryayev. Probability. Springer, New York, 1984.[VC71] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relativefrequencies of events to their probabilities. Th. Prob. and its Appl., 16(2):264{80,1971.[Vov90a] Volodimir G. Vovk. private communication, 1990.[Vov90b] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the Third Work-shop on Computational Learning Theory, pages 371{383, Published by MorganKaufmann, San Mateo, CA, 1990.AppendixWe �rst give alternate proofs for theorems 5.1 and 6.1 which give upper bounds on theloss of WMG and WMR, respectively. Secondly, we show that an algorithm introduced byMaass (described in Section 6) satis�es the strong independence condition.The alternate proofs are simple and are very similar to the proof of the upper bound onthe number of mistakes of WM given in Theorem 2.1. Recall that in that proof q0 is thesum of all the current weights wi such that the i-th algorithm predicts 0 and q1 is de�nedsimilarly. Thus the i-th algorithm either contributes all of its weight to q0 or to q1. ForWMG and WMR we allow the prediction xi to be continuous in [0; 1] and if x(j)i is not 0 or1, the weight wi is split between q0 and q1, leading to the following more general de�nition:q0 = nXi=1wi(1� xi) and q1 = nXi=1wixi:Note that the total weight before the trial is again q0+ q1 Also if xi 2 f0; 1g then the abovecoincides with the previous de�nition of q0 and q1 which was used for WM .Alternate proof of Theorem 5.1, the upper bound on the total loss of WMG:Recall that WMG may predict 0 if q0 � q1 and 1 if q1 � q0.If no mistake occurs in a trial then the weight may only decrease. As in the proof ofTheorem 2.1 we only have to show that if WMG makes a mistake then the total weightafter the update is at most 1+�2 (q0 + q1).Assume q1 � q0 at trial j and WMG's prediction is 1 even though the correct predictionis � = 0. Then the total after the update isnXi=1wi(1� (1� �)xi) = nXi=1wi(1� xi + �xi) = q0 + �q1:



36 AppendixIn the other case assume q0 � q1 and WMG's prediction is 0 even though the correctprediction is � = 1. ThennXi=1wi(1� (1� �)(1� xi)) = nXi=1 wi(�(1� xi) + xi) = �q0 + q1:In both case the larger q0 and q1 is multiplied by � and thus as in the proof of Theorem2.1, it is easy to show that the total after the update is at most 1+�2 (q0 + q1).Alternate proof of Theorem 6.1, the upper bound on the expected total lossof WMR: Assume there are t trials. For the j-th trial, with sums of weights q0 and q1as described above, and with label �(j), let s(j) = q0 + q1 and let u(j) = qb, where b isthe complement of the label �(j). Thus s(1) = winit. Let s(t+1) = wfin. In the j-th trialthe probability that WMR makes a mistake is u(j)s(j) . Also the total weight decreases by(1� �)u(j). We observe that s(j+1) = s(j) � (1� �)u(j) andZ s(j)s(j+1) 1xdx � Z s(j)s(j+1) 1s(j)dx = (1� �)u(j)s(j) :The expected number of mistakes in the t trials is the sum of the probabilities of making amistake in each trial, which equalstXj=1 u(j)s(j) � 11� � tXj=1 Z s(j)s(j+1) 1xdx = 11� � Z s(1)s(t+1) 1xdx = ln s(1)s(t+1)1� �as desired.Next we show that an appropriately constructed version of the algorithm introduced byMaass (described in Section 6) satis�es the strong independence condition. We will use thefollowing lemma regarding conditional expectations (cf. [Bil86, exercise 34.4]):Lemma A.1: Let � be a random variable such that E(j�j) < 1. Let � be a f0; 1g-valuedrandom variable, let G be some �nite �-algebra, and let A be the �-algebra generated by Gand �. Then �E(��jG) = E(�jG)E(��jA) (a.s.)Proof For any atom U 2 G such that P (U) > 0 we haveZU E(��jG) = ZU �� = ZU E(��jA) = ZU �E(�jA) = a ZU �where a is the unique value of E(�jA) on the set U \ ��1(1). This equalsa ZU E(�jG) = abP (U)where b is the unique value of E(�jG) on the set U . Let c be the unique value of E(��jG)on U . Then we obtain cP (U) = abP (U). This gives the desired result for any point inU \ ��1(1). The result is trivial on the rest of U , thus proving equality holds almost surely,as desired.



Appendix 37Theorem A.1: Assume that all pool members make binary predictions. Suppose that algo-rithm WMR is implemented as follows: The weights are updated in each trial as describedin Section 5, using � = 0. Since the pool members' predictions are binary this amountsto either leaving each weight unchanged or setting it to zero, depending on whether or notthe corresponding pool member's prediction matches the label. Each prediction is made bymaking the same prediction that a randomly chosen pool member makes. However, a newpool member is not chosen in every trial. Initially, and at the beginning of any trial im-mediately following a mistake, a new choice is made. Otherwise the most recently chosenpool member is used. Suppose that the random choice is made as follows: at each trial jfor which a new pool member must be chosen, the algorithm independently chooses a realnumber r(j) uniformly from [0; 1]. It then chooses the pool member with index k for whateverk satis�es Pk�1i=1 w(j)is(j) < r(j) � Pki=1 w(j)is(j) . (The event r(j) = 0 has 0 probability|it can choosearbitrarily in that event; we assume that real numbers are available, and will not discussapproximations necessary for actual implementation of the algorithm.) If this algorithm isrun and the choices of all of the r(j) are independent of each other and of the choices of allof the instances and labels, then the strong independence condition is satis�ed.Proof Suppose there are t trials. Let �(j) denote the index of the pool member chosen intrial j. It su�ces to show that for 1 � j � t and 1 � k � nP (�(j) = kj(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1)) = w(j)ks(j)We prove this by induction. This clearly holds for the �rst trial. For other trials, we haveP (�(j) = kj(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1))= P (�(j) = k and �(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1))+P (�(j) = k and �(j�1) 6= �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1))We look at these two terms separately:P (�(j) = k and �(j�1) 6= �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1))= P (Pk�1i=1 w(j)is(j) < r(j) � Pki=1 w(j)is(j)and �(j�1) 6= �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1))This is 0 if �(j�1) = �(j�1) and otherwise equals w(j)ks(j) . For the other term, we have wherever�(j�1) = �(j�1)P (�(j) = k and �(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1))= P (�(j) = k and �(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�2))P (�(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�2))using Lemma A.1. Since a new random choice is not made when no mistake is made, thisequals P (�(j�1) = k and �(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�2))P (�(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�2))



38 AppendixBy the induction hypothesisP (�(j�1) = k and �(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�2))= 8<: w(j�1)ks(j�1) if x(j�1)k = �(j�1)0 otherwiseThis equals w(j)ks(j�1) . AlsoP (�(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�2))= Xk s.t. x(j�1)k =�(j�1) w(j�1)ks(j�1) = s(j)s(j�1)Thus we getP (�(j) = k and �(j�1) = �(j�1)j(x(1); �(1)); : : : ; (x(t); �(t)); �(1); : : : ; �(j�1))equals 0 where �(j�1) 6= �(j�1) and equals = w(j)ks(j) where �(j�1) = �(j�1). Putting the twoterms that we started with together yields the desired result.


