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Abstract— We extend the learning-based automated assume
guarantee paradigm to perform compositional deadlock detec-
tion. We define Failure Automata, a generalization of finite
automata that accept regular failure sets. We develop a learning
algorithm LF that constructs the minimal deterministic failure
automaton accepting any unknown regular failure set using a
minimally adequate teacher. We show how LF can be used
for compositional regular failure language containment, and
deadlock detection, using non-circular and circular assume guar-
antee rules. We present an implementation of our techniques
and encouraging experimental results on several non-trivial
benchmarks.

I. INTRODUCTION

Ensuring deadlock freedom is one of the most critical
requirements in the design and validation of systems. The
biggest challenge toward the development of effective dead-
lock detection schemes remains the statespace explosion prob-
lem. Compositional reasoning [1], [2], [3] is recognized to
be one of the most promising approaches for alleviating
statespace explosion. This paper presents an automated com-
positional deadlock detection procedure based on assume-
guarantee (AG) [4] reasoning.

In general, AG reasoning revolves around a proof rule that
relates system components and assumptions about them to
global system properties. In order to apply the proof rule,
one is normally required to construct manually appropriate
assumptions that can discharge the premises of the rule. In
most realistic situations however, suitable assumptions are
quite complicated and the absence of automated assumption
generation techniques has been a major stumbling block
toward the wider practical adoption of AG reasoning.

An important breakthrough in this respect has been the use
of learning algorithms for assumption construction [5]. The
general idea is to learn an automaton corresponding to the
weakest assumption [6] that can discharge the AG premises.
The learning process is embedded in the overall verification
procedure in a way that guarantees termination with the correct
result. The choice of the learning algorithm is dictated by the
kind of automaton that can represent the weakest assumption,
which in turn depends on the verification goal. For example,
in the case of trace containment [5], weakest assumptions are
naturally represented as deterministic finite automata, and this
leads to the use of the L∗ [7] learning algorithm. Similarly,
in the case of simulation [8], the corresponding choices are
deterministic tree automata and the LT learning algorithm.

However, neither of the above two options are appropriate
for deadlock detection. Intuitively, word (as well as tree)
automata are unable to capture failures [9], a critical concept

for understanding, and detecting, deadlocks. Note that it is pos-
sible to devise schemes for transforming any deadlock detec-
tion problem to one of ordinary trace containment. However,
such schemes invariably introduce new components and an
exponential number of actions, and are thus not scalable. Our
work, therefore, was initiated by the search for an appropriate
automata-theoretic formalism that can handle failures directly.
Our overall contribution is a deadlock detection algorithm that
uses learning-based automated AG reasoning, and does not
require the introduction of additional actions or components.

As we shall see, two key ingredients of our solution are: (i)
a new type of acceptors for regular failure languages with a
non-standard accepting condition, and (ii) a notion of parallel
composition between these acceptors that is consistent with
the parallel composition of the languages accepted by them.
The accepting condition we use is novel, and employs a
notion of maximality to crucially avoid the introduction of
an exponential number of new actions. To the best of our
knowledge, such acceptors and their composition have not
been discussed before. In addition, we believe that this paper
presents the first use of learning in the context of automated
AG reasoning for deadlock detection. More specifically, we
make the following contributions.

First, we present the theory of regular failure languages
(RFLs) which are downward-closed, and define failure au-
tomata that exactly accept the set of regular failure languages.
Although RFLs are closed under union and intersection, they
are not closed under complementation, an acceptable price we
pay for using the notion of maximality. Further, we show a
Myhill-Nerode-like theorem for RFLs and failure automata.
Second, we show that the failure language of an LTS M is
regular and checking deadlock-freedom for M is a particular
instance of the problem of checking containment of RFLs.
We present an algorithm for checking containment of RFLs.
Note that checking containment of a failure language L1

by a failure language L2 is not possible in the usual way
by complementing L2 and intersecting with L1 since RFLs
are not closed under complementation. Third, we present a
sound and complete non-circular AG rule, called AG-NC, on
failure languages for checking failure language specifications.
Given failure languages L1 and LS , we define the weakest
assumption failure language LW : for every LA, if L1 ‖ LA ⊆
LS , then LA ⊆ LW . We then show, constructively, that if
failure languages L1 and L2 are regular, then LW uniquely
exists, is also regular, and hence is accepted by a minimum
failure automaton AW . Fourth, we develop an algorithm
LF (pronounced “el-ef”) to learn the minimum deterministic
failure automaton that accepts an unknown regular failure
language U using a minimally adequate teacher that can
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answer membership and candidate queries pertaining to U .
We show how the teacher can be implemented using the RFL
containment algorithm mentioned above. Fifth, we develop
an automated and compositional deadlock detection algorithm
that employs AG-NC and LF . We also define a circular AG
proof rule AG-Circ for deadlock detection and show how
it can be used for automated and compositional deadlock
detection. Finally, we have implemented our approach in the
COMFORT [10] reasoning framework. We present encourag-
ing results on several non-trivial benchmarks, including an
embedded OS, and Linux device drivers.

II. RELATED WORK

Machine learning techniques have been used in several
contexts related to verification [11], [12], [13], [14], [15].
We follow the approach of Cobleigh et al. [5] (respectively
Chaki et al. [8]) to automate assume-guarantee reasoning
for trace-containment (respectively simulation) between finite
state systems (Alur et al. [16] have also investigated symbolic
learning in this context). However, we apply this general
paradigm for deadlock detection. Further, the LF algorithm
that we present may be of independent interest. The use of
circular AG rules was also investigated in the context of trace
containment by Barringer et al. [17].

Overkamp has explored synthesis of supervisory controller
for discrete-event systems [18] based on failure semantics [9].
His notion of the least restrictive supervisor that guarantees
deadlock-free behavior is similar to the weakest failure as-
sumption in our case. However, our approach differs from
his as follows: (i) we use failure automata to represent
failure traces, (ii) we use learning to compute the weakest
failure assumption automatically, and (iii) our focus is on
checking deadlocks in software modules. Williams et al. [19]
investigate an approach based on static analysis for detecting
deadlocks that can be caused by incorrect lock manipulation
by Java libraries, and also provide an excellent survey of
related research. The problem of detecting deadlocks for
pushdown programs communicating only via nested locking
has been investigated by Kahlon et al. [20]. In contrast, we
present a model checking based framework to compositionally
verify deadlock freedom for non-recursive programs with
arbitrary lock-based or rendezvous communication. Other non-
compositional techniques for detecting deadlock have been
investigated in context of partial-order reduction [21] and
for checking refinement of CCS processes, using a more
discriminative (than failure trace refinement) notion called
stuck-free conformance [22].

Brookes and Roscoe [23] use the failure model to show
the absence of deadlock in undirectional networks. They
also generalize the approach to the class of conflict-free
networks via decomposition and local deadlock analysis. In
contrast, we provide a completely automated framework for
detecting deadlocks in arbitrary networks of asynchronous
systems using rendezvous communication. Our formalism is
based on an automata-theoretic representation of failure traces.
Moreover, in order to analyze the deadlock-freedom of a set
of concurrent programs compositionally, we use both circular

and non-circular assume-guarantee [4], [1], [17] rules. Amla
et al. [24] have presented a sound and complete assume-
guarantee method in the context of an abstract process com-
position framework. However, they do not discuss deadlock
detection, nor explore the use of learning.

In the rest of this paper we omit proofs for the sake of
brevity. Detailed proofs can be found in an extended version
of this paper [25].

III. FAILURE LANGUAGES AND AUTOMATA

In this section we present the theory of failure languages
and failure automata. We consider a subclass of regular
failure languages and provide a lemma relating regular failure
languages and failure automata, analogous to Myhill-Nerode
theorem for ordinary regular languages. We begin with a few
standard [26] definitions.

Definition 1 (Labeled Transition System): A labeled transi-
tion system (LTS) is a quadruple (S, Init,Σ, δ) where: (i) S
is a set of states, (ii) Init ⊆ S is a set of initial states, (iii)
Σ is a set of actions (alphabet), and (iv) δ ⊆ S × Σ × S is a
transition relation.

We only consider LTSs such that both S and Σ are finite.
We write s

α−→ s′ to mean (s, α, s′) ∈ δ. A trace is any
finite (possibly empty) sequence of actions, i.e., the set of all
traces is Σ∗. We denote an empty trace by ε, a singleton trace
〈α〉 by α, and the concatenation of two traces t1 and t2 by
t1 • t2. We extend the relation δ to a function δ̂ on a set of
states in the usual way. We also employ the usual definitions
of determinism and completeness for LTSs.

Definition 2 (Finite Automaton): A finite automaton is a
pair (M,F ) such that M = (S, Init,Σ, δ) is an LTS and
F ⊆ S is a set of final states.

Let G = (M,F ) be a finite automaton. Then G is said
to be deterministic (complete) iff the underlying LTS M is
deterministic (complete).

Definition 3 (Refusal): Let M = (S, Init,Σ, δ) be an LTS
and s ∈ S be any state of M . We say that s refuses an action
α iff ∀s′ ∈ S � (s, α, s′) �∈ δ. We say that s refuses a set of
actions R, and denote this by Ref(s,R), iff s refuses every
element of R. Note that the following holds: (i) ∀s �Ref(s, ∅),
and (ii) ∀s,R,R′ �Ref(s,R)∧R′ ⊆ R =⇒ Ref(s,R′), i.e.,
refusals are downward-closed.

Definition 4 (Failure): Let M = (S, Init,Σ, δ) be an LTS.
A pair (t, R) ∈ Σ∗ × 2Σ is said to be a failure of M iff there
exists some s ∈ δ̂(Init, t) such that Ref(s,R). The set of all
failures of an LTS M is denoted by F(M).

Note that a failure consists of both, a trace, and a refusal set.
A (possibly infinite) set of failures L is said to be a failure
language. Let us denote 2Σ by Σ̂. Note that L ⊆ Σ∗ × Σ̂.
Union and intersection of failure languages is defined in the
usual way. The complement of L, denoted by L, is defined to
be (Σ∗ × Σ̂) \ L. A failure language is said to be downward-
closed iff ∀t ∈ Σ∗ � ∀R ∈ Σ̂ � (t, R) ∈ L =⇒ ∀R′ ⊆
R. (t, R′) ∈ L. Note that in general, failure languages may
not be downward closed. However, as we show later, failure
languages generated from LTSs are always downward closed
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because the refusal sets at each state of an LTS are downward-
closed. In this article, we focus on downward-closed failure
languages, in particular, regular failure languages.

Definition 5 (Deadlock): An LTS M is said to deadlock iff
the following holds: F(M)∩(Σ∗×{Σ}) �= ∅. In other words,
M deadlocks iff it has a reachable state that refuses every
action in its alphabet.

Let us denote the failure language Σ∗×{Σ} by LDlk. Then,
it follows that M is deadlock-free iff F(M) ⊆ LDlk.

Maximality. Let P be any subset of Σ̂. Then the set of
maximal elements of P is denoted by M ax(P ) and defined
as follows: M ax(P ) = {R ∈ P | ∀R′ ∈ P � R �⊂ R′}

For example, if P = {{a}, {b}, {a, b}, {a, c}}, then
M ax(P ) = {{a, b}, {a, c}}. A subset P of Σ̂ is said to be
maximal iff it is non-empty and M ax(P ) = P . Intuitively,
failure automata are finite automata whose final states are
labeled with maximal refusal sets. Thus, a failure (t, R) is
accepted by a failure automaton M iff upon receiving input
t, M reaches a final state labeled with a refusal R′ such
that R ⊆ R′. Note that the notion of maximality allows us
to concisely represent downward-closed failure languages by
using only the upper bounds of a set (according to subset
partial order) to represent the complete set.

Definition 6 (Failure Automaton): A failure automaton
(FLA) is a triple (M,F, µ) such that M = (S, Init,Σ, δ)
is an LTS, F ⊆ S is a set of final states, and µ : F → 2Σ̂

is a mapping from the final states to 2Σ̂ such that:
∀s ∈ F � µ(s) �= ∅ ∧ µ(s) = M ax(µ(s)).

Let A = (M,F, µ) be a FLA. Then A is said to be
deterministic (respectively complete) iff the underlying LTS
M is deterministic (respectively complete).

Definition 7 (Language of a FLA): Let A = (M,F, µ) be
a FLA such that M = (S, Init,Σ, δ). Then a failure (t, R) is
accepted by A iff ∃s ∈ F �∃R′ ∈ µ(s)�s ∈ δ̂(Init, t)∧R ⊆ R′.
The language of A, denoted by L(A), is the set of all failures
accepted by A.

Every deterministic FLA A can be extended to a complete
deterministic FLA A′ such that L(A′) = L(A) by adding a
non-final sink state. In the rest of this article we consider FLA
and languages over a fixed alphabet Σ. 1

Lemma 1: A language is accepted by a FLA iff it is
accepted by a deterministic FLA, i.e., deterministic FLA have
the same accepting power as FLA in general.

Proof: (Sketch) By subset construction and properties
of downward-closed sets.

Regular Failure Languages (RFLs). A failure language
is said to be regular iff it is accepted by some FLA. It
follows from the definition of FLAs that RFLs are downward
closed. Hence the set of RFLs is closed under union and in-
tersection but not under complementation2. In addition, every
regular failure language is accepted by an unique minimal

1FLA are closely related to automata on guarded strings [27], which contain
arbitrary transition labels drawn from a partially-ordered set. In contrast, the
state labels (refusals) in FLA are only maximal elements from such a set.
Further, since it suffices to consider refusals at the end of a trace for checking
deadlock freedom, we only label the final states of a FLA.

2For example, consider Σ = {α} and the RFL L = Σ∗ × {∅}. Then
L = Σ∗ × {{α}} is not downward closed and hence is not an RFL.

deterministic FLA. The following Lemma is analogous to the
Myhill-Nerode theorem for regular languages and ordinary
finite automata.

Lemma 2: Every regular failure language(RFL) is accepted
by a unique (up to isomorphism) minimal deterministic finite
failure automaton.

Note that for any LTS M , F(M) is regular3. Indeed,
the failure automaton corresponding to M = (S, Init,Σ, δ)
is A = (M,S, µ) such that ∀s ∈ S � µ(s) =
M ax({R | Ref(s,R)}).

IV. ASSUME-GUARANTEE REASONING FOR DEADLOCK

We now present an assume-guarantee style [4] proof rule for
deadlock detection for systems composed of two components.
We use the notion of parallel composition proposed in the
theory of CSP [9] and define it formally.

Definition 8 (LTS Parallel Composition): Consider LTSs
M1 = (S1, Init1,Σ1, δ1) and M2 = (S2, Init2,Σ2, δ2).
Then the parallel composition of M1 and M2, denoted by
M1 � M2, is the LTS (S1 × S2, Init1 × Init2,Σ1 ∪ Σ2, δ),
such that ((s1, s2), α, (s′1, s

′
2)) ∈ δ iff the following holds:

∀i ∈ {1, 2} � (α ∈ Σi ∧ (si, α, s′i) ∈ δi) ∨ (α �∈ Σi ∧ si = s′i).
Without loss of generality, we assume that both M1 and

M2 have the same alphabet Σ. Indeed, any system with two
components having different alphabets, say Σ1 and Σ2, can
be converted to a bisimilar (and hence deadlock equivalent)
system [8] with two components each having the same alpha-
bet Σ1∪Σ2. Thus, all languages and automata we consider in
the rest of this article will also be over the same alphabet
Σ. We now extend the notion of parallel composition to
failure languages. Observe that the composition involves set-
intersection on the trace part and set-union on the refusal part
of failures. Proofs of all the lemmas are in the full version [25]
of the paper.

Definition 9 (Failure Language Composition): The parallel
composition of any two failure languages L1 and L2, de-
noted by L1 ‖ L2, is defined as follows: L1 ‖ L2 =
{(t, R1 ∪ R2) | (t, R1) ∈ L1 ∧ (t, R2) ∈ L2}.

Lemma 3: For any failure languages L1, L2, L
′
1 and L′

2, the
following holds: (L1 ⊆ L′

1) ∧ (L2 ⊆ L′
2) =⇒ (L1 ‖ L2) ⊆

(L′
1 ‖ L′

2).
Definition 10 (FLA Parallel Composition): Consider two

FLAs A1 = (M1, F1, µ1) and A2 = (M2, F2, µ2). The
parallel composition of A1 and A2, denoted by A1 � A2

4

, is defined as the FLA (M1 � M2, F1 × F2, µ) such that
µ(s1, s2) = M ax({R1 ∪ R2 | R1 ∈ µ1(s1) ∧ R2 ∈ µ2(s2)}).

Note that we have used different notation (� and ‖ re-
spectively) to denote the parallel composition of automata and
languages. Let M1,M2 be LTSs and A1, A2 be FLAs. Then
the following two lemmas bridge the concepts of composition
between automata and languages.

3However, there exists RFLs that do not correspond to any LTS. In
particular, any failure language L corresponding to some LTS must satisfy
the following condition: ∃R ⊆ Σ � (ε, R) ∈ L. Thus, the RFL {(α, ∅)} does
not correspond to any LTS.

4We overload the operator � to denote parallel composition in the context
of both LTSs and FLAs. The actual meaning of the operator will be clear
from the context.



4

Lemma 4: F(M1 � M2) = F(M1) ‖ F(M2).
Lemma 5: L(A1 � A2) = L(A1) ‖ L(A2).
Regular Failure Language Containment (RFLC). We

develop a general compositional framework for checking
regular failure language containment. This framework is also
applicable to deadlock detection since, as we illustrate later,
deadlock freedom is a form of RFLC. Recall that regular
failure languages are not closed under complementation and
hence, given RFLs L1 and L2, it is not possible to verify
L1 ⊆ L2 in the usual manner, by checking if L1 ∩ L2 = ∅.
However, as is shown by the following crucial lemma, it
is possible to check containment between RFLs using their
representations in terms of deterministic FLA, without having
to complement the automaton corresponding to L2.

Lemma 6: Consider any FLA A1 and A2. Let A′
1 =

(M1, F1, µ1) and A′
2 = (M2, F2, µ2) be the FLA ob-

tained by determinizing A1 and A2 respectively, and let
M1 = (S1, Init1,Σ, δ1) and M2 = (S2, Init2,Σ, δ2). Then
L(A1) ⊆ L(A2) iff for every reachable state (s1, s2) of
M1 �M2 the following condition holds: s1 ∈ F1 =⇒ (s2 ∈
F2 ∧ (∀R1 ∈ µ1(s1) � ∃R2 ∈ µ2(s2) � R1 ⊆ R2)).

In other words, we can check if L(A1) ⊆ L(A2) by
determinizing A1 and A2, constructing the product of the
underlying LTSs and checking if the condition in Lemma 6
holds on every reachable state of the product. The condition
essentially says that for every reachable state (s1, s2), if s1 is
final, then s2 is also final and each refusal R1 labeling s1 is
contained in some refusal R2 labeling s2.

Now suppose that L(A1) is obtained by composing two
RFLs L1 and L2, i.e., L(A1) = L1 ‖ L2 and let L(A2) = LS ,
the specification language. In order to check RFLC between
L1 ‖ L2 and LS , the approach presented in lemma 6 will
require us to directly compose L1, L2 and LS , a potentially
expensive computation. In the following, we first show that
checking deadlock-freedom is a particular case of RFLC and
then present a compositional technique to check RFLC (and
hence deadlock-freedom) that avoids composing L1 and L2

(or their FLA representations) directly.
Deadlock as Regular Failure Language Containment.

Given three RFLs L1, L2 and LS , we can use our regular
language containment algorithm to verify whether (L1 ‖
L2) ⊆ LS . If this is the case, then our algorithm returns TRUE.
Otherwise it returns FALSE along with a counterexample
CE ∈ (L1 ‖ L2) \ LS . Also, we assume that L1, L2 and LS

are represented as FLA. To use our algorithm for deadlock
detection, recall that for any two LTSs M1 and M2, M1�M2

is deadlock free iff F(M1 � M2) ⊆ LDlk. Let L1 = F(M1),
L2 = F(M2) and LS = LDlk. Using Lemma 4, the above
deadlock check reduces to verifying if L1 ‖ L2 ⊆ LS .
Observe that we can use our RFLC algorithm provided L1,
L2 and LS are regular. Recall that since M1 and M2 are
LTSs, L1 and L2 are regular. Also, LDlk is regular since it is
accepted by the failure automaton A = (M,F, µ) such that:

(i) M = ({s} , {s} ,Σ, δ), (ii) δ =
{

s
α−→ s | α ∈ Σ

}
, (iii)

F = {s}, and (iv) µ(s) = M ax({R | R ⊂ Σ}). For instance,
if Σ = {a, b, c} then µ(s) = {{a, b} , {b, c} , {c, a}}. Thus,
deadlock detection is just a specific instance of RFLC.

Suppose we are given three RFLs L1, L2 and LS in the
form of their accepting FLA A1, A2 and AS . To check L1 ‖
L2 ⊆ LS , we can construct the FLA A1�A2 (cf. Lemma 10)
and then check if L(A1�A2) ⊆ L(AS) (cf. Lemma 5 and 6).
The problem with this naive approach is statespace explosion.
In order to alleviate this problem, we present a compositional
language containment scheme based on AG-style reasoning.

A Non-circular AG Rule. Consider RFLs L1, L2 and LS .
We are interested in checking whether L1 ‖ L2 ⊆ LS . In this
context, the following non-circular AG proof rule, which we
call AG-NC, is both sound and complete:

L1 ‖ LA ⊆ LS L2 ⊆ LA

L1 ‖ L2 ⊆ LS

In principle, AG-NC enables us to prove L1 ‖ L2 ⊆ LS

by discovering an assumption LA that discharges its two
premises. In practice, it leaves us with two critical problems.
First, it provides no effective method for constructing an
appropriate assumption LA. Second, if no appropriate assump-
tion exists, i.e., if the conclusion of AG-NC does not hold,
then AG-NC does not help in obtaining a counterexample
to L1 ‖ L2 ⊆ LS . In this paper we develop and employ a
learning algorithm that solves both the above problems. More
specifically, our algorithm learns automatically, and incremen-
tally, the weakest assumption LW that can discharge the first
premise of AG-NC. During this process, it is guaranteed to
reach, in a finite number of steps, one of the following two
situations, and thus always terminate with the correct result:
(1) It discovers an assumption that can discharge both premises
of AG-NC, and terminates with TRUE. (2) It discovers a
counterexample CE to L1 ‖ L2 ⊆ LS , and returns FALSE

along with CE.
Weakest Assumption. Consider the proof rule AG-NC.

For any L1 and LS , let L̂ be the set of all languages that
can discharge the first premise of AG-NC. In other words,
L̂ = {LA | (L1 ‖ LA) ⊆ LS}. The following central theorem
asserts that L̂ contains a unique weakest (maximal) element
LW that is also regular. This result is crucial for showing the
termination of our approach.

Theorem 1: Let L1 and LS be any RFLs and f is a
failure. Let us define a language LW as follows: LW =
{f | (L1 ‖ {f}) ⊆ LS}. Then the following holds: (i) L1 ‖
LW ⊆ LS , (ii) ∀L � L1 ‖ L ⊆ LS ⇐⇒ L ⊆ LW , and (iii)
LW is regular.

Proof: (Sketch) Parts (i) and (ii) can be proved from
the definition of LW . For (iii) we assume that L1 and LS are
represented as failure automata A1 and A2, and use them to
construct a failure automata AW for LW . The LTS for AW is
the product of the LTSs of A1 and A2. For every state (s1, s2),
where s1 and s2 are final in their respective FLAs, we first
compute a label X as follows: we add a refusal R to X iff for
each refusal R1 labeling s1 there exists a refusal R2 labeling
s2 such that R1∪R ⊆ R2. Finally, if X �= ∅, we make (s1, s2)
final and set µ(s1, s2) = M ax(X).

Now that we have proved that the weakest environment
assumption LW is regular, we can apply a learning algorithm
to iteratively construct a FLA assumption that accepts LW . In
particular, we develop a learning algorithm LF that iteratively
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learns the minimal DFLA corresponding to LW by asking
queries about LW to a minimally adequate teacher (MAT)
and learning from them. In the next section, we present
LF . Subsequently, in Section VI, we describe how LF is
used in our compositional language containment procedure. A
reader who is interested in the overall compositional deadlock
detection algorithm more than the intricacies of LF may skip
directly to Section VI at this point.

V. LEARNING FLA

In this section we present an algorithm LF to learn the
minimal FLA that accepts an unknown RFL U . Our algorithm
will use a minimally adequate teacher (MAT) that can answer
two kinds of queries regarding U : (1) Membership query:
Given a failure e the MAT returns TRUE if e ∈ U and FALSE

otherwise. (2) Candidate query: Given a deterministic FLA
C, the MAT returns TRUE if L(C) = U . Otherwise it returns
FALSE along with a counterexample failure CE ∈ (L(C) \
U)

⋃
(U \ L(C)).

Observation Table. LF uses an observation table to record
the information it obtains by querying the MAT. The rows and
columns of the table correspond to specific traces and failures
respectively. Formally, a table is a triple (T, E, R) where: (i)
T ⊆ Σ∗ is a set of traces, (ii) E ⊆ Σ∗ × Σ̂ is a set of failures
or experiments, and (iii) R is a function from T̂×E to {0, 1}
where T̂ = T ∪ (T • Σ).

For any table T = (T, E, R), the function R is defined as
follows: ∀t ∈ T̂ �∀e = (t′, R) ∈ E, R(t, e) = 1 iff (t• t′, R) ∈
U . Thus, given T and E, algorithm LF can compute R via
membership queries to the MAT. For any t ∈ T̂, we write
R(t) to mean the function from E to {0, 1} defined as follows:
∀e ∈ E � R(t)(e) = R(t, e).

An observation table T = (T, E, R) is said to be well-
formed iff: ∀t1 ∈ T � ∀t2 ∈ T � t1 �= t2 =⇒ R(t1) �= R(t2).
Essentially, this means that any two distinct rows t1 and t2 of
a well-formed table can be distinguished by some experiment
e ∈ E. This also imposes an upper-bound on the number of
rows of any well-formed table, as expressed by the following
lemma.

Lemma 7: Let n be the number of states of the minimal
DFLA accepting U and let T = (T, E, R) be any well-formed
observation table. Then |T| ≤ n.

Closed observation table. An observation table T =
(T, E, R) is said to be closed iff it satisfies the following:
∀t ∈ T � ∀α ∈ Σ � ∃t′ ∈ T � R(t • α) = R(t′). Intuitively,
this means that if we extend any trace t ∈ T by any action
α then the result is indistinguishable from an existing trace
t′ ∈ T by the current set of experiments E. Note that any
well-formed table can be extended so that it is both well-
formed and closed. This can be achieved by the algorithm
MakeClosed shown in Figure 1. Observe that at every step
of MakeClosed, the table T remains well-formed and hence,
by Lemma 7, cannot grow infinitely. Also note that restricting
the occurrence of refusals to E allows us to avoid considering
the exponential possible refusal extensions of a trace while
closing the table. Exponential number of membership queries
will only be required if all possible refusals occur in E.

Input: Well-formed observation table T = (T, E, R)
while T is not closed do

pick t ∈ T and α ∈ Σ such that ∀t′ ∈ T � R(t • α) �= R(t′)
add t • α to T and update R accordingly

return T

Fig. 1. Algorithm MakeClosed extends an input well-formed table T so
that the resulting table is both well-formed and closed.

Overall LF algorithm. Algorithm LF is iterative. It
initially starts with a table T = (T, E, R) such that T =
{ε} and E = ∅. Note that the initial table is well-formed.
Subsequently, in each iteration LF performs the following
steps:

1) Make T closed by invoking MakeClosed.
2) Construct candidate DFLA C from T and make candi-

date query with C.
3) If the answer is TRUE, LF terminates with C as the final

answer.
4) Otherwise LF uses the counterexample CE to the

candidate query to add a single new failure to E and
repeats from step 1.

In each iteration, LF either terminates with the correct
answer (step 3) or adds a new failure to E (step 4). In the
latter scenario, the new failure to be added is constructed in
a way that guarantees an upper bound on the total number of
iterations of LF . This, in turn, ensures its ultimate termination.
We now present the procedures for: (i) constructing a candidate
DFLA C from a closed and well-formed table T (used in
step 2 above), and (ii) adding a new failure to E based on a
counterexample to a candidate query (step 4).

Candidate construction. Let T = (T, E, R) be a closed
and well-formed observation table. The candidate DFLA
C is constructed from T as follows: C = (M,F, µ)
and M = (S, Init,Σ, δ) such that: (i) S = T, (ii)

Init = {ε}, (iii) δ =
{

t
α−→ t′ | R(t • α) = R(t′)

}
, (iv)

F = {t | ∃e = (ε, R) ∈ E � R(t, e) = 1}, and (v) µ(t) =
M ax({R | R(t, (ε, R)) = 1}).

Adding new failures. Let C = (M,F, µ) be a candidate
DFLA such that M = (S, Init,Σ, δ). Let CE = (t, R) be a
counterexample to a candidate query made with C. In other
words, CE ∈ L(C) ⇐⇒ CE �∈ U . The algorithm NewExp
adds a single new failure to T as follows. Let t = α1•. . .•αk.
For 0 ≤ i ≤ k, let ti be the prefix of t of length i and ti be
the suffix of t of length k − i. In other words, for 0 ≤ i ≤ k,
we have ti • ti = t.

Additionally, for 0 ≤ i ≤ k, let si be the state of C reached
by executing ti. In other words, si = δ̂(ti). Since the candidate
C was constructed from an observation table T , it corresponds
to a row of T , which in turn corresponds to a trace. Let us
also refer to this trace as si. Finally, let bi = 1 if the failure(
si • ti, R

)
∈ U and 0 otherwise. Note that we can compute

bi by evaluating si and then making a membership query with(
si • ti, R

)
. In particular, s0 = ε, and hence b0 = 1 if CE ∈

U and 0 otherwise. We now consider two cases.
Case 1: [b0 = 0] In this case, there exists an index j ∈
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{0, . . . , k} such that bj = 0 and bj+1 = 1. LF finds such an
index j and adds the failure

(
tj+1, R

)
to E. As a result, the

table T becomes non-closed and therefore, the next candidate
FLA has strictly more states than the current candidate C.
Complete details can be found in the full version of this paper.

Case 2: [b0 = 1] In this case, LF adds a new failure to
E that leads to the next candidate differing from the current
candidate C in at least one of the following three ways: (i) it
has strictly more states, (ii) it has a new final state, and (iii)
the labeling of one of the current final states gets augmented.
Complete details can be found in the full version of this paper.

Correctness of LF . Algorithm LF always returns the
correct answer in step 3 since it always does so after a
successful candidate query. To see that LF always terminates,
observe that in every iteration, the candidate C computed by
LF undergoes at least one of the following three changes:

• (Ch1) The number of states of C, and hence the number
of rows of the observation table T , increases.

• (Ch2) The states and transitions of C remain unchanged
but a state of C that was previously non-final becomes
final.

• (Ch3) The states, transitions and final states of C remain
unchanged but for some final state s of C, the size of
µ(s) increases.

Of the above changes, Ch1 can happen at most n times
where n is the number of states of the minimal DFLA
accepting U . Between any two consecutive occurrences of
Ch1, there can only be a finite number of occurrences of Ch2
and Ch3. Hence there can only be a finite number of iterations
of LF . Therefore, LF always terminates.

Number of iterations. To analyze the complexity of LF we
have to impose a tighter bound on the number of iterations.
We already know that Ch1 can happen at most n times. Since
a final state can never become non-final, Ch2 can also occur
at most n times. Now let the minimal DFLA accepting U
be A = (M,F, µ) such that M = (S, Init,Σ, δ). Consider
the set P =

⋃
s∈F µ(s) and let n′ = |P |. Since each Ch3

adds an element to µ(s) for some s ∈ F , the total number
of occurrences of Ch3 is at most n′. Therefore the maximum
number of iterations of LF is 2n + n′ = O(n + n′).

Time complexity. Let us make the standard assumption that
each MAT query takes O(1) time. From the above discussion
we see that the number of columns of the observation table is
at most O(n + n′). The number of rows is at most O(n). Let
us assume that the size of Σ is a constant. Then the number
of membership queries, and hence time, needed to fill up the
table is O(n(n + n′)).

Let m be the length of the longest counterexample returned
by a candidate query. Then to add each new failure, we have to
make O(log(m)) membership queries to find the appropriate
index j. Also, let the time required to find the maximal element
Rmax be O(m′). Then total time required for constructing
each new failure is O((n + n′)(log(m) + m′)). Finally, the
number of candidate queries equals the number of iterations
and hence is O(n + n′). Thus, in summary, we find that the
time complexity of LF is O((n + n′)(n + log(m) + m′)),
which is polynomial in n, n′, m and m′.

Space complexity. Let us again make the standard assump-
tion that each MAT query takes O(1) space. Since the queries
are made sequentially, total space requirement for all of them
is still O(1). Also, the procedure for constructing a new failure
can be performed in O(1) space. A trace corresponding to a
table row can be O(n) long and there are O(n) of them. A
failure corresponding to a table column can be O(m) long and
there are O(n+n′) of them. Space required to store the table
elements is O(n(n + n′)). Hence total space required for the
observation table is O((n + m)(n + n′)). Space required to
store computed candidates is O(n2). Therefore, the total space
complexity is O((n + m)(n + n′)) which is also polynomial
in n, n′ and m.

VI. COMPOSITIONAL LANGUAGE CONTAINMENT

Given RFLs L1, L2 and LS (in the form of FLA that accept
them) we want to check whether L1 ‖ L2 ⊆ LS . If not,
we also want to generate a counterexamples CE ∈ (L1 ‖
L2) \ LS . To this end, we invoke the LF algorithm to learn
the weakest environment corresponding to L1 and LS . We
present an implementation strategy for the MAT to answer
the membership and candidate queries posed by LF . In the
following we assume that A1, A2 and AS are the given FLAs
such that L(A1) = L1, L(A2) = L2 and L(AS) = LS .

Membership Query. The answer to a membership query
with failure e = (t, R) is TRUE if the following condition
(which can be effectively decided) holds and FALSE otherwise:
∀(t, R1) ∈ L1 � (t, R1 ∪ R) ∈ LS .

Candidate Query. A candidate query with a failure
automaton C is answered step-wise as follows:

1) Check if L(A1 � C) ⊆ L(AS). If not, let (t, R1 ∪ R)
be the counterexample obtained. Note that (t, R) ∈
L(C) \ U . We return FALSE to LF along with the
counterexample (t, R). If L(A1 � C) ⊆ L(AS), we
proceed to step 2.

2) Check if L(A2) ⊆ L(C). If so, we have obtained an
assumption, viz., L(C), that discharges both premises of
AG-NC. In this case, the overall language containment
algorithm terminates with TRUE. Otherwise let (t′, R′)
be the counterexample obtained. We proceed to step 3.

3) We check if there exists (t′, R′
1) ∈ L(A1) such that

(t′, R′
1∪R′) �∈ L(AS). If so, then (t′, R′

1∪R′) ∈ L(A1�
A2) \ L(AS) and the overall language containment al-
gorithm terminates with FALSE and the counterexample
(t′, R′

1 ∪ R′). Otherwise (t′, R′) ∈ U \ L(C) and we
return FALSE to LF along with the counterexample
(t′, R′).

Note that in the above we are never required to compose A1

with A2. In practice, the candidate C (that we compose with
A1 in step 1 of the candidate query) is much smaller than A2.
Thus we are able to alleviate the statespace explosion problem.
Also, note that our procedure will ultimately terminate with
the correct result from either step 2 or 3 of the candidate
query. This follows from the correctness of LF algorithm: in
the worst case, the candidate query will be made with a FLA
C such that L(C) = LW . In this scenario, termination is
guaranteed to occur due to Theorem 1.
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Exp LOC C St No Deadlock
Plain AG-NC AG-Circ

T M T M A T M A
MC 7272 2 2874 - * 308 903 5 307 903 6
MC 7272 3 2874 - * 766 1155 11 459 1155 12
MC 7272 4 2874 - * * 1453 - 716 1453 24

ide 18905 3 672 571 * 338 50 11 62 47 12
ide 18905 4 716 972 * * 63 - 195 55 24
ide 18905 5 760 1082 * * 84 - 639 85 48

syn 17262 4 117 733 * 1547 19 21 58 21 24
syn 17262 5 127 713 * * 19 - 224 47 48
syn 17262 6 137 767 * * 27 - 1815 189 96

mx 15717 3 1995 1154 * 2079 140 11 639 123 12
mx 15717 4 2058 1545 * - 168 - 713 139 24
mx 15717 5 2121 1660 * - 179 - 2131 185 48

tg3 36774 3 1653 971 * 1568 118 11 406 111 12
tg3 36774 4 1673 927 * - 149 - 486 131 24
tg3 36774 5 1693 1086 * - 158 - 1338 165 48
tg3 36774 6 1713 1252 * - 157 - 3406 313 96

IPC 818 3 302 195 α 703 338 49 478 355 49

DP 82 6 30 274 * 100 330 11 286 414 9
DP 109 8 30 302 * 1551 565 11 * 1474 -

Deadlock
Plain AG-NC AG-Circ

T M T M A T M A
372 β 386 980 13 313 979 16

- - - - - - - -
- - - - - - - -

755 * * 80 - 557 551 125
978 * * 84 - 2913 * -

1082 * * 89 - * 498 -

864 * 127 181 2 133 181 6
1088 * 844 * - 867 * -

- * 1188 * - - * -

1182 * 657 364 2 630 364 5
1309 * 1627 * - 1206 * -

- * 3368 * - 2276 * -

894 * 486 393 2 499 393 5
1096 * 1036 * - 1037 * -

- * 2186 * - 1668 * -
1278 * * - - 1954 * -

- - - - - - - -

- - - - - - - -
- - - - - - - -

TABLE I

EXPERIMENTAL RESULTS. C = # OF COMPONENTS; ST = # OF STATES OF LARGEST COMPONENT; T = TIME (SECONDS); M = MEMORY (MB); A = # OF

STATES OF LARGEST ASSUMPTION; * = RESOURCE EXHAUSTION; - = DATA UNAVAILABLE; α = 1247; β = 1708. BEST FIGURES ARE HIGHLIGHTED.

VII. ARBITRARY COMPONENTS AND CIRCULARITY

We investigated two approaches for handling more than two
components. First, we applied AG-NC recursively. This can
be demonstrated for languages L1, L2, L3 and LS by the
following proof-rule.

L1 ‖ L1
A ⊆ LS

L2 ‖ L2
A ⊆ L1

A L3 ⊆ L2
A

L2 ‖ L3 ⊆ L1
A

L1 ‖ L2 ‖ L3 ⊆ LS

At the top-level, we apply AG-NC on the two languages
L1 and L2 ‖ L3. Now the second premise becomes L2 ‖
L3 ⊆ L1

A and we can again apply AG-NC. In terms of the
implementation of the MAT, the only difference is in step 2
of the candidate query (cf. Section VI). More specifically, we
now invoke the language containment procedure recursively
with L(A2), L(A3) and L(C) instead of checking directly for
L(A2) ⊆ L(C). This technique can be extended to any finite
number of components.

Circular AG Rule. We also explored a circular AG
rule. Unlike AG-NC however, the circular rule is specific to
deadlock detection and not applicable to language containment
in general. For any RFL L let us write W (L) to denote the
weakest assumption against which L does not deadlock. In
other words, ∀L′ � L ‖ L′ ⊆ LDlk ⇐⇒ L′ ⊆ W (L). It can
be shown that: (PROP) ∀t ∈ Σ∗ � ∀R ∈ Σ̂ � (t, R) ∈ L ⇐⇒
(t,Σ\R) �∈ W (L). The following theorem provides a circular
AG rule for deadlock detection.

Theorem 2: Consider any two RFLs L1 and L2. Then the
following proof rule, which we call AG-Circ, is both sound
and complete.

L1 ‖ L1
A ⊆ LDlk L2 ‖ L2

A ⊆ LDlk

W (L1
A) ‖ W (L2

A) ⊆ LDlk

L1 ‖ L2 ⊆ LDlk

Implementation. To use this rule for deadlock detection
for two components L1 and L2 we use the following iterative
procedure:

1) Using the first premise, construct a candidate C1 sim-
ilar to Step 1 of the candidate query in AG-NC (cf.
Section VI). Similarly, using the second premise, con-
struct another candidate C2. Construction of C1 and C2

proceeds exactly as in the case of AG-NC.
2) Check if W (L(C1)) ‖ W (L(C2)) ⊆ LDlk. This is

done either directly or via a compositional language
containment using AG-NC. We compute the automata
for W (L(C1)) and W (L(C2)) using the procedure de-
scribed in the proof of Theorem 1. If the check succeeds
then there is no deadlock in L1 ‖ L2 and we exit
successfully. Otherwise, we proceed to Step 3.

3) From the counterexample obtained above construct t ∈
Σ∗ and R ∈ Σ̂ be such that (t, R) ∈ W (L(C1)) and
(t,Σ \ R) ∈ W (L(C2)). Check if (t, R) ∈ L1 and
(t,Σ \R) ∈ L2. If both these checks pass then we have
a counterexample t to the overall deadlock detection
problem and therefore we terminate unsuccessfully. Oth-
erwise, without loss of generality, suppose (t, R) �∈ L1.
But then, from PROP, (t,Σ\R) ∈ W (L1). Again from
PROP, since (t, R) ∈ W (L(C1)), (t,Σ \ R) �∈ L(C1).
This is equivalent to a failed candidate query for C1 with
counterexample (t,Σ \ R), and we repeat from Step 1
above.

Note that even though we have presented AG-Circ in the
context of only two components, it generalizes to an arbitrary,
but finite, number of components.

VIII. EXPERIMENTAL VALIDATION AND CONCLUSION

We implemented our algorithms in the COMFORT [10]
reasoning framework and experimented with a set of real-
life examples. All our experiments were done on a 2.4 GHz
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Pentium 4 machine running RedHat 9 and with time limit of 1
hour and a memory limit of 2 GB. Our results are summarized
in Table I. The MC benchmarks are derived from Micro-
C version 2.70, a lightweight OS for real-time embedded
applications. The IPC benchmark is based on an inter-process
communication library used by an industrial robot controller
software. The ide, syn, mx and tg3 examples are based on
Linux device drivers. Finally, DP is a synthetic benchmark
based on the well-known dining philosophers example.

For each example, we obtained a set of benchmarks by
increasing the number of components. For each such bench-
mark, we tested a version without deadlock, and another with
an artificially introduced deadlock. In all cases, deadlock was
caused by incorrect synchronization between components – the
only difference was in the synchronization mechanism. Specif-
ically, the dining philosophers synchronized using “forks”. In
all other examples, synchronization was achieved via a shared
“lock”.

For each benchmark, a finite LTS model was constructed
via a predicate abstraction [10] that transformed the syn-
chronization behavior into appropriate actions. For example,
in the case of the ide benchmark, calls to the spin lock
and spin unlock functions were transformed into lock and
unlock actions respectively. Note that this makes sense be-
cause, for instance, multiple threads executing the driver for a
specific device will acquire and release a common lock specific
to that device by invoking spin lock and spin unlock
respectively.

For each abstraction, appropriate predicates were supplied
externally so that the resulting models would be precise
enough to display the presence or absence of deadlock. In
addition, care was taken to ensure that the abstractions were
sound with respect to deadlocks, i.e., the extra behavior
introduced did not eliminate any deadlock in the concrete
system. Each benchmark was verified using explicit brute-
force statespace exploration (referred to in Table I as “Plain”),
the non-circular AG rule (referred as AG-NC), and the circular
AG rule (referred as AG-Circ). When using AG-Circ, Step 2
(i.e., checking if W (L(C1)) ‖ W (L(C2)) ⊆ LDlk) was done
via compositional language containment using AG-NC.

We observe that the AG-based methods outperform the
naive approach for most of the benchmarks. More importantly,
for each benchmark, the growth in memory consumption
with increasing number of components is benign for both
AG-based approaches. This indicates that AG reasoning is
effective in combating statespace explosion even for deadlock
detection. We also note that larger assumptions (and hence
time and memory) are required for detecting deadlocks as
opposed to detecting deadlock freedom. Among the AG-based
approaches, AG-Circ is in general faster than AG-NC but
(on a few occasions) consumes negligible extra memory. In
several cases, AG-NC runs out of time while AG-Circ is able
to terminate successfully. Overall, whenever AG-NC and AG-
Circ differ significantly in any real-life example, AG-Circ is
superior.

Conclusion. We have extended the learning-based auto-
mated assume guarantee paradigm to deadlock detection. We
have defined a new kind of automata that are similar to finite

automata but accept failures instead of traces. We have also
developed an algorithm, LF , that learns the minimal failure
automata accepting an unknown regular failure language using
a minimally adequate teacher. We have shown how LF can be
used for compositional deadlock detection using both circular
and non-circular assume-guarantee rules. Finally, we have
implemented our technique and have obtained encouraging
experimental results on several non-trivial benchmarks.
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