
Symbolic Model Checking of Concurrent Programs
using Partial Orders and On-the-fly Transactions

Vineet Kahlon1, Aarti Gupta1, and Nishant Sinha21 NEC Laboratories America, Princeton, NJ 08540, USA.2 Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Abstract. The state explosion problem is one of the core bottlenecks inthe
model checking of concurrent software. We show how to ameliorate the prob-
lem by combining the ability of partial order techniques to reduce the state space
of the concurrent program with the power of symbolic model checking to ex-
plore large state spaces. Our new verification methodology involves translating
the given concurrent program into a circuit-based model which gives us the flex-
ibility to then employ any model checking technique of choice – either SAT or
BDD-based – for verifying a broad range of linear time properties, not just safety.
The reduction in the explored state-space is obtained by statically augmenting the
symbolic encoding of the program by additional constraints. These constraints
restrict the scheduler to choose from a minimalconditional stubborn setof tran-
sitions at each state. Another key contribution of the paper, is a new method for
detecting transactionson-the-flywhich takes into account patterns of lock acqui-
sition and yields better reductions than existing methods which rely on a lock-
set based analysis. Moreover unlike existing techniques, identifying on-the-fly
transactions does not require the program to follow a lock discipline in access-
ing shared variables. We have applied our techniques to the Daisy test bench and
shown the existence of several bugs.

1 Introduction

The widespread use of concurrent software in modern day computing systems neces-
sitates the development of effective verification methodologies for multi-threaded pro-
grams. However, subtle interactions between threads makesmulti-threaded software
behaviorally complex and hard to analyze necessitating theuse of formal methodolo-
gies for their debugging. It is not surprising then that the use of model checking – both
symbolic and explicit state – for the verification of concurrent software has recently
been an active area of research.

Explicit state model checkers, such as Verisoft [God97] rely on exploring an enu-
meration of the states and transitions of the concurrent program at hand. Additional
techniques such as state hashing for compaction of state representations, and partial or-
der methods are typically used to avoid exploring all interleavings of transitions of the
constituent threads. While these techniques are powerful tools for state space reduction,
they still do not fully address the scalability issues that arise due to state explosion when
model checking large-scale concurrent programs.

Symbolic model checkers, on the other hand, avoid an explicit enumeration of the
state space by using symbolic representations of sets of states and transitions. One of

the first successful approaches in this regard was the use of BDDs to succinctly rep-
resent large state spaces for the purpose of model checking [McM93]. More recently,
SAT-based techniques [BCCY99] have become popular both forfinding bugs using
SAT-based Bounded Model Checking (BMC) and for generating proofs via SAT-based
Unbounded Model Checking (UMC).

One of the contributions of this paper is that we have proposed a new method-
ology to leverage the synergy that results from combining the ability of partial order
techniques to reduce the state space of the system to be explored with the power of
symbolic model checking techniques to explore large state spaces that has many advan-
tages over existing techniques that attempt to achieve the same goals. Indeed, methods
different from ours that combine partial order reductions with the use of BDDs were
given in [ABH+01,LST03]. However, the use of BDDs requires one to first symboli-
cally encode the entire state space of the given concurrent program thereby running into
the state explosion problem. Our technique gives us the freedom to use any technique of
choice, either SAT or BDD-based. This is crucial as SAT-based BMC techniques tend
to be much more scalable on larger programs than the ones based on the use of BDDs.

We start by translating a given concurrent program into a circuit-based (finite-state)
model. Building upon the F-Soft framework [ISGG05] for translating sequential pro-
grams with bounded data and bounded recursion into circuits, we first obtain a finite
model for each individual thread wherein each variable of the thread is represented in
terms of a vector of binary-valuedlatchesand a boolean next-state function (or rela-
tion) for each latch. Then using a scheduler, we compose the circuits for the individual
threads into one single circuit for the entire concurrent program. Verification is then
carried out on this circuit. Partial order techniques are incorporated into the framework
by statically augmenting the circuit-based boolean encoding of the given concurrent
program with additional constraints. These constraints restrict the transitions explored
from each global state to a minimalconditional stubborn setof that state.

Another contribution of this paper is that we have proposed anew provably bet-
ter method for identifying transactionson-the-flythat is based on analyzing patterns of
lock acquisition as opposed to existing techniques [Sto02,FQ03] which rely on a lock-
set based analysis. Lockset based methods for state space reduction essentially exploit
the ability of locks to enforce mutually exclusive access toregions of code encapsu-
lated between the locking and unlocking operations on the same lock. They rely on the
assumption that the given concurrent program follows alock disciplinein accessing
shared variables, i.e., all accesses to a shared variablesh are protected by the same locklsh [Sto02,FQ03]. Then we can cut down on the number of interleavings that need to be
explored by essentially allowing context switches only before the acquire and after the
release operations onlsh and prohibiting them before access tosh. Disallowing con-
text switches increases the granularity of transitions andcuts down on the number of
possible interleavings resulting in a reduced state space to be explored.

On the other hand, by analyzing concurrent programs for patterns of lock acquisi-
tion rather than for locksets, we can identify not only thosetransactions which lockset
based method do but also some that they don’t. This makes our new technique provably
better. In fact, the lockset based technique for identifying transactions turns out to be a
special case of the one based on lock acquisition patterns that we propose here. More-

over, our technique does not rely on the given concurrent program following a locking
discipline in accessing shared variables. An important advantage of the non-reliance of
our method on lock discipline is that one of the main reasons for the existence of data
races in threads is an unprotected/wrongly protected access to a shared variable. The
requirement of lock discipline precludes the application of these powerful reductions to
programs where such commonly occurring bugs are present. Thus our method enables
the use of lock-based reductions for a broader class of concurrent programs, viz., that
need not follow lock discipline, to catch a frequently occurring class of bugs.

Another, important feature of the lock-pattern based transactions is that they can be
transparently incorporated into partial order reduction by improved conditional depen-
dency detection via addition of extra constraints that are incorporated into the transition
relation not a priori but dynamically while unrolling the executions of the threads. We
show that the increased granularity of transitions due to transactions can be captured as
a reduction in the sizes of the conditional stubborn sets of states.

We believe that our decision to build circuit-based models for concurrent programs
gives us many unique advantages. Indeed, in this sense, the work most closely resem-
bling ours are the approaches presented in [RG05,CKS05] that involve translating aC
program directly into a SAT formula for model checking usingSAT-based BMC. How-
ever [RG05] does not incorporate partial order reductions and neither technique lever-
ages on-the-fly transactions. Circuit based models make it easy to incorporate static
space reduction techniques like partial order reductions,on-the-fly-transactions as well
as lightweight static analysis techniques like range analysis to reduce model sizes. An-
other advantage of our approach lies in the separation of themodel building and ver-
ification phases. Once we have built a circuit for the concurrent program at hand, it
affords us the flexibility to tackle the verification problemusing any model checking
technique of choice for a broad range of linear time temporalproperties, not just safety.
Unlike [RG05,CKS05], we can employ a suite of model checkingtools for a rich class
of linear-timetemporal properties, which can be usedbothfor finding bugs and gener-
ating proofs. These include SAT-based BMC and UMC as well as BDD based model
checking. We believe this flexibility is important as software generated circuits are not
as well structured as hardware circuits and hence no one strategy can be expected to
be universally effective. Thus we have presented a new approach for model checking
concurrent programs that combines the power of symbolic techniques with partial order
reduction and on-the-fly transactions while at the same timeretaining the flexibility to
employ a broad arsenal of model checking techniques – both SAT and BDD-based – for
checking not just reachability but a richer classes of linear-time temporal properties.

In the rest of the paper, Section 2 introduces the system model while on-the-fly
transactions are defined in section 3. The details for modeling concurrent programs as
circuits are provided in section 4 and the Daisy case study insection 5. Finally, we
conclude with some remarks in section 6 along with a comparison with related work.

2 System Model

We consider concurrent systems comprised of a finite number of processes or threads
where each thread is a deterministic sequential program written in a language such as

C. Threads interact with each other using communication/synchronization objects like
shared variables, locks and semaphores.

Formally, we define a concurrent programCP as a tuple(T ;V ;R; s0), whereT =fT1; :::; Tng denotes a finite set of threads,V = fv1; :::; vmg a finite set of shared
variables and synchronization objects withvi taking on values from the setVi, R the
transition relation ands0 the initial state ofCP. Each threadTi is represented by
the control flow graph of the sequential program it executes,and is denoted by the
pair (Ci; Ri), whereCi denotes the set of control locations ofTi andRi its transition
relation. A global states of CP is a tuple(s[1℄; :::; s[n℄; v[1℄; :::; v[m℄) 2 S = C1� :::�Cn � V1 � :::� Vm, wheres[i℄ represents the current control location of threadTi andv[j℄ the current value of variablevj . The global state transition digram ofCP is defined
to be the standard interleaved composition of the transition diagrams of the individual
threads. Thus each global transition ofCP results by firing a local transition of the
form (ai; g; u; bi), whereai andbi are control locations of some threadTi = (Ci; Ri)
with (ai; bi) 2 Ri; g is a guard which is a Boolean-valued expression on the values
of local variables ofTi and global variables inV ; andu is function that encodes how
the value of each global variable and each local variable ofTi is updated. A transitiont = (ai; g; u; bi) of threadTi is enabled in states iff s[i℄ = ai and guardg evaluates
to true in s. If s[i℄ = ai but g need not be true ins, then we simply say thatt is

scheduledin s. We writes t�! s0 to mean that the execution oft leads from states tos0. Given a transitiont 2 T , we usepro
(t) to denote the process executingt. Finally,
we note that each concurrent programCP with a global state spaceS defines the global
transition systemAG = (S; �; s0), where� � S �S is thetransition relationdefined

by (s; s0) 2 � iff 9t 2 T : s t�! s0; ands0 is the initial state ofCP.

3 Lock Synchronization based Reductions

1a: a = 0;
2a: lock(lk);
3a: x = 1;
4a: unlock(lk);
5a: a = 4;

1b: z = 5;
2b: lock(lk);
3b: x = 2;
4b: unlock(lk);
5b: x = 6;

(a) (b)

Fig. 1. ThreadsT1(a) andT2(b) with unprotected access tox
We start by using some examples to motivate our technique. Consider the concurrent

programCP shown in figure 1. Herex, which is the only variable shared among the
threads, is unprotected at control location5b and protected by locklk at all other
locations. Sincex is not protected at all locations where it is accessed, it does not satisfy
lock discipline in the sense of [Sto02,FQ03], which will therefore force a context switch
before locations3a and3b. Consider, however, a global states of CP with threads

T1 andT2 at control locations3a and1b, respectively. The key observation is that
starting at global states of CP, 3a does not interfere with3b and5b even though
5b is unprotected. This is because forT2 to execute3b it has to acquirelk currently
held byT1. But in order forT1 to releaselk, it has to first execute3a. Thus starting
at s, CP is forced to execute3a before3b. As a result no context switch is required
before3a. However, in the global states0 with T1 andT2 at control locations3a and
5b, respectively, the transitions3a and5b do interfere with each other thus forcing a
context switch before3a. The bottom line is that even when shared variables do not
follow locking discipline globally, we can still identify local portions of the state space
where locking discipline is followed. Thus a context drivenanalysis allows us to define
transactions locallyon-the-flywhere existing methods [Sto02,FQ03], because of their
reliance on a global analysis, fail to do so.

1a: a = 1;
2a: lock(lk1);
3a: lock(lk2);
4a: y = 1;
5a: unlock(lk2);
6a: x = 0;
7a: unlock(lk1);

1b: b = 0;
2b: lock(lk2);
3b: lock(lk1);
4b: z = 2;
5b: unlock(lk1);
6b: x = 1;
7b: unlock(lk2);

(a) (b)

Fig. 2. ThreadsT1(a) andT2(b) with unprotected access tox
Taking the above discussion further, we next show that transactions can be identified

even in the absence of lock discipline–local or global. LetCP be the concurrent program
comprised of the two threadsT1 andT2 sharing variablex shown in figure 2. Consider a
global states of CP with threadsT1 andT2 in control locations6a and1b, respectively.
Observe that starting ats, the transitions at control locations6a and6b cannot interfere
with each other even though they access the same shared variable x. This is because
in order for threadT2 to reach location6b from 1b it has to traverse the local path
1b,2b,3b,4b,5b, along which it has to acquire (and release) locklk1 currently
held byT1. In order for that to happen,T1 must releaselk1 for which it must execute
transition6a. This forces transition6a to be executed before6b. Thus no context
switch is required before location6a. The key observation is that even though disjoint
sets of locks were held at locations6a and6b, it was the set of locks that needed to
be acquired byT2 in order to transit from1b to 6b (even though some of these locks
were released before reaching6b) that prevented6a and6b from interfering with each
other. A traditional lockset based analysis as given in [Sto02,FQ03] would treat6a
and6b as conflicting transitions (asx does not follow locking discipline) and force a
context switch before these locations. Thus a conflict analysis based on lock acquisition
patterns is more refined than one based on locksets. Indeed, alockset based analysis
is a special case of lock-pattern based analysis since the set of locks held at a location
would have to be acquired and thus would be tracked in the lockacquisition pattern.

Transactions via Persistent Sets.We now show how to integrate lock-pattern based on-
the-fly transactions with partial order reduction in a transparent fashion by capturing the
increased granularity of transitions due to transactions as a reduction in the sizes of the

conditional stubborn sets of states. This is accomplished by ensuring that if in a global
states, a threadTi is in the process of executing a transaction, then in the persistent set
of s, we include only one transition, viz., the transition ofTi that fires next along the
transaction being executed. This ensures that once the firsttransition of a transaction is
executed, by a threadTi then no other process can be scheduled unless all transitions of
the transaction finish firing.

State space reduction using partial order techniques is obtained by exploring from
each state only those transitions that belong to a persistent set of that state instead of
all the enabled transitions. Although there are many ways tocompute persistent sets,
the method of computing conditional stubborn sets usually generates those with small
cardinality. In this paper, we use standard terminology from the theory of partial order
reductions and the algorithm for computing conditional stubborn sets from [God96],
which we denote byAlgo1. We recall the following definition from [God96].

Might-be-first-to-interfere Let op and op0 be two operations on the same objectO
and s be a reachable state. The relationop Bs op0 holds if there exists a sequences = s1 t1�! s2 t2�! ::: tn�! sn+1 of transitions inAG such that81 � i < n : 8op00 onO used byti: op andop00 are independent in statesi; tn usesop0, andop andop0 are
dependent insn.

For each local transitiona g! b of a thread, we letused(t) denote the set of opera-
tions on variables and synchronization objects executed during the execution oft. A
conditional stubborn set of states of AG can then be calculated as follows:

1. InitializeTs = ftg, wheret is some enabled transition ins.
2. For eacht = a g! b 2 Ts

(a) If t is disabled ins,
i. if Tj = pro
(t) ands[j℄ 6= a, then add toTs all transitionst0 of Tj of the form
 g0! a, or
ii. choose a condition
j in the guardg of t that evaluates to false ins; then, for

all operationsop used byt to evaluate
j , add toTs all transitionst0 such that9op0 2 used(t0) : opBs op0.
(b) If t is enabled ins add toTs all transitionst0 such that

i. pro
(t) 6= pro
(t0) and9op 2 used(t);9op0 2 used(t0) : opBs op0.
3. Repeat step 2 until no more transitions can be added inTs. Then return all transitions inTs

that are enabled ins.

Fig. 3.Algo1 for Computing Conditional Stubborn sets

In Algo1 dependencies between transitions, arising out of operations on shared
communication objects are captured using theBs relation which captures for each oper-
ationop used by a transition in a stateswhich other operationsmight be first to interfere
with op from the current states. In practice, to avoid exploration of the state space of
the program at hand, static analysis is employed in order to compute a relation,Bsts ,
which is an over-approximation ofBs. Towards that end, we say that two operationsop
andop0 arestatically dependentif they access a common shared variable such that at
least one of the accesses is a write operation. ThenBsts , is defined as follows.

Definition Let op and op0 be two operations on a common shared variable ands a
reachable state ofAG. The relationop Bsts op0 holds iff there exist distinct threadsTi
andTj such that there exists (1) a transition ofTi scheduled (not necessarily enabled)

at s usingop, and (2) a local pathx : p0 t1�! ::: tn�! pn of Tj such thatp0 is the local
state ofTj in s, 81 � k < n : 8op00 used bytk: op andop00 are not statically dependent,tn usesop0, andop andop0 are statically dependent.

To incorporate on-the-fly transactions, we modify the abovedefinition ofBsts to
get a new relationBlps � Bsts by adding (in accordance with our discussion above), the
extra constraint that none of the locks held byTi in s is acquired (and possibly released)
by Tj alongx. Note that sinceBlps is more constrained it enforces fewer dependencies
between operations thanBsts thus resulting in smaller conditional stubborn sets. The
effect is to weed out certain interleavings to get the effectof executing transactions.
Indeed, in the example given in fig 2, in global states, if op andop0 are the operationsx = 0 andx = 1 at locations6a and6b, respectively, thenopBsts op0 but:(opBlps op0).
Thus, usingBlps instead ofBsts to compute conditional stubborn sets removes transition
1b from the conditional stubborn set ofs thus preventing a context switch before6a.
Formally,Blps is defined as follows.

Definition (might-be-the-first-to-interfere-modulo-lock-acquisition) Let op andop0
be two operations on a common shared variable ands a reachable state ofAG. The
relationopBlps op0 holds iff there exist distinct threadsTi andTj such that there exists
(1) a transition ofTi scheduled (not necessarily enabled) ats usingop, and (2) a local

pathx : p0 t1�! ::: tn�! pn of Tj such that81 � k < n : 8op00 used bytk: op andop00
are not statically dependent,tn usesop0, andop andop0 are statically dependent and
no lock held byTi in s is acquired byTj alongx.

LetAlgo2 be the result of replacingBs in Algo1 byBsts andAlgo3 the result of replac-
ingBsts in line 2.(b).i ofAlgo2 byBlps . Then the following two results state thatAlgo3
does indeed compute a conditional stubborn set and that, in fact, it computes smaller
conditional stubborn sets thanAlgo2. Note that although we used a specific relationBsts for computing dependencies statically, one can, of course,incorporate on-the-fly-
transactions with any otherimplementationof Bs by merely adding the extra condition
regarding lock acquisition patterns, as above.

Theorem 1.All setsTs that are computed byAlgo3 are conditional stubborn sets ofs.
Proof Sketch.Let t = a g! b executed by threadTi belong toTs. Let w = s1 t1�!s2 t2�! ::: tn�! sn+1 be a sequence of transitions ofAG such thatt is dependent withtn
in sn. We need to show that at least one oft1,...,tn is in Ts. Without loss of generality,
we may assume that for1 � i < n, t is independent withti in si andtn is dependent
with t in sn, else we can pick an appropriate prefix ofw.

First assume thatt is disabled ins. Sincet is disabled ins andsn is the first state
alongw in which t is dependent (withtn), we have thatt is enabled insn+1. Sincet
is disabled ins, eithers[i℄ 6= a, or a condition
 in guardg evaluates to false ins. In

the first case, sincet is enabled insn+1, there exists a transitiontj fired alongw, of
the formd ! a labeled with some guardg0. But then executing step 2.(a).i ofAlgo3,
would causetj to be included inTs. In the second case, there exists a transitiontj , that
changes the value of
 from false to true by changing the output of an operationop used
to evaluate
, i.e., by performing an operationop0 dependent withop in sj . Let tj be the
first such transition occurring alongw. Clearlyop0 is statically dependent withop. By
definition ofBsts , we haveopBsts op0, and sotj 2 Ts by step 2.a.(ii).

Consider now the case whent is enabled ins. From the facts that (i) for1 � j � n�1, t is independent withtj in sj , and (ii)t is enabled ins, we have that for1 � j � n�1,t is enabled insj . This implies that threadTi does not execute any transition alongw,
for otherwise sinceTi is deterministic, we can conclude thatt is the first transition thatTi executes alongw. This which would forceTi out of it current local state thereby
disablingt thus contradicting the above observation. Note that here weassumed that
executing a transition takes a process out of its current local state, i.e., there are no
self loops in a program thread, a reasonable assumption for software programs Now,
sincet andtn are dependent insn, it implies that9op 2 used(t); 9op0 2 used(tn): op
andop0 are dependent insn and hence are also statically dependent. Lettj be the first
transition alongw that uses an operationop00 dependentop. Note also that there does
not exist a lockl held byTi ats such thatl has to be acquired beforetj is executed alongw. For otherwise,l must first be released byTi thus forcingTi to execute a transition
contradicting our observation above thatTi does not execute any transition alongw.
Thus we haveopBlps op00. Hencetj 2 Ts by step 2.b.(i). This completes the proof.ut
Theorem 2.For all transitionst that are enabled ins, for all persistent setsAlgo2(t)
that can be returned byAlgo2, there exists a run ofAlgo3 that returns a persistent setAlgo3(t) � Algo2(t).
Proof Sketch. From the definition of relationBlps , it follows thatBlps is included inBsts . Thus the setTs returned byAlgo3 is always a subset of the one returned byAlgo2,
provided the same choices are made in case of nondeterminism. ut
Note that sinceAlgo3 computes smaller persistent sets than existing lockset-based tech-
niques, it is guaranteed to improve the performance of explicit state model checkers.
Even for symbolic model checkers, since the reduction in thenumber of scheduled
transitions results in a pruning of the state space, it leadsto a performance boost which,
however, may not be directly proportional to the decrease inthe size of the state space
being explored.

4 Software Modeling for Concurrent C Programs

4.1 Translating Individual Threads into Circuits

In this section we briefly describe how, using the F-Soft machinery, we first obtain a
circuit-based model of each thread, under the assumption ofbounded data and bounded
control (recursion) (see [ISGG05] for more details).

We begin with full-fledgedC and apply a series of source-to-source transformations
to simplify complexC expressions into smaller but equivalent subsets ofC . We flatten

all arrays andstructs by replacing them with collections of simple scalar variables,
and build an internal memory representation of the program by assigning to each scalar
variable a unique number representing its memory address. Variables that are adjacent
in C program memory are given consecutive memory addresses in our model; this fa-
cilitates modeling of pointer arithmetic. We model the heapas a finite array, adding a
simple implementation ofmalloc() that returns pointers into this array. For handling
pointer accesses, we first perform a points-to analysis to determine the set of variables
that a pointer variable can point to. Then, we convert each indirect memory access,
through a pointer or an array reference, to a direct memory access. For example, if
we determine that pointerp can point to variablesa,b,...,z at a given program
location, we rewrite a pointer read*(p+i) as a conditional expression of the form
((p+i)==&a ? a : ((p+i)==&b ? b : ...)), where&a,&b,... are the
numeric memory addresses we assigned to the variablesa,b,..., respectively. Non-
recursive function calls are handled by inlining exactly once, and replacing the function
return by a set of goto-s conditioned upon the unique call site id stored on function
entry. Bounded recursive functions are modeled by introducing a bounded call stack.
While we aim for accurate modeling of allC, practical modeling requires making ap-
proximations. We truncate large arrays: writes to elementsabove a certain index are
ignored, and reads from these elements yield non-deterministic values. We currently
approximate floating-point values by modeling their integral parts only.

The simplified program consists of scalar variables of simple types (Boolean, enu-
merated, integer). This is compiled using standard techniques into its control flow graph
(CFG). The CFG representation can be viewed as a finite state machine with state vec-
tor (pc,V), wherepc denotes an encoding of the basic blocks, andV is a vector of
integer-valued program variables. We then construct symbolic transition relations for
pc, and for each data variable appearing in the program. Forpc, the transition relation
reflects the guarded transitions between basic blocks in theCFG. For a data variable, the
transition relation is built from expressions assigned to the variable in various blocks.
Finally, we construct a symbolic representation of these transition relations resembling
a hardware circuit. For thepc variable, we allocatedlogNe latches, whereN is the total
number of basic blocks. For eachC program variable, we allocate a vector ofn latches,
wheren is the bit width of the variable. At the end, we obtain a circuit-based model of
each thread of the given concurrent program, where each variable of the thread is rep-
resented in terms of a vector of binary-valuedlatchesand a Boolean next-state function
(or relation) for each latch.

4.2 Building the Circuit for the Concurrent Program

Given the circuitCi for each individual threadTi, we now show how to get the circuitC for the concurrent programCP comprised of these threads. In the case where local
variables with the same name occur in multiple threads, to ensure consistency we prefix
the name of each local variable of threadTi with thread i. Next, for each threadTi
we introduce a gateexecute i indicating whetherPi has been scheduled to execute
in the next step ofCP or not.

For each latchl, let next-statei(l) denote the next state function ofl in circuitCi. Then in circuitC, the next state value of latchthread i l corresponding to a

local variable of threadTi, is defined to benext-statei(thread i l) if execute i
is true, and the current value ofthread i l, otherwise. If, on the other hand, latch
l corresponds to a shared variable, thennext-state(l) is defined to benext-statei(l),
whereexecute i is true. Note that we need to ensure thatexecute i is true for
exactly one threadTi. Towards that end, we implement a scheduler which determines
in each global state ofCP which one of the signalsexecute i is set totrue and thus
determines the semantics of thread composition.

Conditional Stubborn Sets based Persistent SetsTo incorporate partial order reduc-
tion, we need to ensure that from each global states, only transitions belonging to a
conditional stubborn set ofs are explored. LetR andRi denote the transitions relations
of CP andTi, respectively. IfCP hasn threads, we introduce then-bit vector
stub
which identifies a conditional stubborn set for each global states, i.e., in s,
stubi is
true for exactly those threadsTi such that the (unique) transition ofTi enabled ats
belongs to the same minimal conditional stubborn set ofs. ThenR(s; s0) = _1�i�n((exe
ute i) ^
stubi(s) ^ Ri(s; s0)):
The
stub vector can be computed in the following way:

1. For each shared variablex and threadTi, we introduce a latchtouch-now(Ti; x)
which is true at control locationp
i of Ti iff Ti accessesx at control locationp
i.
This can be done via a static analysis of the CFG ofTi by determining at which
control locationsx was accessed and taking a disjunction for those values ofp
i.

2. For each shared variablex and threadTj , introduce the latchtouch-now-later(Tj ; x),
which is true at control locationp
j of Tj if Tj accessesx at some locationp
0j
reachable fromp
j . Thus computingtouch-now-later(Tj ; x) involves deciding the
reachability ofp
0j , and since we cannot compute it exactly without exploring the
entire state spaceAG of CP, we over-approximate it by doing a context-sensitive
analysis of the control-flow graph ofTj . We settouch-now-later-pair(Tj ; x) to true
in controlp
j if for some controlp
0j reachable fromp
j in the control flow graph
of Tj , x is accessed atp
0j .

3. For distinct threadsTi andTj , the relation
onfli
ti(j) is then defined as_x2Vsh(touch-now(Ti; x)(p
i) ^ touch-now-later(Tj ; x)(p
j)), wherep
i andp
j are the
control locations ofTi andTj , respectively, in the current global state andVsh is
the set of shared variables ofCP.

4. Using a circuit to compute transitive closures, for eachi, starting withJi = fig we
compute the closure ofJi under theconflictrelation defined above.

5. We build a circuit to compute the indexmin such that the cardinality ofJmin
is the least among the setsJ1; :::; Jn. Finally 81 � i � n, set
stubi = 1 iffi 2 Jmin. Note that in the implementation we need to pick only one set with the
least cardinality.

Cycle detectionWe first identifystickytransitions [KLM+98] for all potential global
cycles. We then force a conflict for the process containing the sticky locations with all
other processes via the encoding below. Letsti
ky(p
) be a predicate evaluating to true
iff location p
 has been marked sticky. Then, for global states, we define
onfli
ti(j)

= sti
ky(p
i) _ (touch-now(Ti; x)(p
i) ^ touch-now-later(Tj ; x)(p
j)), wherep
m is
the current control location ofTm in s. In other words, ifp
i is sticky then threadTi is
said to conflict with all other threads.This implies that either a threadTk, with smaller
conflict setJk, would be chosen for the persistent set computation or a fullexpansion
forced.

This reduction is sound, since (as was shown in [KLM+98]) any cycle in the global
state space can be projected on to one or more local cycles in the control flow graph
of the individual threads. By forcing a full expansion inside each (potential) local cycle
with the help of sticky transitions, we ensure that there is no global cycle such that a
thread transition is postponed at each state of the cycle. Therefore this encoding allows
the model checker to explore a conservative over-approximation of the representative
(minimal) set of interleavings of the given threads. Although the reduced model re-
mains sound, the number of interleavings considered may decrease dramatically with
the number of annotated sticky transitions.

So far, we have implemented sticky transitions only for special cases in which cy-
cles can occur locally in threads. In fact, as was noted in [FG05], our experience also
has been that acyclic state spaces are very common in software implementations for
the purpose of model checking and cycle detection becomes more critical when one is
using an abstraction (which introduces cycles) refinement framework. However since
(i) we put a lot of effort in modeling programs concretely, (ii) do not use abstraction
refinement, and (iii) introduce sticky transitions to covercommon trivial cases, the im-
pact of the existence of cycles is reduced. Nevertheless, weare currently in the process
of extending the implementation of sticky transitions to the general case.

Encoding Lock Pattern based ReductionsIn order to incorporate transactionson-
the-fly, we augment the predicatetouch-now-later, to generate the new predicatetouch-
now-later-LSthat also includes lock acquisition pattern information. For control loca-
tionsp
i andp
0i, of threadTi, let paths(p
i; p
0i) denote the set of paths in the CFG
of Ti starting fromp
i that may reachp
0i. For each� 2 paths(p
i; p
0i) of Ti, letlo
kPred(�) be a formula denoting the set of locks acquired (and possiblyreleased)
along�, e.g.,lk1 = Ti^lk2 = Ti. Let touch-now-later-pair(Tj ; x)(p
j ; p
0j) encode all
possible sets of locks that can potentially be acquired along local paths inTi fromp
i top
0i accessingx, i.e.,touch-now-later-pair(Tj ; x)(p
j ; p
0j) = touch-now(Tj ; x)(p
0j) ^APx(p
j ;
p0j), whereAPx(p
i; p
0i) = W�2paths(p
i;p
0i) lo
kPred(�). LetCLP (Ti;s) denote a formula encoding the ownership of locks byTi in global states. Then the re-
lationtouch-now-LS(Ti; x) is obtained fromtouch-now-later-pair(Ti; x) by quantifying
out p
0i and conjoining with theCLP (Ti; s), i.e., touch-now-LS(Ti; x) (p
i) = (9p
0i
touch-now-later-pair(Ti; x) (p
i; p
0i)) ^ CLP (Ti; s). Thustouch-now-LS(Ti; x) (p
i)
is true if there is a locationp
0i accessing shared variablex that is reachable fromp
i
via a local path� in Ti such that no lock held ins is acquired along�. We evaluatelo
kPred(�) using a context sensitive static analysis of the CFG ofTi.
5 The Daisy Case Study

We have used our technique to find bugs in the Daisy file system which is a benchmark
for analyzing the efficacy of different methodologies for verifying concurrent programs

[dai]. Daisy is a 1KLOC Java implementation of a toy file system where each file is
allocated a unique inode that stores the file parameters and aunique block which stores
data. An interesting feature of Daisy is that it has fine grained locking in that access
to each file, inode or block is guarded by a dedicated lock. Moreover, the acquire and
release of each of these locks is guarded by a ‘token’ lock. Thus control locations in
the program might possibly have multiple open locks and furthermore the acquire and
release of a given lock can occur in different procedures.

Currently F-Soft only accepts programs written in C and so wefirst manually trans-
lated the Daisy code which is written in Java into C. Furthermore, to reduce the model
sizes, we truncated the sizes of the data structures modeling the disk, inodes, blocks,
file names, etc., which were not relevant to the race conditions we checked, resulting
in a sound and completesmall-domainreduction. We have shown the existence of the
race conditions described below also noted by other researchers (cf. [dai]). The efficacy
of our techniques can be judged from the fact that our model checking methodology
has been able to detect these race conditions in Daisy in a fully automatic fashion di-
rectly on the source code without any code structuring/abstractions beyond redefining
the constants as discussed above.

1. Daisy maintains an allocation area where for each block inthe file system a bit is
assigned 0 or 1 accordingly as the block has been allocated toa file or not. But each disk
operation reads/writes an entire byte. Two threads accessing two different files might
access two different blocks. However since bytes are not guarded by locks in order to
set their allocation bits these two different threads may access the same byte in the
allocation block containing the allocation bit for each of these locks thus setting up a
race condition. Note that the race condition occurs for any pair of blocks with numbersi andj wherefloor(i=8) = floor(j=8).

The verification statistics are as follows: We ran our experiments on a machine with
an Intel Pentium4 3.20GHz processor and 2GB RAM. Each run wasgiven a timeout
of 2 days and had a memout of 2GB. Witnesses for the above race condition were
found in two cases,WW1–corresponding to blocks 0 and 1, andWW2–due to blocks 1
and 2. Using purely interleaved scheduling, we failed to findeither witness because of a
memout at depth 15. When only partial order reduction was employedWW1 was found
using SAT-based BMC at unroll depth 122 in 36707 sec and 999MBwhile incorporating
on-the-fly transactions drastically reduced the time and memory usage to 1283sec and
122MB, respectively. The second witnessWW2 was found at depth 151. Using partial
order reduction alone took 145176 sec and 1870 MB, while adding transactions reduced
it to 5925 sec and 902 MB.

2. In Daisy reading/writing a particular byte on the disk is broken down into two
operations: a seek operation that mimics the positioning ofthe head and a read/write
operation that transfers the actual data. Due to this separation between seeking and data
transfer a race condition may occur. For example, reading two disk locations, sayn
andm, we must make sure thatseek(n) is followed byread(n) without seek(m) orread(m) scheduled in between. In this case a witness was found at depth 48. Using par-
tial order reduction alone took 2.99 sec and 5.7 MB while adding transactions reduced
it to 2.89 sec and 5.5 MB. For this example also BMC on the completely interleaved
model failed to find a witness because of a memout at depth 20

The bottom line is that, for deep bugs techniques that leverage the use of on-the-fly
transactions combined with partial order reduction greatly outperform those which use
only partial order reduction – both in terms of time taken andmemory used.

6 Concluding Remarks and Related Work

A comparison of our work with [RG05,CKS05], to which it is most closely related,
was presented in the introduction. Partial order reductionhas been used before for sym-
bolic model checking using BDDs [ABH+01,LST03]. On the other hand, by separating
the modeling and verification phases, our methodology givesus the ability to combine
partial order reductions with any symbolic model checking technique of choice, either
SAT or BDD based. An interesting approach for the verification of concurrent pro-
grams using proof-guided under-approximation-widening methodology was presented
in [GLST05]. Here constraints are added to the BMC model instance so that only a
subset of behaviors of the concurrent system are explored. These constraints are itera-
tively removed during the widening phase as a result of which, in the worst case, one
might end up exploring the entire state space of the concurrent program at hand. In
contrast, we add constraints so that we explore a conditional stubborn set at each global
state thereby yielding considerable state space reduction. Moreover, [GLST05] does not
leverage the use of transactions.

There has also been interesting work ([FQ03,Sto02,SC03,AQR+04,LPQR05]) on
the use of lockset based transactions for verifying software and combining it with partial
order reductions. These techniques first compute the valid set of transactions in each of
the processes and then perform partial order reduction-based state-space exploration. As
noted before, such a two-step combination technique may overlook potential reductions
related to shared variables which do not always follow a locking discipline. The key
reason is that in these approaches a thread-wise global analysis is done to look for
potential dependencies between transitions. In contrast,our approach adds information
to the model while exploring the state space by detecting dependencieson-the-flyvia
an analysis of patterns of lock acquisition. Our more refinedmethod generates fewer
dependencies between transitions resulting in a lesser number of context switches. This
gives us better state space reduction than existing locksetbased techniques.

To sum up, we have presented a new approach for verifying concurrent programs
that combines the power of symbolic model checking with partial order reduction and
on-the-fly transactions while at the same time retaining theflexibility to employ a vari-
ety of error trace generation/proof techniques – both SAT and BDD-based – for check-
ing not just safety but a broad class of linear time temporal properties. The use of lock
acquisition patterns rather than locksets to identify transactionson-the-flyis not only a
powerful technique in its own right but can also be used in a synergistic manner with
both explicit state and BDD-based exploration of concurrent programs as also with dy-
namic partial order reduction techniques [FG05].

References

[ABH+01] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. Partial-order
reduction in symbolic state-space exploration.Form. Methods Syst. Des., 18(2):97–
116, 2001.

[AQR+04] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie. Zing: Exploiting
program structure for model checking concurrent software.In CONCUR, 2004.

[BCCY99] A. Biere, A. Cimatti, E.M. Clarke, and Y.Zhu. Symbolic model checking without
BDDs. InTACAS, 1999.

[CKS05] Byron Cook, Daniel Kroening, and Natasha Sharygina. Symbolic model checking
for asynchronous boolean programs. InSPIN 2005, pages 75–90, 2005.

[dai] Joint CAV/ISSTA Special Event on Specification, Verification, and Testing of Con-
current Software. Inhttp://research.microsoft.com/ qadeer/cav-issta.htm.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for model
checking software. InPOPL ’05, pages 110–121, 2005.

[FQ03] C. Flanagan and S. Qadeer. Transactions for softwaremodel checking. InSoftMC
03, 2003.

[GLST05] O. Grumberg, F. Lerda, O. Strichman, and M. Theobald. Proof-guided underapprox-
imation widening for multi process systems. InPOPL ’05, pages 122–131, 2005.

[God96] P. Godefroid.Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem. LNCS 1032. Springer-Verlag, 1996.

[God97] Patrice Godefroid. Model checking for programminglanguages using verisoft. In
POPL ’97, pages 174–186, 1997.

[ISGG05] F. Ivančić, I. Shlyakhter, A. Gupta, and M. Ganai. Model checkingc programs using
F-Soft. InICCD, 2005.

[KLM +98] Robert P. Kurshan, Vladdimir Levin, Marius Minea, DoronPeled, and Hüsnü
Yenigün. Static partial order reduction. InTACAS ’98, 1998.

[LPQR05] V. Levin, R. Palmer, S. Qadeer, and S. K. Rajamani. Sound transaction-based reduc-
tion without cycle detection. InSPIN ’05, 2005.

[LST03] F. Lerda, N. Sinha, and M. Theobald. Symbolic model checking of software.Electr.
Notes Theor. Comput. Sci., 89(3), 2003.

[McM93] K.L. McMillan. Symbolic model checking: an approach to the state explosionprob-
lem. Kluwer Academic Publishers, 1993.

[RG05] I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent programs.
In CAV ’05, pages 82–97, 2005.

[SC03] Scott D. Stoller and Ernie Cohen. Optimistic synchronization-based state-space re-
duction. InTACAS ’03, LNCS, pages 489–504, April 2003.

[Sto02] Scott D. Stoller. Model-checking multi-threaded distributed Java programs.Interna-
tional Journal on Software Tools for Technology Transfer, 4(1):71–91, October 2002.

