Symbolic Model Checking of Concurrent Programs
using Partial Orders and On-the-fly Transactions

Vineet Kahlort, Aarti Gupta, and Nishant Sinifa

1 NEC Laboratories America, Princeton, NJ 08540, USA.
2 Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Abstract. The state explosion problem is one of the core bottleneckihien
model checking of concurrent software. We show how to ameiothe prob-
lem by combining the ability of partial order techniqueseduce the state space
of the concurrent program with the power of symbolic modetadting to ex-
plore large state spaces. Our new verification methodologgives translating
the given concurrent program into a circuit-based modettviives us the flex-
ibility to then employ any model checking technique of cleoiceither SAT or
BDD-based — for verifying a broad range of linear time praéigst not just safety.
The reduction in the explored state-space is obtained bgaits augmenting the
symbolic encoding of the program by additional constraifiteese constraints
restrict the scheduler to choose from a minimahditional stubborn setf tran-
sitions at each state. Another key contribution of the papex new method for
detecting transactiormn-the-flywhich takes into account patterns of lock acqui-
sition and yields better reductions than existing methob&hvrely on a lock-
set based analysis. Moreover unlike existing techniquiEntifying on-the-fly
transactions does not require the program to follow a loskigline in access-
ing shared variables. We have applied our techniques to dmeyDest bench and
shown the existence of several bugs.

1 Introduction

The widespread use of concurrent software in modern day atngpsystems neces-
sitates the development of effective verification methodis for multi-threaded pro-
grams. However, subtle interactions between threads makésthreaded software
behaviorally complex and hard to analyze necessitatingitieeof formal methodolo-
gies for their debugging. It is not surprising then that tee af model checking — both
symbolic and explicit state — for the verification of conant software has recently
been an active area of research.

Explicit state model checkers, such as Verisoft [God97] ol exploring an enu-
meration of the states and transitions of the concurrergrprao at hand. Additional
techniques such as state hashing for compaction of statesetations, and partial or-
der methods are typically used to avoid exploring all irgavings of transitions of the
constituent threads. While these techniques are poweidid for state space reduction,
they still do not fully address the scalability issues thisteadue to state explosion when
model checking large-scale concurrent programs.

Symbolic model checkers, on the other hand, avoid an explizimeration of the
state space by using symbolic representations of setsteEstad transitions. One of

the first successful approaches in this regard was the us®b&RBo succinctly rep-
resent large state spaces for the purpose of model checkile®193]. More recently,
SAT-based techniques [BCCY99] have become popular botliifding bugs using
SAT-based Bounded Model Checking (BMC) and for generatiogis via SAT-based
Unbounded Model Checking (UMC).

One of the contributions of this paper is that we have prop@s®@ew method-
ology to leverage the synergy that results from combinirggahility of partial order
techniques to reduce the state space of the system to berexplith the power of
symbolic model checking techniques to explore large stadees that has many advan-
tages over existing techniques that attempt to achievedtine goals. Indeed, methods
different from ours that combine partial order reductiorithwhe use of BDDs were
given in [ABHT01,LST03]. However, the use of BDDs requires one to first sylinb
cally encode the entire state space of the given concurregtam thereby running into
the state explosion problem. Our technique gives us thedmdo use any technique of
choice, either SAT or BDD-based. This is crucial as SAT-HeBEIC techniques tend
to be much more scalable on larger programs than the oned badke use of BDDs.

We start by translating a given concurrent program into @u@itbased (finite-state)
model. Building upon the F-Soft framework [ISGGO05] for tstating sequential pro-
grams with bounded data and bounded recursion into cirougdirst obtain a finite
model for each individual thread wherein each variable efttiread is represented in
terms of a vector of binary-valuddtchesand a boolean next-state function (or rela-
tion) for each latch. Then using a scheduler, we composeittits for the individual
threads into one single circuit for the entire concurremigpam. Verification is then
carried out on this circuit. Partial order techniques ao®iporated into the framework
by statically augmenting the circuit-based boolean em@pdif the given concurrent
program with additional constraints. These constraingtric the transitions explored
from each global state to a minimadnditional stubborn setf that state.

Another contribution of this paper is that we have proposes\a provably bet-
ter method for identifying transactioms-the-flythat is based on analyzing patterns of
lock acquisition as opposed to existing techniques [SEQR3] which rely on a lock-
set based analysis. Lockset based methods for state sphutioa essentially exploit
the ability of locks to enforce mutually exclusive accessdgions of code encapsu-
lated between the locking and unlocking operations on theedack. They rely on the
assumption that the given concurrent program followeck disciplinein accessing
shared variables, i.e., all accesses to a shared vasialle protected by the same lock
lsn, [Sto02,FQO3]. Then we can cut down on the number of inteihggvthat need to be
explored by essentially allowing context switches onlydoefthe acquire and after the
release operations dg, and prohibiting them before accessst. Disallowing con-
text switches increases the granularity of transitions @rtd down on the number of
possible interleavings resulting in a reduced state spmloe explored.

On the other hand, by analyzing concurrent programs foepattof lock acquisi-
tion rather than for locksets, we can identify not only thtore@sactions which lockset
based method do but also some that they don’t. This makesesutathnique provably
better. In fact, the lockset based technique for identgtiansactions turns out to be a
special case of the one based on lock acquisition patteatsvipropose here. More-

over, our technique does not rely on the given concurrergnara following a locking
discipline in accessing shared variables. An importanaathge of the non-reliance of
our method on lock discipline is that one of the main reasonghfe existence of data
races in threads is an unprotected/wrongly protected adoes shared variable. The
requirement of lock discipline precludes the applicatibthese powerful reductions to
programs where such commonly occurring bugs are presens dilr method enables
the use of lock-based reductions for a broader class of coe@uprograms, viz., that
need not follow lock discipline, to catch a frequently octg class of bugs.

Another, important feature of the lock-pattern based tiatisns is that they can be
transparently incorporated into partial order reductigrnbproved conditional depen-
dency detection via addition of extra constraints thataceliporated into the transition
relation not a priori but dynamically while unrolling theeputions of the threads. We
show that the increased granularity of transitions duegiogactions can be captured as
a reduction in the sizes of the conditional stubborn setsabés.

We believe that our decision to build circuit-based modetscbncurrent programs
gives us many unique advantages. Indeed, in this sense oifkermost closely resem-
bling ours are the approaches presented in [RG05,CKSObinalve translating &
program directly into a SAT formula for model checking us®¥T-based BMC. How-
ever [RGO05] does not incorporate partial order reductiorsreeither technique lever-
ages on-the-fly transactions. Circuit based models makasy & incorporate static
space reduction techniques like partial order reductionghe-fly-transactions as well
as lightweight static analysis techniques like range aisip reduce model sizes. An-
other advantage of our approach lies in the separation afthdel building and ver-
ification phases. Once we have built a circuit for the corenirprogram at hand, it
affords us the flexibility to tackle the verification problaming any model checking
technique of choice for a broad range of linear time tempan@perties, not just safety.
Unlike [RG05,CKS05], we can employ a suite of model checkouls for a rich class
of linear-timetemporal properties, which can be udmathfor finding bugs and gener-
ating proofs. These include SAT-based BMC and UMC as well @b Based model
checking. We believe this flexibility is important as softe@enerated circuits are not
as well structured as hardware circuits and hence no ontegyraan be expected to
be universally effective. Thus we have presented a new apprfor model checking
concurrent programs that combines the power of symboliaiigcies with partial order
reduction and on-the-fly transactions while at the same tataning the flexibility to
employ a broad arsenal of model checking techniques — botre84 BDD-based — for
checking not just reachability but a richer classes of lirtgae temporal properties.

In the rest of the paper, Section 2 introduces the system hvad&e on-the-fly
transactions are defined in section 3. The details for mogeloncurrent programs as
circuits are provided in section 4 and the Daisy case studseation 5. Finally, we
conclude with some remarks in section 6 along with a comparnigth related work.

2 System Model

We consider concurrent systems comprised of a finite numi@rocesses or threads
where each thread is a deterministic sequential prograttewrin a language such as

C. Threads interact with each other using communicatiormissonization objects like
shared variables, locks and semaphores.

Formally, we define a concurrent progr&® as a tuplg7,V, R, so), whereT =
{Ty,...,T,,} denotes a finite set of threads, = {v1,...,v,,} a finite set of shared
variables and synchronization objects withtaking on values from the séf, R the
transition relation andy the initial state ofCP. Each threadl; is represented by
the control flow graph of the sequential program it executesl is denoted by the
pair (C;, R;), whereC; denotes the set of control locations®fand R; its transition
relation. A global state of CP is a tuple(s[1], ..., s[n],v[1],...,v[m]) € S = C1 x ... x
C, x Vi x ... x V,,, wheres]i] represents the current control location of thréaand
v[j] the current value of variabkg. The global state transition digram@P is defined
to be the standard interleaved composition of the tramsidiagrams of the individual
threads. Thus each global transition@P results by firing a local transition of the
form (a;, g,u, b;), wherea; andb; are control locations of some thredd = (C;, R;)
with (a;,b;) € R;; g is a guard which is a Boolean-valued expression on the values
of local variables ofl’; and global variables iw; andw is function that encodes how
the value of each global variable and each local variablg; & updated. A transition
t = (ai,g,u,b;) of threadT; is enabled in state iff s[i{] = a; and guardy evaluates
to true ins. If s[i] = a; but g need not be true i, then we simply say that is

scheduledn s. We writes — s’ to mean that the execution ofeads from state to
s'. Given a transitiort € 7, we useproc(t) to denote the process executingrinally,
we note that each concurrent progréf with a global state spacg defines the global
transition systemi¢ = (S, 4, s¢), whereA C S x S is thetransition relationdefined

by (s,s') € Aiff 3t € T : s -+ ¢'; ands, is the initial state ofP.

3 Lock Synchronization based Reductions

la: a = 0; 1b: z = 5;
2a: lock(lk); 2b: lock(lKk);
3a: x = 1; 3b: x = 2
4a: unl ock(IlKk); 4b: unl ock(IlKk);
ba: a = 4; 5b: x = 6;

() (b)

Fig. 1. ThreadsT} (a) andT»(b) with unprotected access 10

We start by using some examples to motivate our techniquesi@er the concurrent
programCP shown in figure 1. Here, which is the only variable shared among the
threads, is unprotected at control locati®b and protected by lockk at all other
locations. Since is not protected at all locations where it is accessed, it do¢satisfy
lock discipline in the sense of [Sto02,FQ03], which will tefore force a context switch
before location88a and 3b. Consider, however, a global stateof CP with threads

T, andT>, at control locations3a and 1b, respectively. The key observation is that
starting at global state of CP, 3a does not interfere witt8b and5b even though

5b is unprotected. This is because By to execute3b it has to acquireé k currently
held byT;. But in order forT} to releasd Kk, it has to first execut8a. Thus starting
ats, CP is forced to execut8a before3b. As a result no context switch is required
before3a. However, in the global stat€ with 77 andT5 at control location8a and

5b, respectively, the transitior&a and5b do interfere with each other thus forcing a
context switch befor8a. The bottom line is that even when shared variables do not
follow locking discipline globally, we can still identifyolcal portions of the state space
where locking discipline is followed. Thus a context drivaralysis allows us to define
transactions locallpn-the-flywhere existing methods [Sto02,FQ03], because of their
reliance on a global analysis, fail to do so.

la: a = 1; 1b: b = 0;

2a: lock(lk1); 2b: lock(1k2);
3a: lock(lk2); 3b: lock(lkl);
da: y = 1; 4b: z = 2;

5a: unl ock(1k2); 5b: unl ock(1kl);
6a: x = 0; 6b: x = 1,

7a: unl ock(lk1); 7b: unl ock(1 k2);

@ (b)

Fig. 2. ThreadsT: (a) andT(b) with unprotected access 1o

Taking the above discussion further, we next show that &etiens can be identified
even in the absence of lock discipline—local or global.dBtbe the concurrent program
comprised of the two thread§ andT’ sharing variable shown in figure 2. Consider a
global states of CP with thread</; and7% in control location®$a andlb, respectively.
Observe that starting at the transitions at control locatiobs and6b cannot interfere
with each other even though they access the same sharebleariarhis is because
in order for threadl; to reach locatior6b from 1b it has to traverse the local path
1b, 2b, 3b, 4b, 5b, along which it has to acquire (and release) lb&kl currently
held byT3. In order for that to happefl; must releasek1 for which it must execute
transition6a. This forces transitiorfa to be executed beforéb. Thus no context
switch is required before locatida. The key observation is that even though disjoint
sets of locks were held at locatiofia and6b, it was the set of locks that needed to
be acquired byf; in order to transit fronlb to 6b (even though some of these locks
were released before reachibig) that prevente@a and6b from interfering with each
other. A traditional lockset based analysis as given in(3©Q03] would treaba
and6b as conflicting transitions (as does not follow locking discipline) and force a
context switch before these locations. Thus a conflict aislyased on lock acquisition
patterns is more refined than one based on locksets. Inddeckset based analysis
is a special case of lock-pattern based analysis since tté ks held at a location
would have to be acquired and thus would be tracked in thedogkisition pattern.

Transactions via Persistent Setd/Me now show how to integrate lock-pattern based on-
the-fly transactions with partial order reduction in a tggarent fashion by capturing the
increased granularity of transitions due to transactisre i@eduction in the sizes of the

conditional stubborn sets of states. This is accomplislysehisuring that if in a global
states, a threadl; is in the process of executing a transaction, then in thagterd set
of s, we include only one transition, viz., the transition’Qfthat fires next along the
transaction being executed. This ensures that once th&éinsition of a transaction is
executed, by a thredl} then no other process can be scheduled unless all trarssitfon
the transaction finish firing.

State space reduction using partial order techniques &radat by exploring from
each state only those transitions that belong to a persisé¢rof that state instead of
all the enabled transitions. Although there are many waytopute persistent sets,
the method of computing conditional stubborn sets usuahegates those with small
cardinality. In this paper, we use standard terminologyniftbe theory of partial order
reductions and the algorithm for computing conditionabstorn sets from [God96],
which we denote byllgo;. We recall the following definition from [God96].

Might-be-first-to-interfere Let op and op’ be two operations on the same objétt
and s be a reachable state. The relatiep >, op' holds if there exists a sequence
s = 81 T S BTN sn+1 Of transitions inA¢g such thatvl < i < n : Vop” on

O used byt;: op andop” are independent in statg, ¢,, usesop’, andop andop’ are
dependenti,,.

For each local transition % b of a thread, we letsed(t) denote the set of opera-
tions on variables and synchronization objects executemglthe execution of. A
conditional stubborn set of stateof Az can then be calculated as follows:

1. Initialize T, = {¢}, wheret is some enabled transition i
2. Foreach =a % b e T,
(a) Iftis disabled ins,
i. if Tj = proc(t) ands[j] # a, then add tdl, all transitionst’ of T} of the form
c i; a, or
ii. choose a conditiorr; in the guardg of ¢ that evaluates to false is; then, for
all operationsop used byt to evaluatec;, add toT all transitionst’ such that
Jop' € used(t') : op >5 op'.
(b) If ¢ is enabled irns add toT all transitionst’ such that
i. proc(t) # proc(t') andJop € used(t),Jop' € used(t') : op 1> op'.
3. Repeat step 2 until no more transitions can be add&d.ifthen return all transitions if
that are enabled is.

Fig. 3. Algo: for Computing Conditional Stubborn sets

In Algo; dependencies between transitions, arising out of op@&iiim shared
communication objects are captured usingtheelation which captures for each oper-
ationop used by a transition in a sta¢evhich other operationsight be first to interfere
with op from the current state. In practice, to avoid exploration of the state space of
the program at hand, static analysis is employed in ordeoiopeite a relation;>5?,
which is an over-approximation of ;. Towards that end, we say that two operatiops
andop’ arestatically dependerif they access a common shared variable such that at
least one of the accesses is a write operation. Thinis defined as follows.

Definition Let op and op’ be two operations on a common shared variable aral
reachable state ofl. The relationop >5! op’ holds iff there exist distinct thread§
andT such that there exists (1) a transition Bf scheduled (not necessarily enabled)

at s usingop, and (2) a local pathe : pg B2 N pr, Of T such thaip, is the local
state off; in s, V1 < k < n : Yop" used byt;: op andop” are not statically dependent,
t, usesop’, andop andop’ are statically dependent.

To incorporate on-the-fly transactions, we modify the abdenition of >5¢ to
get a new relation-'? C >t by adding (in accordance with our discussion above), the
extra constraint that none of the locks heldyn s is acquired (and possibly released)
by T; alongz. Note that since-'? is more constrained it enforces fewer dependencies
between operations thas:? thus resulting in smaller conditional stubborn sets. The
effect is to weed out certain interleavings to get the eftdatxecuting transactions.
Indeed, in the example given in fig 2, in global statéf op andop’ are the operations
z = 0andz = 1 atlocationssa and6b, respectively, theap>$t op' but—(op>? op’).
Thus, using>'? instead of>#? to compute conditional stubborn sets removes transition
1b from the conditional stubborn set sfthus preventing a context switch befda.
Formally,>' is defined as follows.

Definition (might-be-the-first-to-interfere-modulo-lock-acquisition) Let op and op’
be two operations on a common shared variable aradreachable state ofig. The
relation op >'7 op' holds iff there exist distinct thread$ and7; such that there exists
(1) a transition ofl; scheduled (not necessarily enabled}atsingop, and (2) a local
pathz : po 2T pr, Of Tj such thatvl < k < n : Vop' used byt;: op andop”
are not statically dependent, usesop’, andop andop’ are statically dependent and
no lock held byl’; in s is acquired byl’; alongz.

Let Algo, be the result of replacing s in Algo, by >3t and Algos the result of replac-
ing 2t in line 2.(b).i of Algo, by >P. Then the following two results state thatgo,
does indeed compute a conditional stubborn set and thagcinif computes smaller
conditional stubborn sets thatigo,. Note that although we used a specific relation
>t for computing dependencies statically, one can, of coumseyporate on-the-fly-
transactions with any othénplementatiorof >, by merely adding the extra condition
regarding lock acquisition patterns, as above.

Theorem 1.All setsT’; that are computed byi/gos are conditional stubborn sets ef

Proof Sketch. Lett = a % b executed by thread; belong toT. Letw = s; 2N

S NN sn+1 be a sequence of transitions4¢ such that is dependent with,,
in s,,. We need to show that at least onetof.. t,, is in Ts. Without loss of generality,
we may assume that far< i < n, ¢ is independent with; in s; andt¢,, is dependent
with ¢ in s,,, else we can pick an appropriate prefixuaf

First assume thatis disabled ins. Sincet is disabled ins ands,, is the first state
alongw in which ¢ is dependent (with,,), we have that is enabled ins,, ;. Sincet
is disabled ins, eithers[i] # a, or a conditiorc in guardg evaluates to false is. In

the first case, sinceis enabled ins, 1, there exists a transitioty fired alongw, of
the formd — a labeled with some guarg. But then executing step 2.(a).i df gos,
would cause; to be included irs. In the second case, there exists a transitipthat
changes the value offrom false to true by changing the output of an operatipnsed
to evaluate:, i.e., by performing an operatiap’ dependent witlop in s;. Let¢; be the
first such transition occurring along. Clearly op’ is statically dependent witbp. By
definition of >5%, we haveop >5! op/, and sa; € T} by step 2.a.(ii).

Consider now the case wheis enabled irs. From the facts that (i) for < j < n—
1, tisindependentwith; in s;, and (ii)¢ is enabled irs, we have thatfot < j < n-—1,
t is enabled irs;. This implies that thread; does not execute any transition along
for otherwise sinc; is deterministic, we can conclude thas the first transition that
T; executes along. This which would forcel; out of it current local state thereby
disablingt thus contradicting the above observation. Note that herasgemed that
executing a transition takes a process out of its currerdl Istate, i.e., there are no
self loops in a program thread, a reasonable assumptioroftwase programs Now,
sincet andt,, are dependent ig,,, it implies thatdop € used(t), dop’ € used(t,): op
andop’ are dependent ig,, and hence are also statically dependent.tl.éte the first
transition alongw that uses an operatiap’ dependenbp. Note also that there does
not exist a lock held byT; ats such that has to be acquired befotgis executed along
w. For otherwise] must first be released ¥, thus forcingT; to execute a transition
contradicting our observation above tiatdoes not execute any transition alomng
Thus we havep >'7 op”. Hencet; € T} by step 2.b.(i). This completes the proofl

Theorem 2.For all transitions¢ that are enabled irs, for all persistent setsllgo(t)
that can be returned byligo,, there exists a run afligos that returns a persistent set
Algos(t) C Algos(t).

Proof Sketch. From the definition of relatiom-'7, it follows that>' is included in
5. Thus the sef’; returned byAlgos is always a subset of the one returneddiyo,,
provided the same choices are made in case of nondeterminism O

Note that sincedlgos computes smaller persistent sets than existing locksstehtech-
niques, it is guaranteed to improve the performance of eix@iate model checkers.
Even for symbolic model checkers, since the reduction inntheber of scheduled
transitions results in a pruning of the state space, it le@dperformance boost which,
however, may not be directly proportional to the decreagharsize of the state space
being explored.

4 Software Modeling for Concurrent C Programs

4.1 Translating Individual Threads into Circuits

In this section we briefly describe how, using the F-Soft nraety, we first obtain a
circuit-based model of each thread, under the assumptibawfded data and bounded
control (recursion) (see [ISGGO05] for more details).

We begin with full-fledgedC and apply a series of source-to-source transformations
to simplify complexC expressions into smaller but equivalent subsets oiVe flatten

all arrays andst r uct s by replacing them with collections of simple scalar vagab
and build an internal memory representation of the prognaamssigning to each scalar
variable a uniqgue number representing its memory addresmbles that are adjacent
in C program memory are given consecutive memory addresses imadel; this fa-
cilitates modeling of pointer arithmetic. We model the haapa finite array, adding a
simple implementation afel | oc() that returns pointers into this array. For handling
pointer accesses, we first perform a points-to analysisteriéne the set of variables
that a pointer variable can point to. Then, we convert eadirént memory access,
through a pointer or an array reference, to a direct memocgssc For example, if
we determine that pointgr can point to variables, b, . . ., z at a given program
location, we rewrite a pointer read p+i) as a conditional expression of the form
((pti)==&a ?a: ((pti)==&b ? b : ...)), where&a, &b, ... are the
numeric memory addresses we assigned to the variables. . . , respectively. Non-
recursive function calls are handled by inlining exactlgerand replacing the function
return by a set of goto-s conditioned upon the unique call isitstored on function
entry. Bounded recursive functions are modeled by introdpa bounded call stack.
While we aim for accurate modeling of &l practical modeling requires making ap-
proximations. We truncate large arrays: writes to elemabts/e a certain index are
ignored, and reads from these elements yield non-detesticinialues. We currently
approximate floating-point values by modeling their inggrarts only.

The simplified program consists of scalar variables of sintpbes (Boolean, enu-
merated, integer). This is compiled using standard teclasinto its control flow graph
(CFG). The CFG representation can be viewed as a finite statlime with state vec-
tor (pc, V), wherepc denotes an encoding of the basic blocks, ¥rid a vector of
integer-valued program variables. We then construct syimbansition relations for
pc, and for each data variable appearing in the programpEothe transition relation
reflects the guarded transitions between basic blocks i@t& For a data variable, the
transition relation is built from expressions assignecdh\tariable in various blocks.
Finally, we construct a symbolic representation of theasedition relations resembling
a hardware circuit. For thec variable, we allocatélog N latches, wheréV is the total
number of basic blocks. For ea€program variable, we allocate a vectorofatches,
wheren is the bit width of the variable. At the end, we obtain a citdvased model of
each thread of the given concurrent program, where eachblarof the thread is rep-
resented in terms of a vector of binary-vallathesand a Boolean next-state function
(or relation) for each latch.

4.2 Building the Circuit for the Concurrent Program

Given the circuitC; for each individual thread’;, we now show how to get the circuit
C for the concurrent progra®P comprised of these threads. In the case where local
variables with the same name occur in multiple threads, $omnconsistency we prefix
the name of each local variable of threBdwith t hr ead_i . Next, for each thread;
we introduce a gatexecut e_i indicating whethel; has been scheduled to execute
in the next step of P or not.

For each latcH , let next-statg(1) denote the next state function bfin circuit
C;. Then in circuitC, the next state value of latahhr ead.i I corresponding to a

local variable of thread?, is defined to benext-statg{thread_i_1) if execut e.

is true, and the current value bhr ead.i _| , otherwise. If, on the other hand, latch

| corresponds to a shared variable, tmext-statél) is defined to benext-statg(1),
whereexecut e_i is true. Note that we need to ensure thaiecut e_i is true for
exactly one thread’;. Towards that end, we implement a scheduler which detesnine
in each global state @fP which one of the signalsxecut e_i is set totrue and thus
determines the semantics of thread composition.

Conditional Stubborn Sets based Persistent Sef® incorporate partial order reduc-
tion, we need to ensure that from each global statenly transitions belonging to a
conditional stubborn set afare explored. LeR andR; denote the transitions relations
of CP andT;, respectively. IfC’P hasn threads, we introduce the-bit vectorcstub
which identifies a conditional stubborn set for each globates, i.e., ins, cstub; is
true for exactly those threads; such that the (unique) transition @ enabled afs
belongs to the same minimal conditional stubborn set dhen

R(s,s') = \/ ((execute_ i) A cstub;(s) A R;i(s,s)).

1<i<n
Thecstub vector can be computed in the following way:

1. For each shared variabteand threadl;, we introduce a latchouch-nowT;,)
which is true at control locatiope; of T; iff T; accesses at control locatiornpe;.
This can be done via a static analysis of the CFG 0by determining at which
control locations: was accessed and taking a disjunction for those valugs; of

2. For each shared variabteand thread’;, introduce the latctouch-now-late(T};, z),
which is true at control locatiopc; of T} if T; accesses at some locatiompc
reachable fronpc;. Thus computingouch-now-latefT},) involves deciding the
reachability ofpc};, and since we cannot compute it exactly without explorirey th
entire state spacdg of CP, we over-approximate it by doing a context-sensitive
analysis of the control-flow graph @f. We setouch-now-later-paifT;,) to true
in controlpc; if for some contropc’; reachable fronpe; in the control flow graph
of T;, z is accessed aic);.

3. For distinct thread%; andTj, the relationcon flict;(j) is then defined as ¢y,
(touch-nowWT;, =) (pc;) A touch-now-latefT;, =) (pc;)), wherepe; andpe; are the
control locations off; and T}, respectively, in the current global state ang is
the set of shared variables@P.

4. Using a circuit to compute transitive closures, for egaftarting withJ; = {i} we
compute the closure of; under theconflictrelation defined above.

5. We build a circuit to compute the indexin such that the cardinality of,,,;,
is the least among the sefs, ..., J,,. Finally V1 < i < n, setestub; = 1 iff
1 € Jmin. Note that in the implementation we need to pick only one stt the
least cardinality.

Cycle detectionWe first identify stickytransitions [KLM"98] for all potential global
cycles. We then force a conflict for the process containiegstitky locations with all
other processes via the encoding below. dtétky (pc) be a predicate evaluating to true
iff location pc has been marked sticky. Then, for global statere definecon flict;(7)

= sticky(pc;) V (touch-nowT;, z)(pc;) A touch-now-latefT’;, z)(pc;)), wherepe,, is

the current control location df,,, in s. In other words, ifpc; is sticky then thread’; is

said to conflict with all other threads.This implies thabeita thread},, with smaller
conflict setJy, would be chosen for the persistent set computation or a&fkghnsion
forced.

This reduction is sound, since (as was shown in [KL98]) any cycle in the global
state space can be projected on to one or more local cyclé icontrol flow graph
of the individual threads. By forcing a full expansion insielach (potential) local cycle
with the help of sticky transitions, we ensure that thereaglobal cycle such that a
thread transition is postponed at each state of the cyclereftre this encoding allows
the model checker to explore a conservative over-appraiomaf the representative
(minimal) set of interleavings of the given threads. Altbbuhe reduced model re-
mains sound, the number of interleavings considered magedse dramatically with
the number of annotated sticky transitions.

So far, we have implemented sticky transitions only for sgdemases in which cy-
cles can occur locally in threads. In fact, as was noted irOfpjGour experience also
has been that acyclic state spaces are very common in sefimg@tementations for
the purpose of model checking and cycle detection becomes onitical when one is
using an abstraction (which introduces cycles) refinememéwork. However since
(i) we put a lot of effort in modeling programs concretely) (lo not use abstraction
refinement, and (iii) introduce sticky transitions to cogemmon trivial cases, the im-
pact of the existence of cycles is reduced. Neverthelesargveurrently in the process
of extending the implementation of sticky transitions te eneral case.

Encoding Lock Pattern based Reductiondn order to incorporate transactions-
the-fly, we augment the predicai@uch-now-laterto generate the new predicateich-
now-later-LSthat also includes lock acquisition pattern informatiomr Eontrol loca-
tionspc; andpc}, of threadT;, let paths(pc;, pc;) denote the set of paths in the CFG
of T; starting frompc; that may reachpc]. For eachr € paths(pc;, pc;) of Tj, let
lockPred(w) be a formula denoting the set of locks acquired (and possdigased)
alongr, e.g.lk1 = T;Alk, = T;. Lettouch-now-later-pai(7}, z)(pc;, pc;) encode all
possible sets of locks that can potentially be acquiredgiocal paths irl; from pe; to
pc; accessing;, i.e.,touch-now-later-paif7;, z) (pc;, pc;) = touch-nowI;, z)(pc;) A
AP, (pcj, cp}), whereAP, (pc;, pc}) = Vﬂepaths(pci,pc;) lockPred(rw). LetCLP(T,
s) denote a formula encoding the ownership of lockgbin global states. Then the re-
lationtouch-now-L8I}, z) is obtained frontouch-now-later-paifZ;, =) by quantifying
out pc; and conjoining with the” LP (T3, s), i.e.,touch-now-L8T;,) (pc;) = (Ipc;
touch-now-later-paifT;, z) (pc;, pc)) A CLP(T;, s). Thustouch-now-L8T;, z) (pc;)
is true if there is a locatiopc; accessing shared variabtethat is reachable fromc;
via a local pathr in T; such that no lock held ir is acquired alongr. We evaluate
lock Pred(r) using a context sensitive static analysis of the CF@;of

5 The Daisy Case Study

We have used our technique to find bugs in the Daisy file systeithws a benchmark
for analyzing the efficacy of different methodologies forifygng concurrent programs

[dai]. Daisy is a 1KLOC Java implementation of a toy file systerhere each file is

allocated a unique inode that stores the file parameters anidjae block which stores
data. An interesting feature of Daisy is that it has fine grditocking in that access
to each file, inode or block is guarded by a dedicated lock.ddeer, the acquire and
release of each of these locks is guarded by a ‘token’ lockisTdontrol locations in

the program might possibly have multiple open locks andchienrhore the acquire and
release of a given lock can occur in different procedures.

Currently F-Soft only accepts programs written in C and sdisgemanually trans-
lated the Daisy code which is written in Java into C. Furthenento reduce the model
sizes, we truncated the sizes of the data structures mgdélkndisk, inodes, blocks,
file names, etc., which were not relevant to the race contditive checked, resulting
in a sound and completmall-domairreduction. We have shown the existence of the
race conditions described below also noted by other relseex¢cf. [dai]). The efficacy
of our techniques can be judged from the fact that our modetkihg methodology
has been able to detect these race conditions in Daisy ifyaaufomatic fashion di-
rectly on the source code without any code structuringfabsons beyond redefining
the constants as discussed above.

1. Daisy maintains an allocation area where for each blotherfile system a bit is
assigned 0 or 1 accordingly as the block has been allocagefiléoor not. But each disk
operation reads/writes an entire byte. Two threads actgs$sio different files might
access two different blocks. However since bytes are natdguaiby locks in order to
set their allocation bits these two different threads mageas the same byte in the
allocation block containing the allocation bit for each loése locks thus setting up a
race condition. Note that the race condition occurs for aiyqf blocks with numbers
i andj wherefloor(i/8) = floor(j/8).

The verification statistics are as follows: We ran our experits on a machine with
an Intel Pentium4 3.20GHz processor and 2GB RAM. Each rungiee a timeout
of 2 days and had a memout of 2GB. Witnesses for the above audition were
found in two casegy W —corresponding to blocks 0 and 1, aiti¥/,—due to blocks 1
and 2. Using purely interleaved scheduling, we failed to &ither witness because of a
memout at depth 15. When only partial order reduction wadeyed W W; was found
using SAT-based BMC at unroll depth 122 in 36707 sec and 99@Mil: incorporating
on-the-fly transactions drastically reduced the time anthorg usage to 1283sec and
122MB, respectively. The second witndgd4; was found at depth 151. Using partial
order reduction alone took 145176 sec and 1870 MB, whilerapilansactions reduced
it to 5925 sec and 902 MB.

2. In Daisy reading/writing a particular byte on the disk reken down into two
operations: a seek operation that mimics the positioningn@thead and a read/write
operation that transfers the actual data. Due to this sepafzetween seeking and data
transfer a race condition may occur. For example, readimgdisk locations, say.
andm, we must make sure thatek(n) is followed byread(n) without seek(m) or
read(m) scheduled in between. In this case a witness was found di d8pUsing par-
tial order reduction alone took 2.99 sec and 5.7 MB while agdiansactions reduced
it to 2.89 sec and 5.5 MB. For this example also BMC on the ceiepl interleaved
model failed to find a witness because of a memout at depth 20

The bottom line is that, for deep bugs techniques that leetiae use of on-the-fly
transactions combined with partial order reduction gyeatitperform those which use
only partial order reduction — both in terms of time taken ar@mory used.

6 Concluding Remarks and Related Work

A comparison of our work with [RG05,CKS05], to which it is ntadosely related,
was presented in the introduction. Partial order redudtmmbeen used before for sym-
bolic model checking using BDDs [ABHD1,LST03]. On the other hand, by separating
the modeling and verification phases, our methodology giggbe ability to combine
partial order reductions with any symbolic model checkiechinique of choice, either
SAT or BDD based. An interesting approach for the verificgatid concurrent pro-
grams using proof-guided under-approximation-widenirgghradology was presented
in [GLSTO5]. Here constraints are added to the BMC modebimst so that only a
subset of behaviors of the concurrent system are explotesselconstraints are itera-
tively removed during the widening phase as a result of whitlthe worst case, one
might end up exploring the entire state space of the concumegram at hand. In
contrast, we add constraints so that we explore a conditimiaborn set at each global
state thereby yielding considerable state space redusfioreover, [GLST05] does not
leverage the use of transactions.

There has also been interesting work ([FQO03,Sto02,SCOR;A1@,LPQRO05]) on
the use of lockset based transactions for verifying sofvaaid combining it with partial
order reductions. These techniques first compute the vetlidfgransactions in each of
the processes and then perform partial order reductioeeksiate-space exploration. As
noted before, such a two-step combination technique mayomkepotential reductions
related to shared variables which do not always follow ailogldiscipline. The key
reason is that in these approaches a thread-wise globajsimé& done to look for
potential dependencies between transitions. In convasgpproach adds information
to the model while exploring the state space by detectingépncie®n-the-flyvia
an analysis of patterns of lock acquisition. Our more refimedhod generates fewer
dependencies between transitions resulting in a lessebauof context switches. This
gives us better state space reduction than existing loblesetd techniques.

To sum up, we have presented a new approach for verifyinguroert programs
that combines the power of symbolic model checking withipbaorder reduction and
on-the-fly transactions while at the same time retainindlthebility to employ a vari-
ety of error trace generation/proof techniques — both SATBIDD-based — for check-
ing not just safety but a broad class of linear time tempomaperties. The use of lock
acquisition patterns rather than locksets to identifyseaionson-the-flyis not only a
powerful technique in its own right but can also be used inreegyistic manner with
both explicit state and BDD-based exploration of concurpeagrams as also with dy-
namic partial order reduction techniques [FGO05].

References

[ABHT01] R.Alur, R.K. Brayton, T. A. Henzinger, S. Qadeer, and SRigjamani. Partial-order
reduction in symbolic state-space exploratidiorm. Methods Syst. Ded.8(2):97—
116, 2001.

[AQRT04] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xiing: Exploiting

program structure for model checking concurrent softwar€€ ONCUR 2004.

[BCCY99] A. Biere, A. Cimatti, E.M. Clarke, and Y.Zhu. Symlmmodel checking without

[CKS05]
[dai]
[FGO5]
[FQO3]
[GLSTOS]
[God96]
[God97]

[1SGGO5]

BDDs. INTACAS 1999.

Byron Cook, Daniel Kroening, and Natasha Sharygi8gmbolic model checking
for asynchronous boolean programs. SIRIN 2005 pages 75-90, 2005.

Joint CAV/ISSTA Special Event on Specification, Verition, and Testing of Con-
current Software. littp://research.microsoft.com/ qadeer/cav-issta.htm

Cormac Flanagan and Patrice Godefroid. Dynamidgdastder reduction for model
checking software. IIPOPL '05 pages 110-121, 2005.

C. Flanagan and S. Qadeer. Transactions for softmadel checking. IrSoftMC
03, 2003.

O. Grumberg, F. Lerda, O. Strichman, and M. ThegbRIroof-guided underapprox-
imation widening for multi process systems.ROPL '05 pages 122-131, 2005.

P. Godefroid.Partial-order methods for the verification of concurrens®ms: an
approach to the state-explosion problebiNCS 1032. Springer-Verlag, 1996.
Patrice Godefroid. Model checking for programmliagguages using verisoft. In
POPL '97, pages 174-186, 1997.

F. Ivancic, . Shlyakhter, A. Gupta, and M. Garldiodel checking: programs using
F-Soft. InICCD, 2005.

[KLM T98] Robert P. Kurshan, Vladdimir Levin, Marius Minea, Doréeled, and Hiisni

Yeniguin. Static partial order reduction. TACAS '98 1998.

[LPQRO5] V. Levin, R. Palmer, S. Qadeer, and S. K. Rajamaound transaction-based reduc-

[LSTO3]
[McM93]
[RGO5]
[SCO3]

[Sto02]

tion without cycle detection. ISPIN '05 2005.

F. Lerda, N. Sinha, and M. Theobald. Symbolic modedaking of softwareElectr.
Notes Theor. Comput. Sc89(3), 2003.

K.L. McMillan. Symbolic model checking: an approach to the state explqsioi-
lem Kluwer Academic Publishers, 1993.

I. Rabinovitz and O. Grumberg. Bounded model chegkihconcurrent programs.
In CAV '05, pages 82-97, 2005.

Scott D. Stoller and Ernie Cohen. Optimistic synciization-based state-space re-
duction. INTACAS '03LNCS, pages 489-504, April 2003.

Scott D. Stoller. Model-checking multi-threadestdbuted Java program#nterna-
tional Journal on Software Tools for Technology Trans#f):71-91, October 2002.

