8803 Machine Learning Theory

Maria Florina Balcan Lecture 17: October 20, 2011

Kernels

Definition 1 A pairwise function k(-,-) is a kernel is it corresponds to a legal definition of a dot
product.

As discussed last time, one can easily construct new kernels from previously defined kernels. Sup-
pose ki and ko are valid (symmetric, positive definite) kernels on X. Then, the following are valid
kernels:

1.

BN

Proof. Since each polynomial term is a product of kernels with a positive coefficient, the proof
follows by applying 1 and 2.

. k(x,2) = exp(k(x, 2))

Proof: We have exp(z) = lim; (1. .. + 2%/i!). The proof follows from 5 and the fact that:
k(z,z) = im; 0 ki(z, 2).

k(x,z) = exp (M)
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Clearly, g(z)g(z) is a kernel according to 4, and exp(ki(z,z)) is a kernel according to 6.
According to 2, the product of two kernels is a valid kernel. All these imply that k(z,z) =

exp (M) is a legal kernel.



Note: There are two key properties that are required of a kernel function for an application.
First, it should capture an appropriate measure of similarity for the given domain, and secondly, its
evaluation should require significant less computation that would be needed in an explicit evaluation
of the corresponding mapping ¢. There are several ways to shortcut the computation: use a closed
form analytic expression, exploit a recursive relation and use dynamic programming.

Another important aspect is that kernel functions are not restricted to vectorial inputs. Kernels
can be designed for objects and structures such as graphs, strings, sets, etc.

The polynomial kernel

As mentioned last time, the polynomial kernel is defined as:
ka(x,2) = (< z,2 > +a)?

Expanding the polynomial kernel using the binomial theorem we have

ka( )—i<d> =5 < g, 7 >° (1)
d\¥,z) = s (67 X,z .

s=0

We have l%s(m,z) =< x,z >%is a kernel. A possible feature space is given by all monomials of
degree exactly s, 7' 2y’ - - -z where i; € N and 77 i; = s.

Our discussion last time implies that the features for each component in the sum (1) together form
the features for the whole kernel k4(z, z). So, a possible feature space to the kernel k4(x, ) are all
i1, 2

functions of the form 2!z} - - - % where i; € N and doi=1ij < d.

Fact 1 The dimension of the feature space of the polynomial kernel kq(x, z) is ("ji“d).

Proof: We prove the result by induction over n and d. For n = 1, the number is correctly computed
to d+ 1. For d = 1 the number is correctly computed to n + 1. Now consider the general case and
divide the monomials into those that contain at least one factor z; and those that have i; = 0.
Using the induction hypothesis there are ("gﬁlzl) of the first type of monomial, since there is a
1 — 1 correspondence between monomials of degree at most d with one factor z; and monomials
of degree at most d — 1 involving all base features. The number of monomials of degree at most
d satisfying 41 = 0 is on the other hand equal to (nfclﬁd) since this corresponds to a restriction to

one fewer input feature. Hence, the total number of monomials of degree at most d is equal to

() ()02

as required. N



The all subsets kernel

Assume that we have a feature ¢4 for every A C {1,2,...,n}, defined as ¢ 4(z) = [[;c 4 zi- Consider
() = (pa(z)) acqr,2,...ny and define kc (7, 2) =< ¢(), p(2) >.

There is a simple computation that evaluates the all-subsets kernel, as the following derivation
shows:

kc(z,z) = <o¢(z),¢(z) >= Z pa(x)palz) =

Ag{l,Q,...ﬂ’L}
n
AC{1,2,...n} i€A i=1

The ANOVA kernel

The ANOVA (analysis of variance) kernel &, is like the all-subsets kernel except that is restricted
to subsets of the given cardinality d. We have

() = (Pa(T)) ac(1,2,...n},|A|=d-

The dimension of the resulting embedding is clearly (%) since this is the number of such subsets,
while the resulting inner product is given by

ka(z,2) = <o(x),0(2) >= Y dala)palz) =
|A]=d

= Z (xil Zil)(l‘z‘zzig) cee (xidzid)'

1<i1<i2<...1q<n

As we stressed earlier, we aim to be able to evaluate a kernel faster than by an explicit computation
of the feature vectors. Here, for an explicit computation the number of operations grows as (dé‘)

since there are () features each of which requires O(d) operations to evaluate.

We now show a better recursive method to evaluate the kernel. In order to do so, we introduce a
series of intermediate kernels. Let x1.,, denote (x1,x9,...,2y). For m > 1 and s > 0 we introduce
kT" = ks(21.m, 21:m) which is the ANOVA kernel of degree s applied to inputs restricted to the first
m coordinates. In order to evaluate kI'(z,z) we now argue inductively that its features can be
divided into two groups: those that contain x,, and the remainder. There is a 1 —1 correspondence
between the first group and the subsets of size d — 1 restricted to x1.,,—1, while the second group
are subsets of size d restricted to x1.;,,—1. It follows that:

kT (z,z) = (a:mzm)k?:ll(x,z)—I—k:;”_l(:n,z).

The base of the recursion is m < s or s = 0. Clearly, we have, kJ*(z,z) = 0 if m < s (since no
subset of size s can be found) and k{'(z, z) = 1 (since the empty set has a feature value of 1).



The cost of implementing the recursion naively is at least (Z) We can however use dynamic
programming and compute the kernel with O(nd) numerical operations. We save in a dynamic
programming table k" (x, z) indexed by s and m as they are computed. If we begin the computation
with the first row from left to right and continue down the table taking each row in turn, the
evaluation of a particular entry depends on the entry diagonally above to its left and the entry
immediately to its left; hence, both values will be in the table. The required value will be bottom
rightmost entry in the table.

Diffusion Kernels

Let G = (S, E) be a graph. The vertices are the data points. Let B be a symmetric base similarity
matrix of size |S| x |S| whose entries are the weights of the edges of the graph G. For example, let
us consider a biological application. S is a set of proteins, and B is a matrix of 1’s and 0’s which
represent protein-protein interaction. Each location in B with a 1 indicates that the corresponding
proteins interact, while a 0 stands for no interaction.

In general, B is not positive semi-definite. Therefore, it cannot be used directly as a kernel.
Diffusion kernels convert the similarity rule into a kernel.

Consider B2 = BBT. If the graph G is unweighted then the (i, j)-th entry of B? is the number
of common friends between the the i-th and j-th data points (or the number of paths of length 2
between i and j) and it can be thought of as a measure of their similarity. Clearly B? is positive
semi-definite. Higher powers of B measure higher order similarities. In general, only the even
powers are guaranteed to be positive semi-definite. It is natural to consider a weighted sum of the
powers of B in which the higher orders are given lower weights. Let us consider

1
exp(AB) = Z g)\kBk,
k=0 """

for A < 1. If B =UAUT is the spectral decomposition of B, then we have
B? =UANUTUAUT = UN*UT.
In general we have B¥ = UA*UT . Therefore,
exp(AB) = U exp(AM)UT.

Since exp(AA) is a kernel, we get that exp(AB) is a kernel as well.

This is an example of a diffusion kernel. The term diffusion derives from the connection to random
walks and the heat equation in physics.



