
Automated Compositional Analysis for

Checking Component Substitutability

Nishant Sinha

December 2007

Electrical and Computer Engineering Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Edmund M. Clarke, Chair

Don Thomas
Dawn Song

Corina Păsăreanu
Oded Maler

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2007 Nishant Sinha

Keywords: Compositional Verification, Assume-Guarantee Reasoning, Component
Substitutability, Machine Learning, Trace-containment, Simulation, Deadlock, SAT, SMT

For my family

iv

Abstract

Model checking is an automated technique to verify hardware and software
systems formally. Most of the model checking research has focused on devel-
oping scalable techniques for verifying large systems. A number of techniques,
e.g., symbolic methods, abstractions, compositional reasoning, etc. have been
proposed towards this goal. While methods based on symbolic reasoning (us-
ing binary decision diagrams or satisfiability solving) and methods based on
computing abstractions automatically in a counterexample-driven manner have
proved to be useful in verifying hardware and software systems, they do not
directly scale to systems with large number of modules or components. The
reason is that they try to verify the complete system in a monolithic manner,
which inevitably leads to the state-space explosion problem, i.e., there are too
many states in the system to explore exhaustively. Compositional reasoning
techniques try to address this problem by following a divide-and-conquer ap-
proach: the task of system verification is divided into several sub-tasks, each
involving a small subset of system components. Assume-Guarantee Reasoning
(AGR) is a particular form of compositional verification, where one first gener-
ates environment assumptions for a component and then discharges them on its
environment (i.e., the other components) separately. Assume-Guarantee Rea-
soning methods have been mainly studied in a theoretical context traditionally.
The central bottleneck in making them practical is the lack of algorithms to
automatically compute appropriate environment assumptions for components.

A recent approach for computing these assumptions relies on combining ma-
chine learning algorithms together with model checking techniques to achieve its
goal. The technique uses machine learning algorithms for finite state machines
in an iterative counterexample-driven manner, assisted by a model checker.
In this thesis, we build an abstract framework for automated AGR based on
machine learning algorithms and propose new algorithms for instantiating this
framework for several different notions of composition and conformances. In
particular, we propose compositional techniques for checking simulation con-
formance, based on learning regular tree languages, and for checking deadlock
based on learning failure languages. Moreover, we present an approach to scale
this framework to real-life systems communicating via shared memory by us-
ing new algorithms for learning machines with large alphabets together with
symbolic model checking.

Most industrial hardware and software systems are designed using previ-
ously available off-the-shelf components. Such component technologies are gain-
ing acceptance in both hardware and software engineering as effective tools for
quickly assembling complex systems from pre-developed components. During
their life-cycle, these components may undergo several bug-fixes and upgrades
and therefore need to be verified after every such component substitution step.
In this thesis, we refer to this problem as checking component substitutabil-
ity. This problem is pervasive across both software and hardware engineering

vi

communities, where a large amount of effort is spent on re-validating systems
from scratch after each update. In the thesis, we first formalize the problem for
software systems taking into account that evolution of components may involve
both addition of new features and removal of old behaviors. Then, we propose
a solution based on an incremental automated AGR technique, together with
counterexample-driven automated abstraction techniques.

The new techniques proposed in this thesis have been implemented and
evaluated on both software and hardware benchmarks and are shown to be
useful in practice.

vii

viii

Acknowledgements

I would like to thank my adviser, Prof. Edmund Clarke for his valuable
guidance and support. I am greatly indebted to him for teaching me the basic
techniques involved in doing research, thinking about problems and presenting
the material. His constant support kept me motivated across the ups and
downs of my PhD research. I would also like to thank the members of my
thesis committee, Prof. Don Thomas, Prof. Dawn Song, Corina Păsăreanu
and Oded Maler, for their comments and feedback.

I would like to extend a special thanks to all members of the model checking
group at CMU. In particular, I would like to thank Sagar Chaki, with whom I
worked closely for a large portion of research presented here. I was extremely
fortunate to have Flavio Lerda as my officemate. I would also like to thank my
friends and acquaintances in Pittsburgh for making my stay memorable.

Finally, I would like to thank my parents and brother for their unassuming
support and love.

x

Contents

1 Introduction 1

1.1 Automated Assume-Guarantee Reasoning 4

1.2 Checking Component Substitutability . 6

1.3 Overview of the thesis . 7

2 Learning Regular Languages 9

2.1 Machine Learning and Inductive Inference 9

2.2 Inductive Inference of Regular Languages 11

2.3 L∗ Algorithm . 12

2.3.1 Observation Table. 13

2.4 Termination and Correctness . 17

2.5 Discussion on Learning Algorithms . 20

2.5.1 Comparison with CEGAR approach 21

2.5.2 Applications of Learning . 22

3 Automated Compositional Verification 25

3.1 Preliminaries . 26

3.2 Assume-Guarantee Reasoning . 27

3.2.1 Soundness and Completeness . 29

3.3 Automated Assume-Guarantee Reasoning 30

xi

3.3.1 Rule NC . 31

3.3.2 Rule C . 33

3.4 Discussion . 35

3.5 History and Related Work . 37

3.5.1 Compositional Minimization . 37

3.5.2 Assume-Guarantee Reasoning . 38

4 Checking Component Substitutability 41

4.1 Component Substitutability Check . 42

4.2 Notation and Background . 44

4.3 Containment Analysis . 46

4.3.1 Feedback . 51

4.4 Compatibility Analysis . 52

4.4.1 Dynamic Regular-Set Learning . 52

4.4.2 Assume-Guarantee Reasoning . 59

4.4.3 Compatibility Check for C Components 60

4.5 Implementation and Experimental Evaluation 68

4.6 Related Work . 70

4.7 Conclusions . 71

5 Checking Simulation Conformance Compositionally 73

5.1 Preliminaries . 73

5.2 Learning Minimal DTA . 79

5.3 Automating Assume-Guarantee for Simulation 88

5.4 Experimental Results . 90

5.5 Conclusion and Related Work . 90

xii

6 Efficient AGR using SAT and Lazy Learning 93

6.1 Introduction . 93

6.2 Notation and Preliminaries . 94

6.2.1 Communicating Finite Automata 94

6.2.2 Symbolic Transition Systems . 97

6.2.3 SAT-based Model Checking . 98

6.3 Assume-Guarantee Reasoning using Learning 100

6.3.1 SAT-based Assume-Guarantee Reasoning 102

6.4 Lazy Learning . 103

6.4.1 Generalized L∗ Algorithm . 104

6.4.2 Lazy l∗ Algorithm . 105

6.4.3 Optimizing l∗ . 110

6.4.4 Another Lazy Learning Algorithm: l∗r 113

6.5 Implementation and Experiments . 115

6.6 Conclusions and Related Work . 118

7 Checking Deadlock Compositionally 121

7.1 Problem Formulation and Contributions 121

7.2 Failure Languages and Automata . 123

7.3 Assume-Guarantee Reasoning for Deadlock 130

7.3.1 A Non-circular AG Rule . 134

7.3.2 Weakest Assumption . 135

7.4 Learning FLA . 137

7.5 Compositional Language Containment . 143

7.6 Arbitrary Components and Circularity . 144

7.6.1 Circular AG Rule . 146

7.7 Experimental Validation . 148

xiii

7.8 Conclusions and Related Work . 149

8 Conclusions and Future Directions 151

xiv

List of Figures

2.1 Pseudocode for the L∗ algorithm . 15

2.2 Pseudocode for the LearnCE procedure . 16

2.3 An Observation Table and the Corresponding Candidate DFA 17

3.1 Learning-based Automated Assume-Guarantee Reasoning Procedure (simplified). 30

3.2 Automated AGR for the rule NC . 32

3.3 Automated AGR for the rule C . 34

4.1 The containment phase of the substitutability framework. 47

4.2 The table revalidation procedure Reval. 54

4.3 Illustration the revalidation procedure . 56

4.4 Pseudo-code for the MkWellFormed procedure 58

4.5 The Compatibility Phase of the Substitutability Framework 61

4.6 Pseudo-code for procedure GenerateAssumption. 64

4.7 Pseudo-code for Compatibility Checking on an upgrade 65

4.8 Summary of Results for DynamicCheck 69

5.1 Illustration of a bottom-up tree automaton 76

5.2 Observation table and candidate construction for LT algorithm. 81

5.3 Pseudocode for extracting an experiment from a counterexample. 83

5.4 Observation table and candidate construction (second step) 85

xv

5.5 Experimental results: AGR for checking simulation 91

6.1 Illustration of a CFA. 96

6.2 Pseudocode for the lazy l∗ algorithm . 107

6.3 Illustration of the l∗ algorithm. 108

6.4 Pseudocode for the l∗r algorithm . 114

7.1 Illustration of a failure automaton . 126

7.2 Pseudocode for the procedure MakeClosed in the LF algorithm 139

xvi

List of Tables

6.1 Experimental results for Lazy AGR technique. 117

6.2 Effect of the counterexample generalization optimization on the l∗ algorithm.117

7.1 Experimental results for AGR for checking deadlock 145

xvii

xviii

Chapter 1

Introduction

Software and hardware systems play an important role in our day-to-day lives. With

passage of time, these systems are growing to be increasing complex and therefore more

prone to faults. Since these complex systems have an ubiquitous presence in our society, it

is important that they function correctly and are error-free. Given the complexity of such

systems, it is extremely challenging to verify their correctness.

Component technologies are gaining acceptance in the software and hardware systems

engineering community as effective tools for quickly assembling complex systems from

components. A software component must provide a set of pre-specified functionalities

and different vendors are allowed to ship different software implementations of the same

set of requirements. During their design, component-based systems may undergo several

changes on account of efforts to select and adapt the set of available components to satisfy

the requirements. Moreover, such systems continue to evolve throughout their product

life-cycle due to bug-fixes and upgrades. Verification of these systems during their design,

and more importantly, after each evolution step (also known as the re-validation problem)

is an extremely important and challenging task.

Automated formal verification techniques hold considerable promise in being able to

validate complex hardware and software systems across their evolution. Due to their

1

exhaustive nature, these approaches are known to outperform testing or simulation-based

methods for validating such systems or detecting complex errors.

Model checking [37, 42] is an automated technique to perform formal verification. In

this approach, the system to be verified is presented as a finite-state transition graph M

(often, a Kripke structure [42]) and the specification is expressed as a temporal logic (e.g.,

computational tree logic or linear time logic) formula φ. The model checking problem is

then to decide if M is a model for φ, denoted by M � φ. Fully automated and efficient

approaches to solve this problem exist and are implemented as tools, viz., the model

checkers. Moreover, in many cases when M 6� φ, the model checkers can generate a witness

counterexample behavior of M that precisely identifies how M violates φ. In general, the

specification can also be represented by a finite-state transition graph P and the model

checking question is to determine if model M conforms to P according to some notion of

conformance, e.g., trace containment [84] or simulation [104].

However, most real-life systems have an enormous number of possible states that are

reachable on some execution and it is challenging for a model checker to efficiently ex-

plore the vast state space. This is known as the state-space explosion and is the main

bottleneck for model checking tools. Given a hardware or software system consisting of

multiple modules, its state space may be large due to a number of reasons. Each of the

system modules may have a large state space because it contains a large number of internal

variables. Moreover, all the modules execute concurrently and therefore the state space of

the system may increase exponentially with increase in number of modules.

Most of the research on model checking has focused on alleviating the state-space ex-

plosion problem. A number of techniques have been developed, that may be broadly clas-

sified into the following categories: (i) symbolic techniques, e.g., Binary Decision Diagrams

(BDDs) [26] and Boolean satisfiability (SAT) [106], for efficiently exploring the state space;

(ii) Techniques based on computing appropriate property-preserving abstractions automat-

ically for model checking [39, 40, 91], (iii) Compositional Reasoning methods [73, 97, 112]

2

for sub-dividing the verification task into more tractable subtasks. Symbolic techniques

based on BDD-based representation and exploration of state spaces allowed model check-

ers to verify circuits with hundreds of state elements. The emergence of powerful SAT

solvers has made model checking even more scalable [22, 113] by handling larger designs

which BDDs could not handle. For verifying software systems with possibly infinite num-

ber of states, techniques based on automatically computing finite state abstractions using

counterexamples [40, 91] (e.g., predicate abstraction [15, 69]) have been quite successful.

Although both symbolic and abstraction based methods are very powerful, they are not

able to solve many real-life model checking problems in their own capacity. In particular,

for systems with several components executing concurrently, these techniques do not scale

well as the number of components increase.

Compositional reasoning techniques come to the rescue in such cases: they advocate

a divide-and-conquer approach to mitigate the state-space explosion: the task of system

verification is divided into several sub-tasks, each involving a small subset of system compo-

nents. Each of these subsets is analyzed separately, perhaps together with an environment

that represents a simplified model of the rest of the system and the results obtained for

the sub-tasks are combined into a single result about the complete system. Much of work

on compositional reasoning has concentrated on devising sound and complete proof rules

by which properties of systems can be derived from properties of their components.

Assume-Guarantee Reasoning (AGR) [88, 105, 112] is a form of compositional reasoning

which allows us to break down the proof of system correctness in a compositional way into

several sub-proofs. Each of the sub-proofs involve showing guarantees on behaviors of a

system component under assumptions about behaviors of other components in the system

(environment). The collection of these sub-proof antecedents together with a consequent

characterizing the system correctness, constitutes an AGR inference rule. An inference rule

is said to be syntactically circular if the assumptions of a component form the guarantees

of the rest of the components in each of the antecedents. Otherwise, a rule is said to be

3

non-circular.

Suppose we have a system with two components M1 and M2 and our goal is to show

that a property P holds on the system according to a given conformance relation ⊑, i.e.,

M1 ‖ M2 ⊑ P . We can achieve our goal in a compositional manner using the following

non-circular AGR inference rule.

M1 ‖ A ⊑ P M2 ⊑ A

M1 ‖ M2 ⊑ P

This rule provides a compositional way to check the specification P on a system which

consists of two components M1 and M2, using a suitable assumption A. More precisely,

if we can find an assumption A such that the two premises (M1 ‖ A ⊑ P and M2 ⊑ A)

of the rule hold, then the conclusion (M1 ‖ M2 ⊑ P) of the rule must also hold. In

most cases, AGR inference rules are both sound and complete for safety specifications

P , and finite-state models M1 and M2. Soundness ensures that if the premises of the

rule hold, then the consequent must hold. Completeness ensures that if the composition

M1 ‖ M2 satisfies P , then it can be deduced from the premises of the rule, i.e., there exists a

witness assumption A that satisfies the premises. Unlike other techniques for verification of

finite-state systems, which have been largely automated (e.g., automated abstraction), the

compositional verification techniques, till recently, have completely relied on user guidance.

1.1 Automated Assume-Guarantee Reasoning

Most of the research on compositional reasoning and assume-guarantee reasoning (AGR), in

particular, has focused on the investigation of theoretical aspects and much less attention

has been paid to the task of automating it to make it practical. Although researchers

performed several case studies to apply AGR to both hardware and software systems (cf.

Related work in Section 3.5), significant manual effort was required to implement the

methodology.

4

In order to automate AGR for verifying a system with respect to its specification, we

need to answer two questions: (i) how do we decompose the system in order to identify

appropriate verification sub-tasks? (ii) given a decomposition, how do we compute these as-

sumptions automatically? While decompositions can be obtained with small manual effort

using the modular description of the system, the problem of computing these assumptions

often requires considerable amount of manual intervention. The lack of automation in

AGR, mainly due to the unavailability of a method to compute the assumptions automat-

ically, has hindered its application to real-life systems.

Recently in a seminal paper, Cobleigh et al. proposed an automated AGR methodol-

ogy [44] for checking safety properties on a composition of labeled transition systems. They

show that for finite systems and specifications, the assumptions can always be represented

by ordinary finite automata. Their technique, therefore, uses machine learning algorithms

for regular languages in terms of an automaton, together with a model checker to compute

the assumptions automatically. The main idea of the approach is as follows. The algorithm

computes an assumption hypothesis iteratively and then presents it to a model checker.

The model checker checks if the assumption satisfies the premises of the AGR rule. A par-

ticular assumption hypothesis may be either too weak, i.e., it accepts disallowed traces, or

too strong, i.e., it rejects traces that must be accepted. In such a case, the model checker

generates a counterexample trace that is used by the learning algorithm to improve its

hypothesis.

Verification of safety properties involves checking for errors in finite system executions

and intuitively involves showing that something bad never happens. Although, a large num-

ber of interesting correctness properties fall into the safety class, verification techniques

vary depending on the particular sub-class which a given property belongs to. For example,

verifying linear-time safety properties corresponds to checking finite trace-containment, i.e.,

all finite traces of the system are also contained in the specification. In contrast, checking

branching-time safety properties involves checking simulation or bisimulation between the

5

system and the specification. Checking deadlock also involves reasoning over finite execu-

tion traces but it involves explicitly monitoring the disabled actions at each system state;

direct extension of trace-containment based methods proves to be inefficient for checking

deadlocks. Moreover, there are many other important correctness properties that fall out-

side the safety class, e.g., liveness properties involve reasoning about infinite behaviors of

reactive systems and intuitively correspond to showing that something good must eventually

happen.

The automated AGR technique presented by Cobleigh et al. focuses on checking trace-

containment for systems communicating via rendezvous [82] and executing asynchronously.

This thesis builds upon the basic approach presented by Cobleigh et al. and investigates

the problem of performing AGR for other kinds of properties, viz., simulation and deadlock.

The thesis also proposes an efficient solution for scaling up the approach to synchronously

executing hardware systems communicating via shared variables.

1.2 Checking Component Substitutability

As mentioned earlier, the problem of verifying component-based systems during their initial

design and across their evolution/deployment is an important one. For example, any

software component is inevitably transformed as designs take shape, requirements change,

and bugs are discovered and fixed. In general, such evolution results in the removal of

previous behaviors from the component and addition of new ones. Since the behavior of the

updated components has no direct correlation to that of its older counterpart, substituting

it directly can lead to two kinds of problems. First, the removal of behavior can lead to

unavailability of previously provided services. Second, the addition of new behavior can

lead to violation of global correctness properties that were previously respected.

Model checking can be used at each stage of a system’s evolution to solve the above

two problems. In fact, due to the modular nature of component-based systems, assume-

6

guarantee reasoning can be directly applied to verify global correctness properties. Conven-

tionally, model checking is applied to the entire systems after every update irrespective of

how much modification the system has actually undergone. The amount of time and effort

required to verify an entire system can be prohibitive and repeating the exercise after each

(even minor) system update is, therefore, impractical. Typically, such upgrades involve

modification of only a small number of components. Therefore, an efficient revalidation

technique should be able to reuse the previous verification results in order to reduce the

time and effort required for revalidation.

In this thesis, we propose an incremental method to revalidate a component-based sys-

tem (hardware or software) which avoids verification from scratch after each update. Since

each update involves modification of one or more components, we refer to the problem as

checking if the modified components can substitute their older counterparts. The technique

relies on using both automated abstraction and compositional reasoning techniques. An

important characteristic of the proposed method is that it is able to efficiently reuse the

verification results from the previous step.

1.3 Overview of the thesis

The thesis investigates the problem of automated assume-guarantee reasoning (AGR) based

on machine learning for verifying various kinds of properties and proposes a solution to the

component substitution problem using incremental AGR and automated abstraction. The

new approaches presented in the thesis serve numerous theoretical and practical verification

goals: (i) developing automated AGR techniques for multiple notions of conformance and

properties (ii) making automated AGR scalable and (iii) provide a solution for the pervasive

problem of checking component substitutability.

The thesis is organized into the following chapters:

Chapter 2 contains details about the machine learning algorithms for regular languages

7

and the L∗ algorithm.

Chapter 3 describes the automated AGR method proposed by Cobleigh et al. in an ab-

stract manner, without appealing to any particular notion of composition or conformance.

Chapter 4 presents the component substitutability problem and our solution based on

automated abstraction and incremental assume-guarantee reasoning.

Chapter 5 presents an automated AGR framework for checking simulation composi-

tionally for concurrent programs, which execute asynchronously and use rendezvous-based

communication.

Chapter 6 describes a SAT-based methodology to scale up automated AGR for syn-

chronous hardware systems which communicate by shared variables. A new lazy approach

to learning assumptions with large alphabets is presented.

Chapter 7 presents an automated AGR framework for checking deadlock composition-

ally for concurrent programs.

Finally, Chapter 8 summarizes the thesis and presents directions for future research.

8

Chapter 2

Learning Regular Languages

This chapter describes machine learning algorithms for inferring an unknown regular lan-

guage. These learning algorithms belong to the broader class of inductive inference methods

in the theory of machine learning.

2.1 Machine Learning and Inductive Inference

Machine learning is a process which causes systems to improve with experience. It is an im-

portant subfield of artificial intelligence which is concerned with development of algorithms

that allow systems to learn. Broadly speaking, there are two kinds of learning paradigms:

inductive and deductive. Inductive methods try to hypothesize or extract a general rule or

pattern from a given data set. In contrast, deductive methods involve systematic inference

of new facts based on the given data set. While the conclusion of inductive reasoning

methods may not be correct in general, the deductive methods lead to a correct conclusion

if the premises are true. Machine learning methods try to extract information from data

automatically by computational and statistical methods. The efficiency and computational

analysis of machine learning algorithms is studied under the field of computational learning

theory.

9

In this thesis, we will be concerned with the paradigm of inductive inference, which

was first established by Gold [67] in the context of inference of formal languages. Gold

introduced two concepts for characterizing inductive inference technique: identification in

the limit and identification by enumeration. An inference method of the first kind proceeds

by modifying its initial hypothesis based on an iteratively increasing set of observations

obtained from the concept. If the method stops modifying its hypothesis after a finite

number of steps and the final hypothesis is correct, then the method is said to identify the

unknown concept in limit on the given set of observations. In contrast, an identification

by enumeration method enumerates the set of hypotheses in an iterative manner until it

finds a correct hypothesis that is compatible with a given set of observations. Although

this technique is quite powerful, it is rather impractical since it may not achieve correct

identification in the limit or even be computable [13], for example, if the set of hypotheses

cannot be effectively enumerated.

Inductive inference of a large variety of objects, including finite state machines, for-

mal languages, stochastic grammars and logical formula, has been studied. An inductive

inference problem involves specification of the following items:

• the class of the unknown concepts or rules, e.g., a class of languages.

• the hypothesis space, containing objects describing each unknown concept item.

• the set of observations for each concept.

• the class of inference methods under consideration.

• the criteria for a successful inference.

Consider, for example, the problem of inference of regular languages in form of regular

expressions. Suppose we are given that the strings {0011, 000011, 0000, 011, 00, 000000} are

in the unknown regular language LU , while the strings {0010, 0, 00110, 111, 0001111, 00000}

are not in LU . A plausible hypothesis may be that LU consists of an even number of zeros

or any number of zeros followed by two ones, defined by the regular expression (00)∗ +

10

0∗11. More formally, the problem consists of the following elements. The class of unknown

concepts is the set of regular languages over the alphabet Σ = {0, 1}. The hypothesis space

consists of all regular expressions over Σ. For a particular concept (regular language), an

observation is of form (s, d), where s ∈ Σ∗ and d ∈ {true, false}. We are interested in

methods that are terminating algorithms that output a regular expression starting from a

finite presentation (or observation set) of LU . We may choose identification in the limit as

the criterion of success.

2.2 Inductive Inference of Regular Languages

Given an unknown regular language LU , the problem of inductive inference of our interest

involves computing the minimum deterministic finite automaton (DFA) Dm, such that its

language, L(Dm), is equivalent to LU . A number of algorithms have been proposed for

inductive inference of regular languages using automata as the hypothesis object [50]. We

will consider efficient algorithms based on learning in the limit paradigm. The basic setup

for all these algorithms involves two entities: the Learner and the Teacher. The Learner

represents the algorithm which tries to estimate LU . The Teacher is knowledgeable about

LU and is able to provide sample traces from LU to the Learner, by answering queries if

required. These algorithms can be broadly classified into active and passive categories. In

the passive algorithms, the Teacher provides the Learner with a fixed initial set of trace

samples from LU . The Learner is supposed to infer Dm based upon this initial set. In

contrast, the Teacher in the active algorithms is capable of answering queries and providing

counterexample traces from LU . Therefore, the Learner is able to enlarge its sample set by

asking queries to the Teacher.

In this thesis, we will be concerned with active learning algorithms only. Here, the

Teacher is able to answer two kinds of queries posed by the Learner:

1. Membership query: Given a string t ∈ Σ∗, ‘is t ∈ LU?’

11

2. Candidate query: Given a hypothesis DFA D, ‘is L(D) = L
′
U?

If the candidate query succeeds, the Teacher replies with a true answer. Otherwise,

it provides a counterexample CE such that CE ∈ LU − L(D) or CE ∈ L(D)− LU . In the

first case, we refer to CE as a positive counterexample, since it must be added to D. In the

second case, we call CE a negative counterexample, since it must be removed from D. The

Learner computes an initial hypothesis DFA D and improves it iteratively based on the

results of the membership and candidate queries, until a correct hypothesis is obtained.

We now discuss the L∗ algorithm [12, 117], a well-known algorithm for learning regular

languages.

2.3 L∗ Algorithm

The L∗ algorithm was originally proposed by Angluin [12]. Rivest and Schapire later

proposed a variant of the algorithm [117] with a lower complexity. We now describe the

algorithm in a step-by-step manner based on the presentation by Rivest and Schapire.

The L∗ algorithm learns the minimum DFA D corresponding to an unknown regular

language LU defined over an alphabet Σ. The algorithm is based on the Nerode congru-

ence [84] ≡N : For u, u′ ∈ Σ∗, u ≡N u′ iff

∀v ∈ Σ∗, u · v ∈ LU ⇔ u′ · v ∈ LU

Intuitively, L∗ iteratively identifies the different Nerode congruence classes for LU by

discovering a representative prefix trace (u ∈ Σ∗) for each of the classes with the help of a

set of distinguishing suffixes V ⊆ Σ∗ that differentiate between these classes.

Notation. We represent the empty trace by ǫ. For a trace u ∈ Σ∗ and symbol a ∈ Σ,

we say that u · a is an extension of u. The membership function J·K is defined as follows:

if u ∈ LU , JuK = 1, otherwise JuK = 0. A counterexample trace ce is positive if JceK = 1,

12

otherwise, it is said to be negative.

2.3.1 Observation Table.

Formally, L∗ maintains an observation table T = (U,UA, V, T) consisting of trace samples

from LU , where:

• U ⊆ Σ∗ is a prefix-closed set of traces,

• The set UA consists of extensions of elements in U on all alphabet symbols, i.e.,

UA = {u · a|u ∈ U, a ∈ Σ}

• V ⊆ Σ∗ is a set of experiment traces, used to distinguish states in the candidate

automaton, and,

• T : (U ∪ (UA)) × V → {0, 1} is a function such that:

∀u ∈ (U ∪ (UA)) � ∀v ∈ V � T (u, v) = 1 ≡ u · v ∈ LU

Intuitively, one can think of T as a two-dimensional table. The rows of T are labeled

with the elements of U ∪(UA) while the columns are labeled with elements of V . Finally T

denotes the table entries. In other words, the entry corresponding to row u and column v is

simply T (u, v). The value of T (u, v) is 1 if u·v ∈ LU , otherwise T (u, v) is 0. Figure 2.3(left)

shows an example of an observation table. Intuitively, T contains the results of membership

queries on trace samples of form u · v, where u ∈ U ∪ UA and v ∈ V .

Table Congruence. We define a congruence ≡ as follows: for u, u′ ∈ U ∪UA, u ≡ u′

iff ∀v ∈ V , T (u, v) = T (u′, v). We can view ≡ as a restriction of the Nerode congruence

≡N to prefixes in U ∪UA and suffixes in V . Also, for all u ∈ (U ∪UA), we denote the set

13

of traces equivalent to u by [u], where

[u] = {u′ ∈ (U ∪ UA) | u ≡ u′}

.

Well-formed Table. An observation table T is said to be well-formed if for all u,

u′ ∈ U , u 6≡ u′. The L∗ algorithm always keeps T well-formed.1.

Table Closure. The observation table T is said to be closed if for each ua ∈ UA, there

is a u′ ∈ U , so that ua ≡ u′. Given any observation table T , we assume that a procedure

CloseTable makes it closed in the following way. The procedure iteratively selects some

ua ∈ UA so that for all u ∈ U , ua 6≡ u. Then, it adds ua to U and updates the map T

by asking membership queries for all extensions of ua using the FillAllSuccs procedure.

The procedure CloseTable terminates with a closed table when no such ua can be found.

DFA Construction. Given a closed table T , L∗ obtains a DFA D = 〈Q, q0, δ, F 〉

from it as follows: Q = {[u] | u ∈ U}, where a state q ∈ Q corresponds to the equivalence

class [u] of a trace u ∈ U , q0 = [ǫ], δ([u], a) = [u · a] for each u ∈ U and a ∈ Σ. F

= {[u] | u ∈ U ∧ T (u, ǫ) = 1}. Suppose that a procedure called MkDFA implements this

construction. Note that D is both deterministic and complete.

Figure 2.1 shows the pseudocode for the L∗ algorithm. The Init block performs the

initialization steps while the Repeat block performs the learning task iteratively. We

assume that the procedures AskMemQ and AskCandQ are implemented by the Teacher to

answer membership and candidate queries respectively. In the Init block, the sets U and

V are both initialized to {ǫ}. Next, the algorithm performs membership queries for ǫ (using

the Fill procedure) and on all extensions a ∈ Σ (using the FillAllSuccs procedure), and

updates the map T with the results.

1A notion of consistency is usually used in presentation of L∗ [12]. We ignore it because a well-formed
table is consistent by definition.

14

Learner L∗

Let T = (U, V, T) be an observation table
Init:

U := V := {ǫ}
Fill (ǫ,ǫ)
FillAllSuccs (ǫ)

Repeat:
CloseTable(T)
DFA D := MkDFA(T)
if (AskCandQ (D) = true)

return D;
else

Let the counterexample be ce
LearnCE (ce)

CloseTable(T)
while T is not closed

Pick u′ ∈ UA such that ∀u ∈ U. u 6≡ u′

U := U ∪ {u′}, UA := UA \ {u′}
FillAllSuccs(u′)

FillAllSuccs (u)
For all a ∈ Σ
UA := UA ∪ {u · a}
For each v ∈ V : Fill(u · a, v)

Fill (u, v)
T (u, v) := AskMemQ(u · v)

Figure 2.1: Pseudocode for the L∗ algorithm

The Repeat block then performs the learning task in the following way. The CloseTable

procedure is first used to make T closed. When a closed table is obtained, the procedure

MkDFA is used to construct a DFA hypothesis D from it. The algorithm then performs a

candidate query with D using the AskCandQ procedure. If the candidate query succeeds,

L∗ finishes by returning D as the correct hypothesis; otherwise, the Repeat block continues

by trying to compute a more accurate hypothesis by learning from the counterexample CE

obtained (using the procedure LearnCE). We now present the details of the core learning

procedure LearnCE.

Learning from Counterexamples. If a candidate query with a hypothesis DFA D

fails, a counterexample CE is returned, where either CE ∈ LU −L(D) or CE ∈ L(D)−LU .

The procedure LearnCE is analyzes CE and updates the observation table T so that an

improved hypothesis can be derived from T in the next iteration. In order to describe

LearnCE, we need a few definitions.

Given w ∈ Σ∗, we define its representative element, denoted by [w]r, to be some u ∈ U

such that if q = δ∗D(q0, w), then q = [u]. It follows from the construction of DFA D that

such a u must exist and is unique. Also, [u]r = u for all u ∈ U . Intuitively, [w]r is the

representative element of the unique state q (equivalence class) that w reaches when it is

run on D starting at q0. We can compute [w]r by simulating w on D to find q and then

15

picking the corresponding element u ∈ U .

We define an i-split (0 ≤ i ≤ |ce|) of a counterexample ce to be a tuple (ui, vi), where

ce = ui · vi and |ui| = i. In words, an i-split of ce, consists of its prefix ui of length i and

the corresponding suffix vi.

For an i-split of ce, we define αi = J[ui]
r · viK (0 ≤ i ≤ |ce|). Intuitively, αi corresponds

to checking if the suffix vi is accepted starting from the equivalence class represented by

[ui]
r. We say that a prefix ui is mis-classified if Jui · viK 6= J[ui]

r · viK. For example, suppose

ce is rejected in LU , i.e., JceK = 0. Therefore, Jui · viK = 0 for all the i-splits. It follows that

each of the prefixes ui must be mapped to an equivalence class [ui] (with a representative

element [ui]
r) such that [ui] rejects the corresponding suffix vi, i.e., J[ui]

r · viK = αi = 0.

Otherwise, if for some i, αi = 1, then ui is mis-classified.

Intuitively, αi checks whether the ith prefix ui is mapped into the correct equivalence

class [ui]. More precisely, if αi = JceK for some i, it implies that ui is classified correctly.

Otherwise ui is mis-classified and L∗ must re-classify ui to a different equivalence class in

order to eliminate the counterexample. 2 Note that we can compute αi by computing [ui]
r,

say u, and then asking a membership query for the word u · vi.

The LearnCE procedure is given by the pseudocode in Figure 2.2.

LearnCE (ce)
Find i by binary search such that αi 6= αi+1

V := V ∪ {vi+1}
For all u ∈ U ∪ UA. Fill(u, vi+1)

Figure 2.2: Pseudocode for the LearnCE procedure

The procedure tries to find an index i (0 ≤ i ≤ |ce|) such that αi 6= αi+1 and updates

T by adding the suffix vi+1 to V . Since α0 6= α|ce|, there must exist some i, 0 ≤ i ≤ |ce|,

so that αi 6= αi+1. In this case, ui+1 is mis-classified into the equivalence class represented

by the word [ui+1]
r, (which corresponds to a state, say q, in D), and vi+1 is a witness for

2Note that for i = |ce|, α|ce| 6= JceK, i.e., a counterexample is always mis-classified.

16

this mis-classification. Adding vi+1 to V distinguishes the correct equivalence class (say

q′) from q and redirects ui+1 to q′. We call this a state partition (of q).

E
ǫ

S
ǫ 0 (s0)
α 1 (s1)

S · Σ
β 0
αα 1
αβ 0

β α

s1

s0

α

β

Figure 2.3: An Observation Table and the Corresponding Candidate DFA

Consider Figure 2.3. On the left is an observation table (S, E, T) where S and E

correspond to rows and columns respectively and T corresponds to the table entries. Here,

Σ = {α, β}. From this table we see that {α, α · α} ⊆ U . On the right is the corresponding

candidate DFA. The states s0 and s1 of the DFA correspond to the elements ǫ and α of S

respectively. The state s0 is marked initial since it corresponds to word ǫ. The state s1 is

marked final since the table entry T (α, ǫ) = 1. Finally, the transitions are determined as

described in the procedure MkDFA.

2.4 Termination and Correctness

We now prove some results about the termination and correctness of the L∗ algorithm

and the procedures CloseTable and MkDFA. We first show that the L∗ algorithm always

maintains a well-formed observation table.

Lemma 1 The L∗ algorithm always maintains a well-formed table.

Proof. Consider the pseudo-code of L∗ in Figure 2.1. Given an observation table T =

(U, V, T), the set U is updated only by the CloseTable procedure. Hence, we need to

17

show that CloseTable always maintains a well-formed table at each iteration.

We proceed by induction. Note that at the first iteration of the L∗ loop (first call to

CloseTable), U only has a single element and hence the table is well-formed. Assume that

the input observation table T to CloseTable is well-formed at kth iteration (k > 1). The

procedure CloseTable (cf. Figure 2.1) only adds a new element t to S if for all s ∈ S,

s 6≡ t . Therefore, all the elements in S ∪ {t} are non-equivalent and the resultant table is

also well-formed.

�

The following lemma is crucial for proving termination of L∗. It essentially provides an

upper bound on the size of S.

Lemma 2 Let T = (S, E, T) be a well-formed observation table. Let U be an unknown

regular language and n be the number of states in the minimum DFA M such that LM = U .

Then the size of the trace set S cannot exceed n.

Proof. Let δ denote the transition relation of M (∆ extended to words) (cf. procedure

MkDFA) and q0 denote the initial state for M .

The proof is by contradiction. Suppose that the size of S exceeds n. Then by the pigeon-

hole principle, there exist two elements s1 and s2 of S such that δ(s1, {q0}) = δ(s2, {q0})

= q (say), i.e., s1 and s2 must reach the same state q in M . Since M is the minimum

DFA for U , we know that the states of M correspond to equivalence classes of the Nerode

congruence [84] for U . Since s1 and s2 reach the same state in M (same Nerode equivalence

class), it follows that

∀e ∈ Σ∗, s1 · e ∈ U iff s2 · e ∈ U (2.1)

But, T is well-formed and hence s1 6≡ s2. Therefore there exists some e ∈ E, such that

T (s1 · e) 6= T (s2 · e), i.e., s1 · e ∈ U and s2 · e 6∈ U or vice versa. Together with (2.1), we

reach a contradiction.

18

�

The following lemma shows that the procedure CloseTable cannot increase the size of

S indefinitely and must terminate in finite number of steps.

Lemma 3 The procedure CloseTable always terminates with a closed table. Moreover,

the procedure maintains a well-formed observation table T = (S, E, T) at each iteration.

Proof. It follows from the pseudo-code (Figure 2.1) that the procedure CloseTable keeps

adding new elements to S until T is closed. Since the size of S is bounded by the number

of states in the minimum DFA for the unknown language U (Lemma 2), CloseTable

terminates with a closed table in finite number of steps.

It follows from Lemma 1 that the procedure always maintains a well-formed table.

�

The following lemma shows that the MkDFA procedure always constructs a candidate

DFA starting from a well-formed and closed observation table.

Lemma 4 Given a well-formed and closed observation table as an input, the procedure

MkDFA always terminates with a candidate DFA D as a result.

Proof. Since the input table T is well-formed, the states of D are uniquely defined by

the elements of S. Moreover, the initial state is unique by definition and the final states

are well-defined. Since the table is closed, the transition relation of D is also well-defined.

Hence, the candidate DFA is well-defined.

�

Lemma 5 Given a counterexample ce, the procedure LearnCE always finds an index i such

that αi 6= αi+1. Also, LearnCE always terminates with a non-closed observation table.

Proof. From the definition of counterexample, it follows that α0 6= α|ce|. Hence, there

exists an index i where αi 6= αi+1.

Given a closed observation table T = (U, V, T), the LearnCE procedure adds a suffix

vi+1 to V so that αi 6= αi+1, i.e., J[ui]
r · viK 6= J[ui+1]

r · vi+1K. Let ui+1 = ui · a for some

19

a ∈ Σ. Therefore, vi = a · vi+1 and it follows that

J[ui]
r · a · vi+1K 6= J[ui · a]r · vi+1K. (2.2)

By definition, we know that both [ui]
r and u = [ui · a]r are in U and hence u′ = [ui]

r · a is

in U ∪UA. But, using the definition of α, [ui · a] = [u′]. Hence u ≡ u′ in T and since T is

well-formed, it follows that u′ ∈ UA. Also, we know that for all u1 ∈ U except u, u′ 6≡ u1.

Now, using Eq. 2.2, we have T (u′, vi+1) 6= T (u, vi+1). Therefore, after adding vi+1 to

V , u′ 6≡ u. As a result, u′ ∈ UA and for all u1 ∈ U , u′ 6≡ u1. Hence, the observation table

obtained as a result is not closed.

�

Theorem 1 Algorithm L∗ always terminates with the correct result.

Proof. That L∗ terminates with the correct result is obvious since it stops only after a

candidate query has passed. To prove that it terminates, it suffices to show that there can

only be a finite number of failed candidate queries and therefore only a finite number of

iterations of the top-level loop (Figure 2.1, line 2).

For each failed candidate query, the procedure LearnCE is executed. It follows from

Lemma 5 that the observation table obtained at end of execution of LearnCE is not closed.

Hence, the procedure CloseTable must add at least one element to S in the next iteration

of the top-level loop. However, the size of S is bounded (cf. Lemma 2) and hence the loop

will execute only finite number of times.

�

2.5 Discussion on Learning Algorithms

A comprehensive survey of various learning algorithms can be found in a work by

Higuera [50]. Language identification in the limit paradigm was introduced by Gold [50, 67].

20

This forms the basis of active algorithms which learn in an online fashion by querying an

oracle or a teacher. Gold also proposed another paradigm, namely identification from given

data, for learning from a fixed training sample set [68]. The training set consists of a set

of positive and negative samples from the unknown language and must be a characteris-

tic [68] set of the language. Algorithms have been proposed in this setting for learning word

languages [54, 109], tree languages [20, 62] and stochastic tree languages [27]. Learning

tree languages in form of a tree automaton was investigated in the context of context-free

grammars [119].

2.5.1 Comparison with CEGAR approach

The learning algorithms are similar to the counterexample-guided abstraction refinement

(CEGAR) approach [16, 41, 91] in that both approaches search the space of hypothe-

ses/abstractions in order to find a suitable hypothesis/abstraction that meets a given con-

straint on the language of the hypothesis. Both the approaches begin with an initial

hypothesis and then modify/refine the hypothesis iteratively until the correct hypothesis

is found. Moreover, both the approaches are counterexample-driven, i.e., the modifica-

tion of the hypothesis/abstraction at each step is based on the analysis of an erroneous

counterexample behavior provided by an external oracle. However, there are fundamental

differences between the two approaches:

• In the CEGAR approach, each state is characterized by a predicate on the variables

in the program. In contrast, each state in the learning algorithm is uniquely identified

by a representative trace and the corresponding state characterization vector (or a

row in the observation table), which is based on the set of distinguishing traces. While

a state in the CEGAR approach represents the set of concrete states corresponding

to the predicate label, a state in the learning algorithm corresponds to a collection

of one or more Nerode congruence classes [84] of the unknown language.

21

• The CEGAR approach removes spurious behaviors from an abstract model by par-

titioning the abstract states with the help of new predicates. These predicates are

obtained by analyzing the counterexamples with respect to concrete model semantics

and identifying a transition in the counterexample that is infeasible in the concrete

model. The state partition, in turn, leads to elimination of spurious transitions. In

contrast, the learning algorithm tries to remove or add counterexample behaviors to

a hypothesis with the help of the Nerode congruence directly. More precisely, the

algorithm analyzes the counterexample to find erroneous prefixes, i.e., the prefixes

that have been mapped to the wrong congruence class, and then maps each of them

to a new congruence class with the help of new traces that distinguish them from the

previous class. This re-mapping, in turn, leads to partitioning of congruence classes

or states in the previous hypothesis.

• In the CEGAR approach, the language of the abstraction decreases monotonically,

due to elimination of spurious counterexamples from the abstraction. In contrast,

the language accepted by the candidate hypotheses may change non-monotonically

across iterations of the learning algorithm.

2.5.2 Applications of Learning

The application of learning is extremely useful from a pragmatic point of view since it

is amenable to complete automation, and it is gaining rapid popularity in formal verifi-

cation. This thesis focuses on using learning algorithms together with a model checker

for compositional verification of hardware and software systems. The details of this ap-

proach will be presented in the subsequent chapters. Besides application to compositional

verification, learning has been applied together with predicate abstraction in the context

of interface synthesis [6, 78] and for automated software verification [28]. Other applica-

tions include automatic synthesis of interface specifications for application programs [6, 11],

22

automatically learning the set of reachable states in regular model checking [76, 126], black-

box-testing [111] and its subsequent extension to adaptive model-checking [72] to learn an

accurate finite state model of an unknown system starting from an approximate one, and

learning likely program invariants based on observed values in sample executions [57].

23

24

Chapter 3

Automated Compositional

Verification

Verification approaches based on compositional reasoning allow us to prove properties

(or discover bugs) for large concurrent systems in a divide-and-conquer fashion. Assume-

guarantee Reasoning (AGR) [88, 105, 112] is a particular form of compositional verification,

where we first generate environment assumptions for a component and discharge them on its

environment (i.e., the other components). The primary bottleneck is that these approaches

require us to manually provide appropriate environment assumptions.

In this chapter, we present an automated AGR approach based on using machine learn-

ing algorithms for computing the environment assumptions. Our description is based on

the initial approach proposed by Cobleigh et al. [43]. Instead of fixing a particular rep-

resentation for the system models, their composition and the notion of conformance, we

present the automated AGR framework in an abstract manner here. The following chapters

contain particular instantiations of the abstract framework presented here.

25

3.1 Preliminaries

The set of finite state models is denoted by MOD and includes instances of all different

finite state transition systems, e.g., finite state automata, labeled transition systems etc.

We adopt this general setting since different finite state model types can be used for

describing the implementation, specification and the assumption models.

The set of behaviors exhibited by a finite-state model M ∈ MOD is said to be its

language L(M). Let the universal set of behaviors be denoted by U , such that for each

model M , L(M) ⊆ U . The L of a language L is defined to be U \ L. We will consider the

following two operators, complementation and composition, on these models.

• Complementation. The complement of a finite-state model M is a finite state

model denoted by M .

• Composition. The composition of two finite state models M1 and M2 is a finite

state model denoted by M1 ‖ M2.

We further require that the above operators, if defined, obey the following language

constraints:

• (LC1) L(M) = L(M).

• (LC2) L(M1 ‖ M2) = L(M1) ∩ L(M2).

A (finite state) system consists of one or more (finite state) models.

Model Checking problem. Given an implementation system M , a specification

system P and a conformance relation �, the model checking problem is denoted by M � P .

In words, our goal is to check whether the implementation M conforms to the specification

P .

Model Checking as Language Containment. Using the notion of language of a

system, we can cast the model checking problem as a language containment problem, i.e.,

M � P iff L(M) ⊆ L(P).

In this thesis, we will always solve the model checking problem by considering the

26

corresponding language containment problem. As we will see, even the problems of checking

simulation and deadlock can be mapped to language containment problems based on an

appropriate definition of the language.

3.2 Assume-Guarantee Reasoning

We now describe the assume-guarantee reasoning (AGR) framework for abstract finite state

systems. AGR rules may be syntactically circular or non-circular in form. In this thesis,

we will be concerned mainly with the following two AGR rules, NC and C.

Definition 1 Non-circular AGR (NC) Given finite-state systems M1, M2 and P , show

that M1 ‖ M2 � P , by picking a finite-state assumption model A, such that both (n1)

M1 ‖ A � P and (n2) M2 � A hold.

The non-circular rule was first proposed by Pnueli [112]. The following circular rule

has also been proposed in literature [17, 107].

Definition 2 Circular AGR (C) Show that M1 ‖ M2 � P holds by picking an as-

sumption tuple, 〈A1, A2〉, such that each of the following hold: (c1) M1 ‖ A1 � P (c2)

M2 ‖ A2 � P and (c3) A1 ‖ A2 � P .

Both NC and C rules are sound and complete for various notions of languages, com-

position and conformance. Moreover, both can be extended to a system of n models

M1 . . .Mn by picking a set of assumptions (represented as a tuple) 〈A1 . . . An−1〉 for NC

and 〈A1 . . . An〉 for C respectively [17, 43, 107]. The proofs of completeness for both these

rules rely on the notion of weakest assumptions.

Definition 3 (Weakest Assumptions) Given a finite system M with a property P and

an assumption WA, we say that WA is the weakest assumption for M and P iff: (i)

M ‖ WA � P holds, and (ii) for all assumptions A where M ‖ A � P , L(A) ⊆ L(WA)

holds. The weakest assumption language LW = L(WA).

27

Lemma 6 (Weakest Assumption Language) Given a finite system M and a property

model P where LC2 holds for M and P , the weakest assumption language LW = L(M) ∪

L(P).

Proof. Using LC2 and the notion of model checking as language containment, our goal is

to show that (i) L(M) ∩ LW ⊆ P holds and (ii) for all A where L(M) ∩ L(A) ⊆ P holds,

it follows that L(A) ⊆ LW holds. Assume L(M) ∩ L(A) ⊆ P holds for some assumption

model A. On rearranging, we get, L(A) ⊆ L(M)∪L(P). Let L = L(M)∪L(P). Therefore

L(A) ⊆ L and (ii) holds. Also, (i) holds for L on solving. Hence LW = L.

The following lemma shows that we can check if a given trace t is in L(WA) without

constructing WA directly by checking if M ‖ t ⊑ ϕ holds.

Lemma 7 Supposed WA be the weakest assumption for finite system M and specification

system ϕ. Given a trace t, t ∈ L(WA) if M ‖ t ⊑ ϕ.

Proof. It follows from the definition of weakest assumptions that for all assumptions such

that M ‖ A ⊑ ϕ, L(A) ⊆ L(WA) holds. Let Mt be the automaton representation of t.

Since M ‖ Mt ⊑ ϕ holds, therefore it follows that L(Mt) ⊆ L(WA). Since L(Mt) = {t},

hence t ∈ L(WA).

Representing Weakest Assumptions.

Definition 4 (Language Set Cover by a Model Class) A model class M ⊆ MOD is

said to cover a language set L if ∀L ∈ L. ∃M ∈ M. L(M) = L. M uniquely covers L if

there exists an unique M ∈ (M) so that L(M) = L.

Lemma 8 (Sufficient Condition for Weakest Assumption Models) A model class

M can be used to represent the weakest assumption WA if it covers the language set consist-

ing of arbitrary boolean combinations of languages of model classes for M and P . Moreover,

WA is unique if the model class uniquely covers above language set.

Proof. Follows from the Lemma 6.

28

As we shall see in the subsequent chapters, this sufficient condition dictates the choice

of our assumption model representation in the AGR framework.

3.2.1 Soundness and Completeness

In the proof of the following theorems, we use propositional logic notation for representing

intersection, complementation and union of languages. Let lm1 = L(M1) and lm2 = L(M2)

and lp = L(P). Given assumptions A1 and A2, la1 = L(A1) and la2 = L(A2). The weakest

assumption language is lwai = ¬(lmi) ∨ lp (i ∈ {1, 2}).

Theorem 2 Rule NC is sound and complete.

Proof.

• Soundness. We need to show that if lm1 ∧ la1 =⇒ lp and lm2 =⇒ la1 hold, then

lm1∧lm2 =⇒ lp holds. Since, lm2 =⇒ la1, therefore lm1∧lm2 =⇒ lm1∧la1 =⇒

lp.

• Completeness. We show that if lm1 ∧ lm2 =⇒ lp, then both the premises of

NC hold for the weakest assumption. The first premise, lm1 ∧ la1 =⇒ lp holds

since lm1 ∧ ¬(lm1 ∨ lp) = lm1 ∧ lp and lm1 ∧ lp =⇒ lp. Also we can rewrite

lm1 ∧ lm2 =⇒ lp as lm2 =⇒ (¬lm1 ∨ lp), which is same as the second premise

lm2 =⇒ lwa1.

Theorem 3 Rule C is sound and complete.

Proof.

• Soundness. We need to show that if lmi∧lai =⇒ lp (i ∈ {1, 2}) and ¬la1∧¬la2 =⇒

lp, then lm1 ∧ lm2 =⇒ lp. Given an element t ∈ lm1 ∧ lm2, we consider three cases:

t ∈ ¬la1 ∧ ¬la2: It follows from the third premise that t ∈ lp.

29

Learner

Teacher (Model Checker)

M1 ‖ A |= P

M2 |= A

A

yes/no,

L∗

counterexample
M1 ‖ M2 |= P

Figure 3.1: Learning-based Automated Assume-Guarantee Reasoning Procedure (simpli-
fied).

t ∈ la1: Since t ∈ lm1, it follows from the first premise that t ∈ lp.

t ∈ la2: Since t ∈ lm2, it follows from the second premise that t ∈ lp.

• Completeness. Given (i) lm1 ∧ lm2 =⇒ lp, we show that all the three premises hold

for the weakest assumption languages lwa1 and lwa2. The first two premises hold

by definition. Note that for i ∈ {0, 1}, ¬lwai = lmi ∧ ¬lp. Now, ¬lwa1 ∧ ¬lwa2 =

lm1 ∧ lm2 ∧ ¬lp which implies lp due to (i).

3.3 Automated Assume-Guarantee Reasoning

As mentioned earlier, the main obstacle in practical usage of the rules NC and C is the task

of computing assumptions. Cobleigh et al. presented an iterative strategy to automatically

compute these assumptions using the L∗ algorithm [12, 117]. Recall (cf. Chapter 2) that

the L∗ algorithm (which acts as the Learner) computes the minimum DFA corresponding

to an unknown regular language by asking membership and candidate queries to a Teacher.

The assumptions are represented by DFAs and a model checker serves as a Teacher for the

L∗ algorithm. Figure 3.1 gives a simplified view of this approach.

In the following, we present the strategies for carrying out automated assume-guarantee

reasoning (AGR) using both the rules. However, we do not go into the details of the

30

learning algorithm here (cf. Chapter 2). Instead, we encapsulate the algorithm inside an

assumption generator (Agen) interface. We assume that this interface is able to output (i)

an initial assumption hypothesis, and (ii) a new assumption hypothesis, when presented

with a counterexample behavior to the previous hypothesis.

3.3.1 Rule NC

Figure 3.2 shows the overview of the strategy (called SNC) used for AGR with NC. The

main idea is the following: given an assumption hypothesis, a model checker is used to

check the two premises of NC. If any of these premises do not hold, a counterexample

is returned. The procedure then checks if the counterexample is spurious. If found to

be spurious, the counterexample is returned to the Agen interface, so that Agen can

generate an improved hypothesis. Otherwise, CE is returned as a counterexample witness

for M1 ‖ M2 � P . More precisely, SNC consists of the following steps:

1. Use model checking to verify that the current assumption A provided by Agen

satisfies the first premise of NC. If the verification fails, obtain a counterexample

CE and proceed to step 2. Otherwise, proceed to step 3.

2. Check if CE ∈ L(M2). If so, then return CE as a witness to M1 ‖ M2 6� P .

Otherwise, return CE to Agen.

3. Use model checking to verify the second premise. If the verification succeeds, return

true and terminate. Otherwise, obtain a counterexample CE.

4. Check if CE ∈ L(WA), i.e., CE ∈ L(M1) and CE 6∈ L(P). If so, return CE as a

witness to M1 ‖ M2 6� P . Otherwise return CE to Agen

Termination We show here that if the Agen interface is instantiated by the L∗ algo-

rithm, SNC must converge to the weakest assumption WA in finite number of steps.

Proof. Define a run of L∗ to be the sequence of labeled traces (trace with a boolean

label) returned by membership and candidate queries. For any run ρ of L∗ using the above

31

M1 ‖ A |= P

M2 |= A

CE ∈ L(M2)

CE ∈ LW

A

Agen

CE

CE Y es

No

No, CE

Y es, CE

Y es

Y es

M1 ‖ M2 |= P

M1 ‖ M2 6|= P ,

CE
(L∗)

Figure 3.2: Automated AGR for the rule NC

strategy SNC , we can construct an equivalent L∗ run, say ρ′, with L(WA) as the unknown

language. Since we know that any ρ′ consists of finite number of steps and terminates with

WA as the result, ρ must also terminate with WA.

We use induction on ρ to show that ρ′ is a run with L(WA) as the unknown language.

In the base case, ρ = ǫ = ρ′. Let ρn denote the prefix of ρ of length n. Assume ρ has

length k and ρk−1 = ρ′
k−1. Let (t, b) be the last labeled trace in ρ; we know that either (t, b)

was obtained as a result of a membership or a candidate query. (i) Membership query:

Since SNC always answers queries with respect to L(WA) and given ρk−1, t is unique, we

conclude that (t, b) is also the last element of ρ′. (ii) Candidate query: From the definition

of SNC , we know that either (Step 2) t ∈ L(A) and t 6∈ L(WA) and b = false, or (Step 4)

t ∈ L(WA) and t 6∈ L(A) and b = true. Therefore, (t, b) will also be returned by S ′
NC .

Correctness. It follows from the definition that SNC must either terminate with some

assumption A that satisfies the premises of NC or with a counterexample CE. In the first

case, the correctness follows from the soundness of NC. In the second case, either Step 2

or Step 4 generates CE. Therefore, CE ∈ L(M2) and CE 6∈ L(WA). Hence, CE is an

32

actual counterexample.

Remarks.

1. It is possible to omit the check in Step 2 above, while maintaining the correctness

and termination properties of SNC . Step 2 can be viewed as an early termination

check.

2. The strategy SNC is biased towards WA, since we proceed to Step 3 (second premise)

only if Step 1 (first premise) holds. Alternatively, we could bias the strategy towards

M2 by always checking Step 3 before Step 1.

3. When instantiating the Agen interface with the L∗ algorithm, we further bias SNC

towards WA, since membership queries are answered with respect to WA. More

precisely, given a trace t ∈ L(WA) and t 6∈ L(M2), the membership query result for

t is true. Similarly, we can also bias SNC towards M2 by answering membership

queries only with respect to M2.

4. In practice, one obtains a set of counterexamples in Step 1 and 3 (represented as a

trace on a smaller set of alphabet symbols of either M1 ‖ P or M2 respectively). The

steps 2 and 4 involve choosing a particular counterexample from this set.

3.3.2 Rule C

Figure 3.3 shows the overview of the strategy SC used for AGR with C. Again, the model

checker checks the three premises of C iteratively and spurious counterexamples are used

to improve the hypotheses. This rule employs multiple Agen interfaces; we will use Agen1

and Agen2 in the following. The strategy consists of the following steps:

1. Obtain assumption A1 from Agen1 and model check the first premise of C. If the

check fails, return the obtained counterexample to Agen1. Otherwise, continue to

Step 2.

33

M1 ‖ A1 |= P

M2 ‖ A2 |= P

CE ∈ L(WA1)

A1Agen1

Y es, CE

Y es

M1 ‖ M2 |= P

M1 ‖ M2 6|= P ,

CE

(L∗)

A1 ‖ A2 |= P

Y es

Y es

No

CE ∈ L(WA2)

∨

A2Agen2

(L∗)

No

Figure 3.3: Automated AGR for the rule C

2. Obtain assumption A2 from Agen2 and model check the second premise of C. If the

check fails, return the obtained counterexample to Agen2. Otherwise, continue to

Step 3.

3. Obtain assumptions A1 and A2 from Agen1 and Agen2 respectively and verify the

last premise of C. If the verification succeeds, return true and terminate. Otherwise,

continue to Step 4 with counterexample CE.

4. For each i ∈ {1, 2} such that CE ∈ L(WAi), return CE to Ageni. If no such i

exists, return CE as a counterexample witness to M1 ‖ M2 � P .

We now show that SC terminates with the correct result when Ageni (i ∈ {1, 2}) is

instantiated by L∗.

Termination. Similar to the NC rule, it can be shown that any run of Ageni (i ∈

{1, 2}) using SC corresponds to a run of L∗ with L(WAi) as the unknown language. Since

the latter run must terminate in a finite number of steps with WA1 and WA2 as the final

result, the strategy SC must also terminate with the same result.

34

Correctness. The strategy SC terminates either with an assumption tuple 〈A1, A2〉

which satisfies the premises of C or with a counterexample witness CE. In the first case,

correctness follows from the soundness of C. In the second case, note that CE 6∈ L(WAi)

(i ∈ {1, 2}). Therefore, we have CE ∈ L(M1) and CE ∈ L(M2) but CE 6∈ L(P). Hence

CE is a true counterexample.

Remarks.

1. The strategy SC can be directly generalized to systems with more than two mod-

ules [107].

2. It is sufficient to execute Step 4 for some i ∈ {1, 2} such that CE ∈ L(WAi).

3.4 Discussion

Cobleigh et al. [44] first presented the automated AGR approach using L∗ for the rule NC

in the context of labeled transition systems (both as implementation and specification)

using rendezvous-based communication [82] and finite trace-containment as the notion of

conformance (cf. Chapter 1). They chose finite automata as the assumption model since

these automata cover the set of regular languages (cf. Lemma 8). An explicit state model

checker is used to answer membership and candidate queries. This approach was extended

to the rule C later [17] for the same kind of models.

The initial approach that relies on using machine learning algorithms together with

model checking for performing assume-guarantee reasoning, is now viewed as a seminal

contribution. The technique has sparked a whole new direction of research at the conflu-

ence of model checking and machine learning methodologies. In particular, the problem

of performing automated AGR effectively for both hardware and software systems has

received considerable attention.

One direction of research focuses on extending the basic methodology to other kinds of

systems and specifications. Formally, the automated AGR framework is parameterized by

35

three items:

• the notion of composition or execution, e.g., synchronous, asynchronous, etc.,

• the kind of communication, e.g., shared memory, message-passing, rendezvous etc.,

and

• the notion of conformance, e.g., simulation conformance, deadlock checking, ω-trace

containment, etc.

While hardware systems are characterized by synchronous composition and shared

variable communication, software systems execute asynchronously and use both message-

passing and shared memory for communication. Therefore, automated AGR frameworks

must be extended to handle systems and properties that are involves different combinations

of the above notions of composition, communication and conformance. A major part of

this thesis is devoted to investigation of problems of this kind.

Another important problem is to make the automated AGR framework scalable and

efficient. Although the learning algorithm makes automated AGR feasible, it does not scale

to large systems directly. In particular, the size of alphabets in the assumptions grows

exponentially in the number of shared variables. Therefore, a combination of symbolic

methods for learning and model checking must be investigated for scaling the technique

to real-life software and hardware systems. Moreover, we need to develop techniques that

compute the appropriate assumptions quickly, i.e., in small number of iterations.

Besides the task of computing assumptions, an important problem is to obtain a suitable

decomposition of a system for using a particular AGR rule. In many cases, the natural de-

compositions of a system according to its modular syntactic description may not be suitable

for compositional reasoning. Therefore, techniques for obtaining good decompositions au-

tomatically are required. Finally, techniques for based counterexample-guided automated

abstraction have been successful for verifying sequential software programs. Automated

AGR can be used together with such abstraction techniques to verify concurrent software.

36

3.5 History and Related Work

A variety of compositional reasoning methods have been investigated in literature. A

comprehensive survey of existing methods can be found in [4, 51].

3.5.1 Compositional Minimization

Traditionally, much of the work on compositional analysis has focused on compositional

reduction or minimization methods. These methods do not avoid computing the global

state space of the composed system when checking if M1 ‖ M2 � P holds. Instead, they

first compute smaller abstractions of one or more components, say Ai for Mi, and then

check if A1 ‖ A2 � P holds. These abstractions try to exactly characterize the useful and

visible behaviors of each component in the context of its environment and the property

being verified. The method is useful if (i) composing the abstractions leads to a smaller

state space and makes the model checking problem more tractable, and (ii) the abstractions

are property preserving, i.e., if P holds on A1 ‖ A2 then P also holds on M1 ‖ M2.

In order to compute these abstractions, the proposed approaches use either equivalence-

or a preorder-based reduction techniques. In [48], Dams et al. use reduction with respect

to simulation equivalence to verify properties expressed in the universal fragment of CTL*.

Clarke et al. [39] present a method to compute abstractions using user-provided homo-

morphism preorders, which also preserve properties expressed in the universal fragment of

CTL*.

Property-driven abstraction. Equivalence-based reductions preserve a whole class

of properties, and may not yield a small abstraction in many cases. Therefore, in order to

obtain small abstractions, it is important to eliminate the behaviors that are irrelevant with

respect to the property being verified. Clarke et al. [38] proposed an approach to obtain

abstractions in a property-directed manner: if P only refers to visible characteristics of M2,

then they abstract features of M1 not relevant to its interaction with M2 and then use

37

equivalence-based minimization to further reduce the size of M1 to obtain A1. The method

was applied to verify nexttime-less CTL* properties using the stuttering equivalence [42].

A similar method for general CTL properties was presented in [122]. A general method

of obtaining property-preserving abstractions under various notions of composition and

preorders was presented in [18, 93].

Context-driven abstraction. Moreover, equivalence-based reductions do not take

in account the interaction of the module with its environment. Therefore, the obtained

abstractions may still have behaviors that are impossible in the context of the complete

system. Graf et al. [70, 71] proposed a method to compute abstraction based on using sim-

ulation preorders instead of equivalence. The component behaviors that should not take

place in context of the environment components are removed during abstraction computa-

tion with the help of interface specifications of the environment components. For systems

with more than two components, the components are composed in a stepwise manner and

a reduction operation is performed before each composition step. This approach is further

developed and automated by Cheung and Kramer [35, 36] by abstracting the environment

of a component to obtain interface specifications automatically.

3.5.2 Assume-Guarantee Reasoning

Theoretical investigation of AGR methods can be found in [10, 94, 95, 108, 127]. Henzinger

et al. [81] proposed an AGR methodology for verifying shared-memory systems. The tool

Mocha [8] supports modular verification of shared-memory programs with requirements

expressed in alternating-time temporal logic. The Calvin tool [58, 59] uses an extension

of thread-modular reasoning, originally proposed by Jones [88], for the analysis of multi-

threaded Java programs. The basic idea of the technique is to verify each thread separately

by using an environment assumption to model interleaved steps of other threads. The

environment assumption of each thread includes all updates to shared global variables

38

that may be performed by other threads. For hardware systems, a number of approaches

were proposed by McMillan et al. [87, 97, 98, 99, 100, 101, 103].

Computing Assumptions Automatically. All the above approaches had limited

impact because of the non-trivial human intervention involved in computing environment

assumptions. An initial approach to automate compositional verification by proposed by

Alur et al. [7]. Thread-modular model checking is a sound but incomplete approach that

was proposed [60] for verifying loosely-coupled software programs (where there is little

correlation between the local states of the different threads) based on thread-modular rea-

soning. This method infers the environment assumption for each thread automatically by

first inferring a guarantee for each thread, which consists of all shared variable updates

performed by the thread. The disjunction of guarantees of all the other threads forms

the environment assumption for a given thread. An approach for combining automated

abstraction-refinement with thread-modular model checking was proposed by Henzinger et

al. [79] where the assumptions and guarantees are refined in an iterative fashion. Another

sound and incomplete method for generating invariants for compositional reasoning was

proposed by Jeffords and Heitmeyer [86]. Henzinger et al. [77] proposed a technique for

automatic construction of the environment assumption or the context for detecting race

conditions in multi-threaded software with unbounded number of threads. Instead of keep-

ing the context information in form of invariants on global variables, they also maintain

additional information like control flow location and the number of threads at each loca-

tion. The context models are iteratively improved using counterexamples and minimized

with respect to bisimulation. Recently, a sound and complete approach to thread-modular

reasoning has been proposed by Cohen and Namjoshi [46]. An approach to compute

the weakest assumptions automatically for labeled transition systems communicating via

rendezvous [82] was proposed by Giannakopoulou et al. [64, 65] using set-theoretic con-

struction.

39

Learning for Assumption Generation. Using machine learning to automatically

compute assumptions for AGR was first proposed by Cobleigh et al. [44] for non-circular

rules, followed by a method for circular rules [17]. Techniques for applying AGR to source

code using assumptions computed at the design-level [66], to predictive testing [23] and con-

current message-passing programs in SPIN [114] were also proposed. The initial method-

ology was followed by a symbolic approach [115], application to checking component sub-

stitutability [31], extensions to different notions of conformance [32, 33], combination with

automated system decomposition using hyper-graph partitioning [107], optimized learning

and alphabet-enlargement approaches [33, 63], lazy learning approach [124] and a tech-

nique for computing minimal assumptions [74]. Cobleigh et al. investigate the advantages

of automated AGR methods over monolithic verification techniques in the context of LTSA

and FLAVERS tools [45] by experimenting with different two-way system decompositions.

40

Chapter 4

Checking Component

Substitutability

In this chapter, we focus on a particular model checking problem, namely verification of

evolving software. Software systems evolve throughout the product life-cycle. For exam-

ple, any software module (or component) is inevitably transformed as designs take shape,

requirements change, and bugs are discovered and fixed. In general such evolution results

in the removal of previous behaviors from the component and addition of new ones. Since

the behavior of the updated software component has no direct correlation to that of its

older counterpart, substituting it directly can lead to two kinds of problems. First, the

removal of behavior can lead to unavailability of previously provided services. Second, the

addition of new behavior can lead to violation of global correctness properties that were

previously being respected.

In this context, the substitutability problem can be defined as the verification of the

following two criteria: (i) any updated portion of a software system must continue to pro-

vide all services offered by its earlier counterpart, and (ii) previously established system

correctness properties must remain valid for the new version of the software system.

41

4.1 Component Substitutability Check

Model checking can be used at each stage of a system’s evolution to solve both the above

problems. Conventionally, model checking is applied to the entire system after every up-

date, irrespective of the degree of modification involved. The amount of time and effort

required to verify an entire system can be prohibitive and repeating the exercise after

each (even minor) system update is therefore impractical. In this chapter, we present

an automated framework that localizes the necessary verification to only modified system

components, and thereby reduces dramatically the effort to check substitutability after

every system update. Note that our framework is general enough to handle changes in the

environment since the environment can also be modeled as a component.

In our framework a component is essentially a C program communicating with other

components via blocking message passing. An assembly is a collection of such concurrently

executing and mutually interacting components. We will define the notion of a component’s

behavior precisely later but for now let us denote the set of behaviors of a component C

by Behv(C). Given two components C and C ′ we will write C ⊑ C ′ to mean Behv(C) ⊆

Behv(C ′).

Suppose we are given an assembly of components: C = {C1, . . . ,Cn}, and a safety

property ϕ. Now suppose that multiple components in C are upgraded. In other words,

consider an index set I ⊆ {1, . . . , n} such that for each i ∈ I there is a new component C
′

i

to be used in place of its old version Ci. Our goal is to check the substitutability of C
′

i for

Ci in C for every i ∈ I with respect to the property ϕ. Our framework satisfies this goal

by establishing the following two tasks:

Containment. Verify, for each i ∈ I, that every behavior of Ci is also a behavior of C
′

i ,

i.e., Ci ⊑ C
′

i . If Ci 6⊑ C
′

i , we also construct a set Fi of behaviors in Behv(Ci) \ Behv(C
′

i)

which will subsequently be used for feedback generation. Note that the upgrade may involve

the removal of behaviors designated as errant, say B. In this case, we check Ci \ B ⊑ C
′

i

42

since behaviors of B will clearly be absent in C
′

i .

Compatibility. Let us denote by C′ the assembly obtained from C by replacing the

old component Ci with its new version C
′

i for each i ∈ I. Since in general it is not the case

that for each i ∈ I, C
′

i ⊑ Ci. Therefore, the new assembly C′ may have more behaviors

than the old assembly C. Hence C′ might violate ϕ even though C did not. Thus, our

second task is to verify that C′ satisfies the safety property ϕ (which would imply that the

new components can be safely integrated).

Note that checking compatibility is non-trivial because it requires the verification of a

concurrent system where multiple components might have been modified. Moreover, this

task is complicated by the fact that our goal is to focus on the components that have been

modified.

The component substitutability framework is defined by the following new algorithms:

1) a technique based on simultaneous use of over and under approximations obtained

via existential and universal abstractions for the containment check of the substitutable

components; 2) a dynamic assume-guarantee algorithm developed for the compatibility

check. The algorithm is based on automata-theoretic learning for regular sets. It is dynamic

in the sense that it learns appropriate environment assumptions for the new components

by reusing the environment assumptions for their older versions.

In summary, our component substitutability framework has several advantageous fea-

tures:

• It allows multiple components to be upgraded simultaneously. This is crucial since

modifications in different components often interact non-trivially to maintain overall

system safety and integrity. Hence such modifications must be analyzed jointly.

• It identifies features of an old component which are absent in its updated version.

It subsequently generates feedback to localize the modifications required to add the

missing features back.

43

• It is completely automated and uses dynamic assume-guarantee style reasoning to

scale to large software systems.

• It allows new components to have more behaviors than their old counterparts in order

be replaceable. The extra behaviors are critical since they provide vendors with the

flexibility to implement new features into the product upgrades. Our framework ver-

ifies if these new behaviors do not violate previously established global specifications

of a component assembly

We have implemented the substitutability framework as part of the ComFoRT [85] rea-

soning framework. We experimented with an industrial benchmark and report encouraging

results in Section 4.5. Section 4.2 defines the notation used in this chapter. Sections 4.3 and

4.4 describe the problem of verification of evolving systems and present a detailed descrip-

tion of the containment and compatibility algorithms that we have developed to overcome

difficulties in the verification of evolving programs. Section 4.6 provides an overview of

related work, and Section 4.7 summarizes the contributions of this chapter.

4.2 Notation and Background

In this section we present some basic definitions.

Definition 5 (Finite Automaton) A finite automaton (FA) is a 5-tuple

(Q, Init, Σ, T, F) where (i) Q is a finite set of states, (ii) Init ⊆ Q is the set of

initial states, (iii) Σ is a finite alphabet of actions, (iv) T ⊆ Q × Σ × Q is the transition

relation, and (v) F ⊆ Q is a set of accepting states.

For any FA M = (Q, Init, Σ, T, F), we write s
α

−→ s′ to mean (s, α, s′) ∈ T . We define

the function δ as follows: ∀α ∈ Σ � ∀s ∈ Q � δ(α, s) = {s′|s
α

−→ s′}. We extend δ to operate

on strings and sets of states in the natural manner: for any σ ∈ Σ∗ and Q′ ⊆ Q, δ(σ, Q′)

denotes the set of states of M reached by simulating σ on M starting from any s ∈ Q′.

44

The language accepted by a FA M , denoted by L(M), is defined as follows: L(M) =

{σ ∈ Σ∗ | δ(σ, Init) ∩ F 6= ∅}. Each element of L(M) is said to be a trace of M .

Definition 6 (Deterministic and Complete Finite Automaton) A FA M =

(Q, Init, Σ, T, F) is said to be a deterministic FA, or DFA, if |Init| = 1 and

∀α ∈ Σ�∀s ∈ Q�|δ(α, s)| ≤ 1. Also, M is said to be complete if ∀α ∈ Σ�∀s ∈ Q�|δ(α, s)| ≥ 1.

Thus, for a complete DFA, we have the following: ∀α ∈ Σ �∀s ∈ Q � |δ(α, s)| = 1. Unless

otherwise mentioned, all DFA we consider in the rest of this paper are also complete. It is

well-known that a language is regular if and only if it is accepted by some FA (or DFA, since

FA and DFA have the same accepting power). Also, every regular language is accepted by

a unique (up to isomorphism) minimum DFA. For a DFA M , we denote its complement

by M . Given any FA M , its complement M is defined to be M ′ where M ′ is the DFA

obtained from M by the subset construction.

We now define a notion of asynchronous parallel composition between FAs which is

based on the notion of composition defined for CSP [118].

Definition 7 (Parallel Composition) Given two FA M1 = (Q1, Init1, Σ1, T1, F1) and

M2 = (Q2, Init2, Σ2, T2, F2), their parallel composition M1 ‖ M2 is the FA (Q1×Q2, Init1×

Init2, Σ1 ∪ Σ2, T, F1 × F2) such that ∀s1, s
′
1 ∈ Q1 � ∀s2, s

′
2 ∈ Q2, (s1, s2)

α
−→ (s′1, s

′
2) if and

only if :

(a) α ∈ Σ1 ∧ α 6∈ Σ2 ∧ s1
α

−→ s′1 ∧ (s2 = s′2) or,

(b) α ∈ Σ2 ∧ α 6∈ Σ1 ∧ s2
α

−→ s′2 ∧ (s1 = s′1) or,

(c) α ∈ (Σ1 ∩ Σ2) ∧ ∀i ∈ {1, 2} si
α

−→ s′i.

Given a string t, we write M ‖ t to denote the composition of M with the automaton

representation of t.

Definition 8 (Language Containment) For any FA M1 and M2 (with alphabets Σ1

and Σ2 respectively, where Σ2 ⊆ Σ1), we write M1 ⊑ M2 to mean L(M1 ‖ M2) = ∅. A

counterexample to M1 ⊑ M2 is a string σ ∈ L(M1 ‖ M2).

45

If M1 ⊑ M2, then we sometimes also say that M2 is an abstraction of M1. Recall (cf.

Chapter 3) that for any FA M and any safety property expressed as a FA ϕ, the weakest

(i.e., maximal w.r.t. the language-containment preorder ⊑) assumption FA, denoted by

WA, is defined as follows: (i) M ‖ WA ⊑ ϕ and (ii) for any FA E, M ‖ E ⊑ ϕ iff E ⊑ WA.

Also, the weakest assumption WA exists and can be represented by a FA accepting the

language L(M ‖ ϕ).

4.3 Containment Analysis

Recall that the containment step verifies for each i ∈ I, that Ci ⊑ C
′

i , i.e., every behavior

of Ci is also a behavior of C
′

i . If Ci 6⊑ C
′

i , we also generate a counterexample behavior in

Behv(Ci) \ Behv(C
′

i) which is subsequently provided as user feedback. This containment

check is performed as depicted in Figure 4.1 for each modified component. (CE refers to the

counterexample generated during the verification phase). For each i ∈ I, the containment

check proceeds as follows:

1. Abstraction. Construct finite models M and M ′ such that the following conditions

C1 and C2 hold:

(C1) Ci ⊑ M (C2) M ′ ⊑ C
′

i (4.1)

Here M is an over-approximation of Ci and can be constructed by standard predicate

abstraction [?]. M ′ is constructed from C
′

i via a modified predicate abstraction which

produces an under-approximation of its input C component. We now describe the details

of the abstraction steps.

Suppose that Ci consists of a set of C statements S tmt = {st1, . . . , stk}. Let V be the

set of variables in the Ci. A valuation of all the variables in a program corresponds to a

concrete state of the given program. We denote it by v̄.

Predicates are functions that map a concrete state v̄ ∈ S into a Boolean value. Let

46

True

No All behaviors are preserved

No

Over−approximate Under−approximate

False + CE

Yes

M′
iMi

C′
iCi

Check:CE 6∈C′
i

Check:CE∈CiVALIDATION 1

VALIDATION 2

Check:Mi ⊑ M′
iVERIFICATION

ABSTRACTION

Yes⇒CE∈Ci \C′
i

Refine Enlarge

Figure 4.1: The containment phase of the substitutability framework.

P = {π1, . . . , πk} be the set of predicates over the given program. On evaluating the set

of predicates in P in a particular concrete state v̄, we obtain a vector of Boolean values b̄,

where b̄[i] = πi(v̄). The Boolean vector b̄ represents an abstract state and we denote this

operation by an abstraction function α: b̄ = α(v̄). The concretization function γ is defined

as follows:

γ(b̄) = {v̄ | b̄ = α(v̄)}

May Predicate Abstraction: Over-approximation. This step corresponds to the

standard predicate abstraction. Each statement (or basic block) St in Ci is associated

with a transition relation T (v̄, v̄′). Here, v̄ and v̄′ represent a concrete state before and

after execution of St, respectively. Given the set of predicates P and associated vector of

Boolean variables b̄ as before, we compute an abstract transition relation T̂ (b̄, b̄′) [39] as

follows:

T̂ (b̄, b̄′) ≡ ∃v̄, v̄′ � T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′) (4.2)

T̂ is the existential abstraction [39] of T (with respect to the abstraction function α) and is

47

also referred to as its may abstraction T̂may [123]. In practice, we compute this abstraction

using the weakest precondition (WP) transformer [52] on predicates in P along with an

automated theorem prover [69] as follows:

T̂ (b̄, b̄′) ≡ γ(b̄) ∧ WP(St, γ(b̄′)) is satisfiable (4.3)

where WP(St, φ) denotes the weakest precondition expression for formula φ with respect to

statement St and γ is the concretization function as defined above. Note that Equation 4.2

is equivalent to Equation 4.3 since:

T̂ (b̄, b̄′) ≡ ∃v̄ � ∃v̄′ � T (v̄, v̄′) ∧ b̄ = α(v̄) ∧ b̄′ = α(v̄′)

≡ ∃v̄ � (v̄ ∈ γ(b̄) ∧ ∃v̄′ � T (v̄, v̄′) ∧ v̄′ ∈ γ(b̄′))

≡ ∃v̄ � (v̄ ∈ γ(b̄) ∧ v̄ ∈ WP(St, γ(b̄′)))

≡ γ(b̄) ∧ WP(St, γ(b̄′)) is satisfiable

Note that it is sufficient to use standard weakest preconditions for sequential programs

since the abstraction is performed component-wise.

Must Predicate Abstraction: Under-approximation. The modified predicate

abstraction constructs an under-approximation of the concrete system via universal or

must [123] abstraction. Given a statement St in the modified component C
′

i and its

associated transition relation T (v̄, v̄′) as before, we compute its must abstraction with

respect to predicates P as follows:

T̂ (b̄, b̄′) ≡ ∀v̄ � b̄ = α(v̄) =⇒ ∃v̄′ � T (v̄, v̄′) ∧ b̄′ = α(v̄′) (4.4)

We use T̂must to denote the above relation. Note that T̂must contains a transition from an

48

abstract state b̄ to b̄′ iff for every concrete state v̄ corresponding to b̄, there exists a concrete

transition to a state v̄′ corresponding to b̄′ [123]. Further, it has been shown [123] that

the concrete transition relation T simulates the abstract transition relation T̂must. Hence,

T̂must is an under-approximation of T . Again, in practice, we compute T̂must using the WP

transformer on the predicates together with a theorem prover [75] in the following way:

T̂ (b̄, b̄′) ≡ (γ(b̄) =⇒ WP(St, γ(b̄′))) (4.5)

Note that Equation 4.4 is equivalent to Equation 4.5 since:

T̂ (b̄, b̄′) ≡ (∀v̄ � b̄ = α(v̄) =⇒ ∃v̄′ � T (v̄, v̄′) ∧ b̄′ = α(v̄′))

≡ (∀v̄ � v̄ ∈ γ(b̄) =⇒ ∃v̄′ � T (v̄, v̄′) ∧ v̄′ ∈ γ(b̄′))

≡ (∀v̄ � v̄ ∈ γ(b̄) =⇒ v̄ ∈ WP(St, γ(b̄′)))

≡ (γ(b̄) =⇒ WP(St, γ(b̄′)))

At the end of the abstraction phase, we obtain M as an over-approximation of Ci and M ′

as an under-approximation of C
′

i , as defined in Equation 4.1. The containment check now

proceeds to the next stage involving verification.

2. Verification. Verify if M ⊑ M ′ (or alternatively M \ B ⊑ M ′ if the upgrade

involved some bug fix and the bug was defined as a finite automaton B). If so then from

(C1) and (C2) (cf. Abstraction) above we know that Ci ⊑ C
′

i and we terminate with

success. Otherwise we obtain a counterexample CE.

3. Validation and Refinement 1. Check that CE is a real behavior of Ci. This

step is done in a manner similar to the counterexample validation techniques employed in

software model checkers based on CEGAR [15, 30, 80]. If CE is a real behavior of Ci,

we proceed to the Step 4. Otherwise we refine model M (i.e., remove the spurious CE) by

49

constructing a new set of predicates P ′ and repeat from Step 2. The procedure for refining

the model M has been presented elsewhere [30] in detail, and we do not describe it here

further.

4. Validation and Refinement 2. Check that CE is not a real behavior of C
′

i . The

operations involved in this check are the same as those used for the validation check in

Step 3. The only difference is that we complement the final result, since in this step we

are interested in checking whether CE is not a real behavior of C
′

i , while in Step 3, we

were interested in checking whether CE is a real behavior of Ci.

If CE is not a real behavior of C
′

i , we know that CE ∈ Behv(Ci) \ Behv(C
′

i). We

add CE to the user feedback step and stop. Otherwise we enlarge M ′ (i.e., add CE)

by constructing a new set of predicates P ′ and repeat from Step 2. The procedure for

enlarging the model M ′ has been presented elsewhere [75] in detail, and we do not describe

it here further.

Figure 4.1 depicts the individual steps of this containment check. Similar to ordinary

abstraction-refinement procedures for programs, the containment check may not terminate

because a sufficient set of predicates is never found. Otherwise, the check terminates either

with a successful result (all behaviors of Ci are verified to be present in C
′

i) or returns an

actual diagnostic behavior CE as a feedback to the developers. The following theorem

proves this result.

Theorem 4 (Correctness of Containment Check) Upon termination, if the Con-

tainment Check is successful, then Ci ⊑ C
′

i holds. Otherwise, a witness counterexample

CE ∈ Ci \ C
′

i is returned.

Proof. The containment check terminates either when the verification check (Step 2)

succeeds or both the Validation and Refinement checks (Steps 3 and 4) fail. Note that

at each iteration Ci ⊑ Mi and M ′
i ⊑ C

′

i . Now, if the verification step (Step 2) succeeds,

then it follows that Mi ⊑ M ′
i , and hence Ci ⊑ Mi ⊑ M ′

i ⊑ C
′

i . Therefore, Ci ⊑ C
′

i holds.

50

Otherwise, suppose that both the Validation and Refinement phases (Steps 3 and 4) fail.

Then, from Step 3 we know that CE ∈ Ci, and from Step 4 we know that CE 6∈ C
′

i .

Hence, we have a counterexample CE ∈ Ci\ ∈ C
′

i which is returned by the containment

check. This concludes the proof.

�

4.3.1 Feedback

Recall that for some i ∈ I, if our containment check detects that Ci 6⊑ C
′

i , it also computes

a set Fi of erroneous behaviors. Intuitively, each element of Fi represents a behavior of Ci

that is not a behavior of C
′

i . We now present our process of generating feedback from Fi.

In the rest of this section, we write C ,C
′

, and F to mean Ci, C
′

i , and Fi, respectively.

Consider any behavior π in F . Recall that π is a trace of an automaton M obtained

by predicate abstraction of C . By simulating π on M , we construct a sequence Rep(π) =

〈α1, . . . , αn〉 of states and actions of M corresponding to π.

We also know that π represents an actual behavior of C but not an actual behavior

of C
′

. Thus, there is a prefix Pref(π) of π such that Pref(π) represents a behavior of

C
′

. However, any extension of Pref(π) is no longer a valid behavior of C
′

. Note that

Pref(π) can be constructed by simulating π on C
′

. Let us denote the suffix of π after

Pref(π) by Suff(π). Since Pref(π) is an actual behavior of C
′

, we can also construct a

representation for Pref(π) in terms of the statements and predicate valuations of C
′

. Let

us denote this representation by Rep ′(Pref(π)).

As our feedback, for each π ∈ F , we compute the following representations:

Rep(Pref(π)), Rep(Suff(π)), and Rep ′(Pref(π)). Such feedback allows us to identify

the exact divergence point of π beyond which it ceases to correspond to any concrete be-

havior of C
′

. Since the feedback refers to a program statement, it allows us to understand

at the source code level why C is able to match π completely, but C
′

is forced to diverge

51

from π beyond Pref(π). This understanding makes it easier to modify C
′

so that the

missing behavior π can be added back to it.

4.4 Compatibility Analysis

The compatibility check is aimed at ensuring that the upgraded system satisfies global

safety specifications. Our compatibility check procedure involves two key paradigms: dy-

namic regular-set learning and assume-guarantee reasoning. We first present these two

techniques and then describe their use in the compatibility algorithm.

4.4.1 Dynamic Regular-Set Learning

Central to our compatibility check procedure is a new dynamic algorithm to learn regular

languages. Our algorithm is based on the L∗ algorithm described in Section 3. In this

section we first present a dynamic version of the L∗ learning algorithm and then describe

how it can be applied for checking compatibility.

Dynamic L∗.

Normally L∗ initializes with S = E = {ǫ}. This can be a drawback in cases where a

previously learned candidate (and hence a table) exists and we wish to restart learning using

information from the previous table. In the following discussion, we show that if L∗ begins

with any non-empty valid table, it must terminate with the correct result (Theorem 5).

In particular, this theorem allows us to perform our compatibility check dynamically by

restarting L∗ with any previously computed table by revalidating it instead of starting

from an empty table.1

Definition 9 (Agreement) An observation table T = (S, E, T) is said to agree with a

1A similar idea was also proposed in the context of adaptive model checking [72].

52

regular language U iff:

∀(s, e) ∈ (S ∪ S · Σ̂) × E � T (s, e) = 1 ≡ s · e ∈ U

Definition 10 (Validity) Recall the notion of a well-formed observation table from Sec-

tion 2.3.1. An observation table T = (S, E, T) is said to be valid for a language U iff T

is well-formed and agrees with U . Moreover, we say that a candidate automaton derived

from a table T is valid for a language U if T is valid for U .

Theorem 5 L∗ terminates with a correct result for any unknown language U starting from

any valid table for U .

Proof. It was shown earlier (cf. Theorem 1) that for a given unknown language U , the L∗

algorithm terminates if it is able to perform a finite number of candidate queries. Therefore,

it remains to show that starting from a valid observation table, the algorithm must be able

to perform a candidate query in a finite number of steps. Now, note that each iteration of

the L∗ algorithm involves executing the CloseTable and MkDFA procedures before making

a candidate query (cf. Figure 2.1). Therefore, we need to show that the procedures

CloseTable and MkDFA terminate in a finite number of steps starting from a valid table.

Let the valid observation table be T1. Since T1 agrees with U , the CloseTable pro-

cedure terminates in a finite number of steps with a closed table T2 (cf. Lemma 3).

Moreover, T2 is well-formed since the initial table T1 is well-formed (cf. Lemma 3). Since

T2 is well-formed and closed, the MkDFA algorithm is able to compute a DFA candidate D

(cf. Lemma 4) from T2 and terminates. Therefore, after the execution of MkDFA finishes,

L∗ must perform a candidate query.

�

Suppose we have a table T that is valid for an unknown language U, and we have a new

unknown language U ′ different from U. Suppose we want to learn U ′ by starting L∗ with

table T . Note that since U and U ′ differ in general, T may not agree with U ′ and hence

53

may not be valid with respect to U ′; hence, starting from T is not appropriate. Thus, we

first revalidate T against U ′ and then start L∗ from the valid T . Theorem 5 provides the

key insight behind the correctness of this procedure. As we shall see, this idea forms the

backbone of our dynamic compatibility-check procedure (see Section 4.4.3).

In the context of assume-guarantee reasoning, U represents a weakest assumption lan-

guage. When an upgrade occurs, U may change to a different language U ′. However, since

the change was caused by an upgrade, we expect that the language U ′ will differ from U

only slightly. We will see that the efficiency of our revalidation procedure depends crucially

on this hypothesis.

Revalidation Procedure. Suppose we have a table T which is valid for an unknown

language U . Given a Teacher for a different unknown language U ′, the table revalidation

procedure Reval (shown in Figure 4.2) makes T valid with respect to U ′ by executing

the following two steps. In Step 1, Reval updates all the table entries in T by asking

membership queries. The table T ′ obtained as a result may not be well-formed since the

function T is updated. More precisely, for some s1, s2 ∈ S where s1 6≡ s2 in T , it may

happen that s1 ≡ s2 in T ′. However, the construction of a candidate DFA requires that the

observation table be well-formed (cf. Lemma 4). Therefore, in Step 2, Reval uses the pro-

cedure MkWellFormed to make T ′ well-formed. In order to describe MkWellFormed,

we need the concepts of the well-formed cover and the experiment cover for an observation

table T .

Procedure Reval
Input: An observation table T = (S, E, T) and a teacher for a language U ′.
Output: An observation table T ′ that is valid for U ′.

1. (Step 1) For all s ∈ S and e ∈ E, ask membership query for s · e with respect to U ′

and update T .
Let the table obtained as a result be T ′.

2. (Step 2) Make T ′ well-formed (cf. Section 2.3.1) by using the procedure
MkWellFormed.

Figure 4.2: The table revalidation procedure Reval.

54

Definition 11 (Well-formed Cover) Given a prefix-closed set S, a well-formed subset

of S is a set S ′ ⊆ S such that (i) S ′ is prefix-closed, and (ii) for all s1, s2 ∈ S ′, s1 6≡ s2

holds. A well-formed cover S ′ of S is a maximal well-formed subset of S.

Given a prefix-closed set S, a well-formed cover S ′ of S can be obtained by performing a

depth-first tree search on the tree representation of S in the following way: for each newly

visited node in the tree, the corresponding string in S is added to S ′. However, a node

(with the corresponding string s) is visited only if for all s′ in the current cover S ′, s and

s′ are non-equivalent, i.e., s 6≡ s′. The search terminates when for every s ∈ S there exists

some s′ ∈ S ′ so that s ≡ s′. Note that the final S ′ obtained in this way is prefix-closed and

no two elements of S ′ are equivalent. For example, let S = {a, a · b, a · c, d} where a ≡ a · c

and d ≡ a · b. A well-formed cover of S is S ′ = {a, a · b}. Note that S ′ is prefix-closed and

a 6≡ a · b.

Definition 12 (Column Function) Given an observation table T = (S, E, T), and

some e ∈ E, Col(e) is defined to be a function from (S∪S · Σ̂) to {0, 1} such that Col(e)(s)

= T (s, e) for all s ∈ (S ∪ S · Σ̂). For e1, e2 ∈ E, we say that Col(e1) = Col(e2) if for all

s ∈ (S ∪ S · Σ̂), T (s, e1) = T (s, e2).

Intuitively, for an experiment e ∈ E, Col(e) denotes the vector of Boolean values in

the column corresponding to e in an observation table T . Two elements e1 and e2 are

equivalent under the Col function if the vector of Boolean values in the corresponding

columns of the observation table are same.

Definition 13 (Experiment Cover) An experiment cover of E is a set E ′ ⊆ E, such

that (i) for all e1, e2 ∈ E ′, Col(e1) 6= Col(e2), and (ii) for each e ∈ E, there exists an

e′ ∈ E ′, such that Col(e) = Col(e′).

An experiment cover for E can be obtained by finding the set of elements equivalent

under Col function and picking a representative element from each set. For example,

consider the observation table in Figure 4.3(d). Here, E = {ǫ, α}. Note that Col(ǫ) 6=

55

Col(α). Hence, the experiment cover E ′ for E is the same as E.

The MkWellFormed procedure is described by the pseudo-code in Figure 4.4. Intu-

itively, the procedure removes duplicate elements from S (which are equivalent under the

≡ relation) and E (having the same value under the Col function).

E
ǫ

S
ǫ 1
α 0

S · Σ
β 1
αα 1
αβ 1

E
ǫ

S
ǫ 1
α 1

S · Σ
β 1
αα 0
αβ 1

E
ǫ

S ǫ 1

S · Σ
β 1
α 1

E
ǫ α

S
ǫ 1 1
α 1 0
αα 0 0

S · Σ

β 1 1
αβ 1 1
ααα 0 0
ααβ 0 0

(a) (b) (c) (d)

β α

α,

β

(e)

β α

α

β

α, β

(f)

Figure 4.3: Illustration of the revalidation procedure described in Example below; (a)
Observation table for original language U = (β | (α · (α|β)))∗; (b) New observation table
after recomputing the entries with respect to the new language U ′ = ((β | α ·β)∗) | ((β | α ·
β)∗·α); e.g., α ∈ U ′ implies T (α, ǫ) = 1 (c) Observation table after revalidating with respect
to U ′ and (d) after an L∗ learning iteration with respect to U ′; (e) DFA for language U
(corresponding to observation table in (a)); and (f) DFA for language U ′ (corresponding
to table in (d)).

(Revalidation Example) Figure 4.3 shows an illustration of the revalidation proce-

dure in the dynamic L∗ algorithm. Let the initial unknown language (the weakest assump-

tion language) U = (β | (α · (α|β)))∗. The observation table T1 and the DFA for U are

shown in Figure 4.3(a) and Figure 4.3(e) respectively. Suppose that an upgrade happens

56

and the new weakest assumption language U ′ = ((β | α·β)∗) | ((β | α·β)∗ ·α). In particular,

note that α ∈ U ′ but not in U and α · α ∈ U but not in U ′. Our goal is to start learning

with respect to U ′ from the observation table T1 computed for U previously. So, the Reval

procedure is applied to T1. Figure 4.3(b) shows the table obtained after applying the Step

1 of the revalidation procedure with respect to the new language U ′. Note that the entries

for T (α, ǫ) and T (α · α, ǫ) are updated with respect to U ′. This, in turn, results in α ≡ ǫ

(cf. Figure 4.3(b)). Now, the Step 2 of the Reval procedure is applied: since α ≡ ǫ and

S = {ǫ, α}, the well-formed cover S ′ = {ǫ}. The experiment cover E ′ remains the same

as E. Hence, α is removed from S during computation of the well-formed cover in this

step (Note that the extensions α · α and α · β are also in turn removed from S · Σ̂). The

resultant observation table (after making it closed) is shown in Figure 4.3(c). Since this

table is closed, learning proceeds in the normal fashion from here by computing the next

candidate and making a candidate query. Figure 4.3(d) shows the final observation table

and Figure 4.3(f) shows the DFA obtained after learning completes with respect to U ′.

Note that our example is small, and therefore the revalidation step gives rise to a trivial

intermediate observation table (Figure 4.3(b)). However, as noted earlier, in the case when

an upgrade causes the change from U to U ′, the languages U and U ′ may differ only

slightly. Therefore, in this case, the Reval procedure may modify the observation table

only slightly. In particular, during revalidation, the well-formed cover of S may remain

very similar to S (i.e., a large number of elements of S may continue to remain non-

equivalent after revalidation), leading to reuse of information about many traces (S ·E) in

the observation table. In the experimental evaluation of our approach, we observed that

the above expectation was true in most of the cases.

We now show that the output of MkWellFormed procedure is a well-formed table.

Lemma 9 The MkWellFormed procedure returns a well-formed observation table.

57

Procedure MkWellFormed
Input: Observation table T = (S, E, T)
Output: Well-formed observation table T ′ = (S ′, E ′, T ′)

1. Set S ′ to a well-formed cover (cf. Definition 11) of S.

2. Set E ′ to an experiment cover (cf. Definition 13) of E with respect to (S ′ ∪ S ′ · Σ̂′).

3. Obtain T ′ by restricting T to (S ′ ∪ S ′ · Σ̂′) × E ′

Figure 4.4: Pseudo-code for the MkWellFormed procedure

Proof. Given an observation table T = (S, E, T), the MkWellFormed procedure restricts

S to a well-formed cover (say S ′) and E to an experiment cover (say E ′). Let the table

obtained as a result be T ′. It follows from Definition 11 that for all s1,s2 ∈ S ′, s1 6≡ s2.

Using the definition of ≡ (cf. Section 2.3.1), we know that for some e ∈ E, T (s1 · e) 6=

T (s2 · e). Now, consider the following two cases:

Case 1. If e ∈ E ′, s1 6≡ s2 still holds in the result table since T (s1 · e) 6= T (s2 · e).

Case 2. Otherwise, e 6∈ E ′. However, by Definition 13, there exist some e′ ∈ E ′, so that

Col(e′) = Col(e). By using the definition of Col (Definition 12), it follows that for all

s ∈ S, T (s · e) = T (s · e′). Hence, T (s1 · e
′) = T (s1 · e) 6= T (s2 · e) = T (s2 · e

′). Therefore,

s1 6≡ s2 holds and so the output table T ′ is well-formed.

�

Lemma 10 The Reval procedure always computes a valid observation table for the un-

known language U ′ as an output.

Proof. Refer to Figure 4.2 describing the Reval procedure. By construction, the table ob-

tained at the end of Step 1 must agree with U ′. In Step 2, the procedure MkWellFormed

is applied. Therefore, it follows from Lemma 9 that the resultant table is well-formed. As

a result, the final table both agrees with U ′ and is well-formed; hence, by Definition 10, it

is valid.

�

58

It follows from Lemma 10 and Theorem 5 that starting from an observation table

computed by the Reval procedure, the L∗ algorithm must terminate with the correct

minimum DFA for an unknown language U ′.

4.4.2 Assume-Guarantee Reasoning

Along with dynamic L∗, we use assume-guarantee style compositional reasoning (cf. Chap-

ter 3 to check compatibility. Given a set of component finite automata M1, . . . , Mn and a

specification automaton ϕ, the non-circular rule NC (cf. Chapter 3) can be used to verify

M1 ‖ · · · ‖ Mn ⊑ ϕ:

M1 ‖ A1 ⊑ ϕ

M2 ‖ · · · ‖ Mn ⊑ A1

M1 ‖ · · · ‖ Mn ⊑ ϕ

As discussed in Chapter 3, the second premise is itself an instance of the top-level proof

obligation with n− 1 component finite automata. Hence, the rule NC can be instantiated

in a recursive manner for n components [43] in the following way.

Mi ‖ Ai ⊑ Ai−1(1 ≤ i ≤ n − 1, A0 = ϕ)

Mn ⊑ An−1

M1 ‖ .. ‖ Mn ⊑ ϕ

We will see later that our algorithm for checking compatibility uses this instantiation

of rule NC for n components. We can show that this rule is complete using the notion of

weakest assumptions. Recall that for any finite automaton M and a specification automa-

ton ϕ, there must exist a weakest finite automaton assumption WA such that M ‖ A ⊑ ϕ

iff A ⊑ WA and M ‖ WA ⊑ ϕ. For the above instantiation of NC rule, we can define

a set of weakest assumptions WAi (1 ≤ i ≤ n − 1) as follows. It is clear that a weakest

assumption WA1 exists such that M1 ‖ WA1 ⊑ ϕ. Given WA1, it follows that WA2 must

exist so that M2 ‖ WA2 ⊑ WA1. Therefore, by induction on i, there must exist weakest

assumptions WAi for 1 ≤ i ≤ n−1, such that Mi ‖ WAi ⊑ WAi−1(1 ≤ i ≤ n−1,WA0 = ϕ)

59

and Mn ⊑ An−1.

4.4.3 Compatibility Check for C Components

The procedure for checking compatibility of new components in the context of the original

component assembly is presented in Figure 4.5. Given an old component assembly C =

{C1, . . . ,Cn} and a set of new components C′ = {C ′
i | i ∈ I} (where I ⊆ {1, . . . , n}), the

compatibility-check procedure checks if a safety property ϕ holds in the new assembly. We

first present an overview of the compatibility procedure and then discuss its implementation

in detail. The procedure uses a DynamicCheck algorithm (cf. Section 4.4.3) and is done

in an iterative abstraction-refinement style as follows:

1. Use predicate abstraction to obtain finite automaton models Mi, where Mi is con-

structed from Ci if i 6∈ I and from C ′
i if i ∈ I. The abstraction is carried out

component-wise. Let M = {M1, . . . , Mn}.

2. Apply DynamicCheck on M. If the result is true, the compatibility check termi-

nates successfully. Otherwise, we obtain a counterexample CE.

3. Check if CE is a valid counterexample. Once again this is done component-wise. If

CE is valid, the compatibility check terminates unsuccessfully with CE as a coun-

terexample. Otherwise we go to the next step.

4. Refine a specific model, say Mk, such that the spurious CE is eliminated. Repeat

the process from Step 2.

Overview of DynamicCheck.

We first present an overview of the algorithm for two finite automata and then generalize it

to an arbitrary collection of finite automata. Suppose we have two old finite automata, M1

and M2, and a property finite automaton ϕ. We assume that we previously tried to verify

M1 ‖ M2 ⊑ ϕ using DynamicCheck. The algorithm DynamicCheck uses dynamic L∗

60

New Components

L*

True

CE spurious

No
CE provided

False + CE
Yes

Old Components

Predicate Abstraction

New Component is Substitutable

RefineM

New Component is not Substitutable

M = {M1, . . . ,Mn}

{Ci | i 6∈ I} {C′
i | i ∈ I}

Check:M � ϕ

Figure 4.5: The Compatibility Phase of the Substitutability Framework

to learn appropriate assumptions that can discharge the premises of NC. In particular,

suppose that while trying to verify M1 ‖ M2 ⊑ ϕ, DynamicCheck had constructed an

observation table T .

Now suppose that we have new versions M ′
1 and M ′

2 for M1 and M2. Note that, in

general, either M ′
1 or M ′

2 could be identical to its old version. DynamicCheck now reuses

T and invokes the dynamic L∗ algorithm to automatically learn an assumption A′ such that

(i) M ′
1 ‖ A′ ⊑ ϕ and (ii) M ′

2 ⊑ A′. More precisely, DynamicCheck proceeds iteratively

as follows:

1. It checks if M1 = M ′
1. If so, it starts learning from the previous table T (i.e., it sets

T ′ := T). Otherwise, it revalidates T against M ′
1 to obtain a new table T ′.

2. It derives a conjecture A′ from T ′ and checks if M ′
2 ⊑ A′. If this check passes, it

terminates with true and the new assumption A′. Otherwise, it obtains a coun-

terexample CE.

3. It analyzes CE to see if CE corresponds to a real counterexample to M ′
1 ‖ M ′

2 ⊑ ϕ.

If so, it constructs such a counterexample and terminates with false. Otherwise, it

adds a new experiment to T ′ using CE. This is done via the algorithm by Rivest

61

and Schapire [117] as explained in Chapter 2. Therefore, once the new experiment is

added, T ′ is no longer closed.

4. It makes T ′ closed by making membership queries and repeats the process from

Step 2.

We now describe the key ideas that enable us to reuse the previous assumptions and

then present the complete DynamicCheck algorithm for multiple finite automata. Due

to its dynamic nature, the algorithm is able to locally identify the set of assumptions that

must be modified to revalidate the system.

Incremental Changes Between Successive Assumptions. Recall that the L∗ algo-

rithm maintains an observation table (S, E, T) corresponding to an assumption A for every

component M . During an initial compatibility check, this table stores the information

about membership of the current set of traces (S ·E) in an unknown language U . Upgrad-

ing the component M modifies this unknown language for the corresponding assumption

from U to, say, U ′. Therefore, checking compatibility after an upgrade requires that the

learner must compute a new assumption A′ corresponding to U ′. As mentioned earlier, in

most cases, the languages L(A) and L(A′) may differ only slightly; hence, the information

about the behaviors of A is reused in computing A′.

Table Revalidation. The original L∗ algorithm computes A′ starting from an empty

table. However, as mentioned before, a more efficient algorithm would try to reuse the

previously inferred set of elements of S and E to learn A′. The result in Section 4.4.1

(Theorem 5) precisely enables the L∗ algorithm to achieve this goal. In particular, since

L∗ terminates starting from any valid table, the algorithm uses the Reval procedure to

obtain a valid table by reusing traces in S and experiments in E. The valid table thereby

obtained is subsequently made closed, and then learning proceeds in the normal fashion.

Doing this allows the compatibility check to restart from any previous set of assumptions

by revalidating them. The RevalidateAssumption module implements this feature (see

62

Figure 4.7).

Overall DynamicCheck Procedure.

The DynamicCheck procedure instantiates the NC rule for n components and enables

checking multiple upgrades simultaneously by reusing previous assumptions and verifica-

tion results. In the description, we denote the previous and new versions of a component

finite automaton by M and M ′ and the previous and new versions of component assem-

blies by M and M′, respectively. For ease of description, we always use a property, ϕ,

to denote the right-hand side of the top-level proof obligation of the NC rule. We denote

the modified property2 at each recursion level of the algorithm by ϕ′. The old and new

assumptions are denoted by A and A′, respectively.

Figure 4.7 presents the pseudo-code of the DynamicCheck algorithm to perform the

compatibility check. Lines 1-4 describe the case when M contains only one component. In

Line 5-6, if the previous assumption is found to be not valid (using IsValidAssumption

procedure) with respect to the weakest assumption corresponding to M ′ and ϕ′, it is

revalidated using the RevalidateAssumption procedure. Lines 8-10 describe recursive

invocation of DynamicCheck on M′ \M ′ against property A′. Finally, Lines 11-16 show

how the algorithm detects a counterexample CE and updates A′ with it or terminates

with a true result or a counterexample. The salient features of this algorithm are the

following:

• We assume that there exists a set of previously computed assumptions from the

earlier verification check. Suppose we have a component automaton M and a prop-

erty automaton ϕ, such that the corresponding weakest assumption is WA. In order

to find out if a previously computed assumption (say A) is valid against L(WA)

(cf. Definition 10), the IsValidAssumption procedure is used. More precisely, the

2Under the recursive application of the compatibility-check procedure, the updated property ϕ′ corre-
sponds to an assumption from the previous recursion level.

63

GenerateAssumption (A, CE)
// Let (S,E,T) be the L∗ observation table corresponding to an assumption A;

1: Obtain a distinguishing suffix e from CE;
2: E := E ∪ {e};
3: forever do

4: CloseTable();
5: A′ := MkDFA(T);
6: if (IsCandidate(A′)) returnA′;
7: let CE ′ be the counterexample returned by IsCandidate;
8: Obtain a distinguishing suffix e from CE ′;
9: E := E ∪ {e};

Figure 4.6: Pseudo-code for procedure GenerateAssumption.

IsValidAssumption procedure checks if the observation table (say T) correspond-

ing to A is valid with respect to L(WA) by asking a membership query for each

element of the table (cf. Lemma 7).

• The procedure GenerateAssumption (cf. Figure 4.6) essentially models the L∗ al-

gorithm. Given a counterexample CE, the procedure GenerateAssumption com-

putes the next candidate assumption in a manner similar to the original L∗ algorithm

(cf. Chapter 2). The termination of the GenerateAssumption procedure directly

follows from that of the L∗ algorithm.

• Verification checks are repeated on a component M ′ (or a collection of components

M′ \M ′) only if it is (or they are) found to be different from the previous version M

(M\M) or if the corresponding property ϕ has changed (Lines 3, 8). Otherwise, the

previously computed and cached result (returned by the procedure CachedResult)

is reused (Lines 4, 9).

Note that for a component automaton M and a counterexample trace CE, we write

M ‖ CE to denote the composition of M with the automaton representation of the trace

CE (where the last state is the only accepting state). In order to prove the correctness of

DynamicCheck, we need the following lemma.

64

DynamicCheck (M′, ϕ′) returns counterexample or true

1: let M ′ = first element of M′;
//M and ϕ denote the first element of M and the corresponding property before upgrade
//and A denotes the assumption computed previously for M and ϕ

2: if (M′ = {M ′})
3: if (M 6= M ′ or ϕ 6= ϕ′) return (M ′ ⊑ ϕ′);
4: else return CachedResult(M ⊑ ϕ);

//check if A is a valid assumption for M ′ and ϕ′

5: if (¬ IsValidAssumption(A, M ′, ϕ′))
//make assumption A valid for M ′ and ϕ′

6: A′ := RevalidateAssumption(A, M ′, ϕ′);
7: else A′ := A;

//Now check the rest of the system M′ \ M ′ against A′

8: if (A 6= A′ or M\ M 6= M′ \ M ′)
9: res := DynamicCheck(M′ \ M ′, A′);
10: else res := CachedResult(M\ M ⊑ A);
11: while(res is not true)

//Let CE be the counterexample obtained
12: if (M ′ ‖ CE ⊑ ϕ′)
13: A′ := GenerateAssumption (A′,CE); // Obtain A′ so that M ′ ‖ A′ ⊑ ϕ′

14: res = DynamicCheck (M′ \ M ′, A′); // Check if M′ \ M ′ ⊑ A′

15: else return a witness counterexample CE′ to M ′ ‖ CE 6⊑ ϕ′;
16: return true;

Figure 4.7: Pseudo-Code for Compatibility Checking on an upgrade. The procedure returns
true if M′ ⊑ ϕ′ holds, otherwise returns a counterexample witness CE.

65

Lemma 11 Suppose M is a set of component automata (with M ∈ M) and ϕ be a

specification automaton. Let M \ M 6⊑ ϕ hold and CE be a witness to it. Moreover,

suppose M ‖ CE 6⊑ ϕ holds, and CE′ is a witness to it. Then M 6⊑ ϕ holds and CE ′ is

a witness to it.

Proof. Let M2 = M\ M . Since CE is a witness to M2 6⊑ ϕ, we know that CE ∈ L(M2).

Also, since M ‖ CE 6⊑ ϕ holds and CE′ is a witness to it, there is a CE′′ ∈ L(M) such that

CE′ = (CE′′ ‖ CE) (using the automaton representation of both CE and CE′′). Also,

CE′ 6∈ L(ϕ). Since CE′′ ∈ L(M) and CE ∈ L(M2), it follows that CE ′ = (CE′′ ‖ CE)

is in L(M ‖ M2) = L(M). Hence, CE ′ is in L(M) but not in L(ϕ). Therefore, CE′ is a

witness to M 6⊑ ϕ.

Theorem 6 shows the correctness of DynamicCheck. The proof relies on the fact

that the rule NC for a system of n component automata is complete due to the exis-

tence of an unique set of weakest assumptions (cf. Section 4.4.2). Note that we never

construct the weakest assumptions directly; they are only used to show that the procedure

DynamicCheck terminates with the correct result.

Theorem 6 Given modified M′ and ϕ′, the DynamicCheck algorithm always terminates

with either true or a counterexample CE to M′ ⊑ ϕ′.

Proof. We assume that for the earlier system M, a set of previously computed assumption

automata A1 . . . An−1 exist. Now, suppose one or more components in M are upgraded

resulting in the system M′.

The proof proceeds by induction over the number of components k in M′. In the

base case M′ consists of a single component automaton M ′; hence we need to model

check M ′ against ϕ′ only if either M or ϕ changed. This is done in Lines 3-4. Hence,

DynamicCheck returns the correct result in this case.

Assume for the inductive case that DynamicCheck(M′ \ M ′, A′) terminates with

either true or a counterexample CE. If Line 8 holds (i.e., A′ 6= A or M\ M 6= M′ \ M ′),

66

then, by the inductive hypothesis, execution of Line 9 terminates with the correct result:

either true or a counterexample CE. Otherwise, the previously computed correct result

res is used (Line 10). Based on this result, Lines 11-16 update the current assumption

in an iterative manner. Therefore, it remains to be shown that Lines 11-16 compute the

correct return value based on this result.

If the result in Line 9 or Line 10 is true, it follows from the soundness of the assume-

guarantee rule that M′ ⊑ ϕ′ and DynamicCheck returns true (Line 16). Otherwise, a

counterexample CE is found which is a witness to M\ M 6⊑ ϕ′. This counterexample is

used in Line 12 to check if M ′ ‖ CE ⊑ ϕ′. If this holds, then CE is used to improve the

current assumption in Lines 13-14. Otherwise, the procedure returns a suitable witness

CE′ (Line 15). In order to show that Lines 11-16 compute the correct result, we need to

show that (i) the counterexample CE ′ is indeed a witness to M′ 6⊑ ϕ′ and, (ii) the loop in

Lines 11-15 can execute only a finite number of times.

Using the fact that CE is a witness to M′\M ′ 6⊑ ϕ′ (from Line 9-10) and M ′ ‖ CE 6⊑ ϕ′

(Line 12), it follows from Lemma 11 that M′ 6⊑ ϕ′ and CE′ is a suitable witness to M′ 6⊑ ϕ′.

It remains to show that Lines 11-15 can execute only a finite number of times. Note

that in Line 13, A′ is valid since it was computed by RevalidateAssumption (Line 6).

Hence, GenerateAssumption (Line 13) must terminate (cf. Theorem 5) by learning a

new assumption, say A′′, such that M ′ ‖ A′′ ⊑ ϕ′. Note that by Lemma 2, the number of

states of A′ or A′′ cannot exceed that of the corresponding weakest assumption WA′. Also,

it follows from the proof of correctness of L∗ (cf. Theorem 1) that |A′| < |A′′| . Moreover,

by the inductive hypothesis, Line 14 must terminate with the correct result. Hence, each

iteration of Lines 11-14 of the while loop will lead to increase in the number of states

of the assumption candidates until |A′′| = |WA′|. In this case, the loop terminates. If no

counterexample is generated at Line 14, then the loop terminates with a true result at Line

16. Otherwise, if a counterexample CE is generated at Line 14 (with A′′ = WA′), then it

follows that CE ∈ L(M′ \ M ′) and CE 6∈ L(WA′). Therefore it follows from Lemma 7

67

that M ′ ‖ CE ⊑ ϕ′ does not hold. Hence, by Lemma 11, CE is an actual witness to

M′ 6⊑ ϕ′. Therefore, the procedure returns by generating the correct witness CE ′ at Line

15.

�

4.5 Implementation and Experimental Evaluation

The procedures for checking, in a dynamic manner, the substitutability of components,

were implemented in the ComFoRT reasoning framework [85]. The tool includes a front

end for parsing and constructing control-flow graphs from C programs. Further, it is capa-

ble of model checking properties on programs based on automated may-abstraction (exis-

tential abstraction), and it allows compositional verification by employing learning-based,

automated assume-guarantee reasoning. We reused the above features of ComFoRT in

the implementation of the substitutability check. The tool interface was modified so a

collection of components and corresponding upgrades could be specified. We extended the

learning-based, automated assume-guarantee to obtain its dynamic version, as required

in the compatibility check. Doing this involved keeping multiple learner instances across

calls to the verification engine and implementing algorithms to validate multiple, previous

observation tables in an efficient way during learning. We also implemented the under-

approximation generation algorithms for performing the containment check on small pro-

gram examples. Doing this involved procedures for implementing must-abstractions from

C code using predicates obtained from C components [75].

We performed the compatibility check while verifying upgrades of a benchmark provided

to us by our industrial partner, ABB Inc. [5]. The benchmarks consist of seven components

which together implement an inter-process communication (IPC) protocol. The combined

state space is over 106.

We used a set of properties describing the functionality of the verified portion of the

68

IPC protocol. We used upgrades of the write-queue (ipc1) and the ipc-queue (ipc2 and

ipc3) components. The upgrades had both missing and extra behaviors compared to their

original versions. We verified two properties (P1 and P2) before and after the upgrades.

We also verified the properties on a simultaneous upgrade (ipc4) of both the components.

P1 specifies that a process may write data into the ipc-queue only after it obtains a lock

for the corresponding critical section. P2 specifies an order in which data may be written

into the ipc-queue. Figure 4.8 shows the comparison between the time required for initial

verification of the IPC system, and the time taken by DynamicCheck for verifying the

upgrades. In Figure 4.8, #Mem. Queries denotes the total number of membership queries

made during verification of the original assembly, Torig denotes the time required for the

verification of the original assembly, and Tug denotes the time required for the verification

of the upgraded assembly.

Upgrade # (Prop.) # Mem. Queries Torig (msec) Tug (msec)
ipc1(P1) 279 2260 13
ipc1(P2) 308 1694 14
ipc2(P1) 358 3286 17
ipc2(P2) 232 805 10
ipc3(P1) 363 3624 17
ipc3(P2) 258 1649 14
ipc4(P1) 355 1102 24

Figure 4.8: Summary of Results for DynamicCheck

We observed that the previously generated assumptions in all the cases were also suf-

ficient to prove the properties on the upgraded system. Hence, the compatibility check

succeeded in a small fraction of time (Tug) as compared to the time for compositional

verification (Torig) of the original system.

69

4.6 Related Work

A number of approaches to check substitutability (also referred to as compatibility check)

have been proposed previously. e.g,. based on behavioral types [92] and automated in-

variant generation for components [96]. Most of the previous approaches are based on a

notion of refinement: all behaviors of the replaced component must be present in original

one, in which case, the new component is said to refine the old component. In contrast,

our substitutability check is more general and allows both loss and addition of behaviors

with evolution.

For instance, de Alfaro et al. [34, 49] define a notion of interface automaton for model-

ing component interfaces and show compatibility between components via refinement and

consistency between interfaces. However, automated techniques for constructing interface

automata from component implementations are not presented. In contrast, our approach

automatically extracts conservative finite state automaton models from component imple-

mentations. Moreover, we do not require refinement among the old components and their

new versions.

McCamant and Ernst [96] suggest a technique for checking compatibility of multi-

component upgrades. They derive consistency criteria by focusing on input/output com-

ponent behavior only and abstract away the temporal information. Even though they state

that their abstractions are unsound in general, they report success in detecting important

errors. In contrast, our abstractions preserve temporal information about component be-

havior and are always sound. They also use a refinement-based notion on the generated

consistency criteria for showing compatibility.

Another approach to preserve behavioral properties of a component across an upgrade

is based on the principle of behavioral sub-typing [92]: type T ′ is a subtype of type T if for

every property φ(t) provable about objects t of type T , φ(t′) is provable about objects t′

of type T ′. The notion of subtypes is extended to system behaviors by augmenting object

70

types with invariants and constraints and showing that these constraints are maintained

for objects of the subtype. However, this approach focuses only on the given behavior

specification of a single component and does not take into account the way it is used in the

component assembly. In contrast, the assumptions in our approach reflect the behavior of

environment components. Therefore, although the upgraded component may not satisfy a

property φ in all possible environments, it may continue to satisfy φ in context of the current

environment components. In other words, the new component may not be a behavioral

subtype of the earlier one, but still be compatible with its environment.

4.7 Conclusions

We proposed a solution to the critical and vital problem of component substitutability

consisting of two phases: containment and compatibility. The compatibility check performs

compositional reasoning with help of a dynamic regular language inference algorithm and

a model checker. Our experiments confirm that the dynamic approach is more effective

than complete re-validation of the system after an upgrade. The containment check detects

behaviors which were present in each component before but not after the upgrade. These

behaviors are used to construct useful feedback to the developers.

71

72

Chapter 5

Checking Simulation Conformance

Compositionally

This chapter extends the automated AGR paradigm to branching time setting. Recall that

the initial approach was proposed for a linear time setting (cf. Chapter 3). We describe

an algorithm for learning tree languages into a tree automaton called LT and then show

how it can be used to checking simulation conformance in an automated AGR framework.

5.1 Preliminaries

In this section, we introduce basic notation and definitions that will be used in the rest of

this chapter.

Definition 14 (Labeled Transition System) A labeled transition system (LTS) is a 4-

tuple (S, Init, Σ, T) where (i) S is a finite set of states, (ii) Init ⊆ S is the set of initial

states, (iii) Σ is a finite alphabet, and (iv) T ⊆ S × Σ × S is the transition relation. We

write s
α

−→ s′ as a shorthand for (s, α, s′) ∈ T .

Definition 15 (Simulation) Let M1 = (S1, Init1, Σ1, T1) and M2 = (S2, Init2, Σ2, T2) be

LTSs such that Σ1 = Σ2 = Σ say. A relation R ⊆ S1 × S2 is said to be a simulation

73

relation if:

∀s1, s
′
1 ∈ S1 � ∀a ∈ Σ � ∀s2 ∈ S2 � s1Rs2 ∧ s1

a
−→ s′1 ⇒ ∃s′2 ∈ S2 � s2

a
−→ s′2 ∧ s′1Rs′2

We say M1 is simulated by M2, and denote this by M1 4 M2, if there is a simulation

relation R such that ∀s1 ∈ I1 � ∃s2 ∈ I2 � s1Rs2. We say M1 and M2 are simulation

equivalent if M1 4 M2 and M2 4 M1.

Definition 16 (Tree) Let ǫ denote the empty tree and Σ be an alphabet. The set of trees

over Σ is defined by the grammar: T := ǫ | Σ · T | T + T . The set of all trees over the

alphabet Σ is denote by ΣT , and we let t range over it.

Definition 17 (Context) The set of contexts over an alphabet Σ can be defined by the

grammar: C := � | Σ · C | C + T | T + C. We let c range over the set of contexts.

A context is like a tree except that it has exactly one hole denoted by � at one of its

nodes. When we plug in a tree t in a context c, we essentially replace the single � in c by t.

The resulting tree is denoted by c[t]. A tree t can naturally be seen as an LTS. Specifically,

the states of the LTS are the nodes of t, the only initial state is the root node of t, and

there is a labeled transition from node t1 to t2 labeled with α if t1 = α · t2 or t1 = α · t2 + t3

or t1 = t2 + α · t3.

Definition 18 (Tree Language of an LTS) An LTS M induces a tree language, which

is denoted by T (M) and is defined as: T (M) = {t | t 4 M}. In other words, the tree

language of an LTS contains all the trees that can be simulated by the LTS.

For example, the language of M (Figure 5.1(a)) contains the trees ǫ, α · λ, α · (λ + λ),

α · λ + β · λ, β · λ + β · λ and so on. The notion of tree languages of LTSs and simulation

between LTSs are fundamentally connected. Specifically, it follows from the definition of

simulation between LTSs that for any two LTSs M1 and M2, the following holds:

M1 4 M2 ⇐⇒ T (M1) ⊆ T (M2) (5.1)

74

Definition 19 (Tree Automaton) A (bottom-up) tree automaton (TA) is a 6-tuple A =

(S, Init, Σ, δ,⊗, F) where: (i) S is a set of states, (ii) Init ⊆ S is a set of initial states,

(iii) Σ is an alphabet, (iv) δ ⊆ S×Σ×S is a forward transition relation, (v) ⊗ ⊆ S×S×S

is a cross transition relation, and (vi) F ⊆ S is a set of accepting states1.

Tree automata accept trees and can be viewed as two-dimensional extensions of finite

automata. Since trees can be extended either forward (via the · operator) and across (via

the + operator), a TA must have transitions defined when either of these two kinds of

extensions of its input tree are encountered. This is achieved via the forward and cross

transitions respectively. The automaton starts at each leaf of the input tree at some

initial state, and then runs bottom-up in accordance with its forward and cross transition

relations. The forward transition is applied when a tree of the form α · T is encountered.

The cross transition is applied when a tree of the form T1+T2 is found. The tree is accepted

if the run ends at the root of the tree in some accepting state of A.

Before we formally define the notions of runs and acceptance, we introduce a few

notational conventions. We may sometimes write s
α

−→ s′ or s′ ∈ δ(s, α) as a shorthand

for (s, α, s′) ∈ δ, and s1 ⊗ s2 −→ s as a shorthand for (s1, s2, s) ∈ ⊗. Similarly, for sets of

states S1, S2, we use the following shorthand notations:

δ(S1, α) = {s′ | ∃s ∈ S1 � s
α

−→ s′}

S1 ⊗ S2 = {s | ∃s1 ∈ S1 � ∃s2 ∈ S2 � (s1, s2, s) ∈ ⊗}

Definition 20 (Run/Acceptance) Let A = (S, Init, Σ, δ,⊗, F) be a TA. The run of A

is a function r : ΣT → 2S from trees to sets of states of A that satisfies the following

conditions: (i) r(ǫ) = Init, (ii) r(α · t) = δ(r(t), α), and (iii) r(t1 + t2) = r(t1) ⊗ r(t2). A

1We use the above specialized definition of TA instead of the conventional one [47] since we are only
interested in the term signature given by the grammar in Definition 16. Specifically, the forward transitions
correspond to the unary function symbol a· (one for each a ∈ Σ), the cross transitions correspond to the
binary function symbol +, and the initial states correspond to the constant symbol λ.

75

α β α β

s2

s3

s1s1 s2

s3

⊗ s1 s2 s3

s1 s1

s2 s2

s3 s3

(a) (b)

Figure 5.1: (a-left) an LTS M with initial state s3; (a-right) forward transitions of a tree
automaton A accepting T (M); all states are initial; (b) table showing cross transition
relation ⊗ of A. Note that some table entries are absent since the relation ⊗ is not total.

tree T is accepted by A iff r(T) ∩ F 6= ∅. The set of trees accepted by A is known as the

language of A and is denoted by L(A).

[Runs/acceptance of tree automata] Consider the trees t1 = ǫ, t2 = α · ǫ, t3 = β · ǫ,

t4 = t2 + t3 and t5 = α · t2. Let r be the run function of the TA A in Figure 5.1. Then we

have the following:

• r(t1) = r(ǫ) = {s1, s2, s3}

• r(t2) = r(α · ǫ) = δ(r(ǫ), α) = δ({s1, s2, s3}, α) = {s3}

• r(t3) = r(β · ǫ) = δ(r(ǫ), β) = δ({s1, s2, s3}, β) = {s3}

• r(t4) = r(t2 + t3) = r(t2) ⊗ r(t3) = {s3} ⊗ {s3} = {s3}

• r(t5) = r(α · t2) = δ(r(t2), α) = δ({s3}, α) = ∅

Since s3 is the only accepting state of A, we find that A accepts t1, t2, t3 and t4 but does

not accept t5. The following lemma will be useful later on.

A deterministic tree automaton (DTA) is one which has a single initial state and where

the forward and cross transition relations are functions δ : S ×Σ → S and ⊗ : S × S → S

respectively. If A = (S, Init, Σ, δ,⊗, F) is a DTA then Init refers to the single initial state,

and δ(s, α) and s1 ⊗ s2 refer to the unique state s′ such that s
α

−→ s′ and s1 ⊗ s2 −→ s′

respectively. Note that if A is deterministic then for every tree t the set r(t) is a singleton,

i.e., the run of A on any tree t ends at a unique state of A. Further, we recall [47] the

76

following facts about tree-automata. The set of languages recognized by TA (referred to as

regular tree languages henceforth) is closed under union, intersection and complementation.

For every TA A there is a DTA A′ such that L(A) = L(A′). Given any regular tree language

L there is always a unique (up to isomorphism) smallest DTA A such that L(A) = L.

The following lemma asserts that for any LTS M , the set T (M) is a regular tree

language. Thus, using (5.1), the simulation problem between LTSs can also be viewed as

the language containment problem between tree automata.

Lemma 12 For any LTS M there is a TA A such that L(A) = T (M).

Proof. Let M = (S, Init, Σ, T). Construct a TA A = (S ′, Init′, Σ, δ′,⊗′, F ′) such that

• S ′ = Init′ = S

• F ′ = Init

• (s, α, s′) ∈ δ′ iff (s′, α, s) ∈ T ,

• ∀s′ ∈ S ′ � (s′, s′, s′) ∈ ⊗′.

Let r denote the run of A on trees and t be any tree. We will prove the claim that s ∈ r(t)

iff t can be simulated by M starting from state s. Then, t ∈ L(A) iff r(t) ∩ Init 6= ∅ iff M

simulates t starting from one of its initial states, i.e., t ∈ T (M). Therefore we will have

L(A) = T (M) as required.

The proof of the claim is by structural induction on t. We will use the shorthand

notation t 4 M [s] to denote that fact that t can be simulated by M starting from state

s. For the base case t = λ, we have r(λ) = Init′ = S, and λ 4 M [s] for all s ∈ S, and

therefore the claim holds. For the induction step there are two cases:

• t = α · t′: Then

t 4 M [s] ⇔ ∃s′ � s
α

−→ s′ ∈ T and t′ 4 M [s′]

⇔ s′ ∈ r(t′) (by induction hypothesis)

⇔ s ∈ r(α · t′) (since s′
α

−→ s ∈ δ)

77

• t = t1 + t2: Then

t 4 M [s] ⇔ t1 4 M [s] and t2 4 M [s]

⇔ s ∈ r(t1) and s ∈ r(t2) (by induction hypothesis)

⇔ s ∈ r(t1 + t2) (since (s, s, s) ∈ ⊗)

Consider the LTS M and TA A as shown in Figure 5.1. A is obtained from M by the

construction in lemma 12 and hence L(A) = T (M).

We now provide the standard notion of parallel composition between LTSs, where

components synchronize on shared actions and proceed asynchronously on local actions.

Definition 21 (Parallel Composition of LTSs) Given LTSs M1 = (S1, Init1, Σ1, T1)

and M2 = (S2, Init2, Σ2, T2), their parallel composition M1 ‖ M2 is an LTS M =

(S, Init, Σ, T) where S = S1 × S2, Init = Init1 × Init2, Σ = Σ1 ∪ Σ2, and the transi-

tion relation T is defined as follows: ((s1, s2), α, (s′1, s
′
2)) ∈ T iff for i ∈ {1, 2} the following

holds:

(α ∈ Σi) ∧ (si, α, s′i) ∈ Ti

∨
(α 6∈ Σi) ∧ (si = s′i)

Working with different alphabets for each component would needlessly complicate the

exposition in Section 5.3. For this reason, without loss of generality, we make the simplify-

ing assumption that Σ1 = Σ2. This is justified because we can construct LTSs M ′
1 and M ′

2,

each with the same alphabet Σ = Σ1 ∪ Σ2 such that M ′
1 ‖ M ′

2 is simulation equivalent (in

fact bisimilar) to M1 ‖ M2. Specifically, M ′
1 = (S1, Init1, Σ, T ′

1) and M ′
2 = (S2, Init2, Σ, T ′

2)

where

T ′
1 = T1 ∪ {(s, α, s) | s ∈ S1 and α ∈ Σ2 \ Σ1}

T ′
2 = T2 ∪ {(s, α, s) | s ∈ S2 and α ∈ Σ1 \ Σ2}

Finally, the reader can check that if M1 and M2 are LTSs with the same alphabet then

T (M1 ‖ M2) = T (M1) ∩ T (M2).

Lemma 13 Let A be any TA and r be its run on trees. Let t1 and t2 be two trees such

that r(t1) = r(t2). Then for any context c, r(c[t1]) = r(c[t2]).

78

Proof. The proof is by structural induction on the context c. For the base case where

c = �, we have r(c[t1]) = r(t1) = r(t2) = r(c[t2]). For the induction step, there are two

possible cases.

• c = α · c′: Then

r(c[t1]) = r(α · c′[t1])

= δ(r(c′[t1]), α)

= δ(r(c′[t2]), α) (by induction hypothesis)

= r(α · c′[t2])

= r(c[t2])

• c = c′ + t: Then

r(c[t1]) = r(c′[t1] + t)

= r(c′[t1]) ⊗ r[t]

= r(c′[t2]) ⊗ r[t] (by induction hypothesis)

= r(c′[t2] + t)

= r(c[t2])

• c = t + c′: This case is similar to the one above.

5.2 Learning Minimal DTA

We now present the algorithm LT that learns the minimal DTA for an unknown regular

language U . It is assumed that the alphabet Σ of U is fixed, and that the language U is

presented by a Teacher that answers two kinds of queries:

1. Membership. Given a tree t, is t an element of U , i.e., t ∈ U?

2. Candidate. Given a DTA A does A accept U , i.e., L(A) = U? If L(A) = U the

teacher returns true, else it returns false along with a counterexample tree CE

that is in the symmetric difference of L(A) and U .

79

We will use the following notation. Given any sets of trees S1, S2 and an alphabet Σ

we denote by Σ · S1 the set of trees Σ · S1 = {α · t | α ∈ Σ ∧ t ∈ S1}, and by S1 + S2 the

set S1 + S2 = {t1 + t2 | t1 ∈ S1 ∧ t2 ∈ S2}, and by Ŝ the set S ∪ (Σ · S) ∪ (S + S).

Observation Table : The algorithm LT maintains an observation table τ = (S, E ,R)

where (i) S is a set of trees such that ǫ ∈ S, (ii) E is a set of contexts such that � ∈ E ,

and (iii) R is a function from Ŝ × E to {0, 1} that is defined as follows: R(t, c) = 1 if

c[t] ∈ U and 0 otherwise. Note that given S and E we can compute R using membership

queries. The information in the table is eventually used to construct a candidate DTA Aτ .

Intuitively, the elements of S will serve as states of Aτ , and the contexts in E will play

the role of experiments that distinguish the states in S. Henceforth, the term experiment

will essentially mean a context. The function R and the elements in Ŝ \ S will be used to

construct the forward and cross transitions between the states.

For any tree t ∈ Ŝ, we denote by row(t) the function from the set of experiments E to

{0, 1} defined as: ∀c ∈ E � row(t)(c) = R(t, c).

Definition 22 (Well-formed) An observation table (S, E ,R) is said to be well-formed

if: ∀t, t′ ∈ S � t 6= t′ =⇒ row(t) 6= row(t′). From the definition of row(t) above, this boils

down to: ∀t, t′ ∈ S � t 6= t′ =⇒ ∃c ∈ E � R(t, c) 6= R(t′, c).

In other words, any two different row entries of a well-formed observation table must be

distinguishable by at least one experiment in E . The following crucial lemma imposes an

upper-bound on the size of any well-formed observation table corresponding to a given

regular tree language U .

Lemma 14 Let (S, E ,R) be any well-formed observation table for a regular tree language

U . Then |S| ≤ n, where n is the number of states of the smallest DTA which accepts U . In

other words, the number of rows in any well-formed observation table for U cannot exceed

the number of states in the smallest DTA that accepts U .

80

�

ǫ 1 (s0)

α · ǫ 1
β · ǫ 1

ǫ + ǫ 1

δ α β

s0 s0 s0

⊗ s0

s0 s0

(a) (b) (c)

Figure 5.2: (a) A well-formed and closed observation table τ ; (b) forward transition relation
of the candidate A1

τ constructed from τ ; (c) cross transition relation of A1
τ .

Proof. The proof is by contradiction. Let A be the smallest DTA accepting U and let

(S, E ,R) be a well-formed observation table such that |S| > n. Then there are two distinct

trees t1 and t2 in S such that the runs of A on both t1 and t2 end on the same state of A.

Then for any context c, the runs of A on c[t1] and c[t2] both end on the same state. But

on the other hand, since the observation table is well-formed, there exists an experiment

c ∈ E such that R(t1, c) 6= R(t2, c), which implies that the runs of A on c[t1] and c[t2] end

on different states of A. Contradiction.

Definition 23 (Closed) An observation table (S, E ,R) is said to be closed if

∀t ∈ Ŝ \ S � ∃t′ ∈ S � row(t′) = row(t)

Note that, given any well-formed observation table (S, E ,R), one can always construct

a well-formed and closed observation table (S ′, E ,R′) such that S ⊆ S ′. Specifically, we

repeatedly try to find an element t in Ŝ \S such that ∀t′ ∈ S � row(t′) 6= row(t). If no such

t can be found then the table is already closed and we stop. Otherwise, we add t to S and

repeat the process. Note that, the table always stays well-formed. Then by Lemma 14, the

size of S cannot exceed the number of states of the smallest DTA that accepts U . Hence

this process always terminates.

Figure 5.2a shows a well-formed and closed table with S = {ǫ}, E = {�}, Σ = {α, β},

and for the regular tree language defined by the TA in Figure 5.1. Note that row(t) =

81

row(λ) for every t ∈ {α · λ, β · λ, λ + λ}, and hence the table is closed.

Conjecture Construction: From a well-formed and closed observation table τ =

(S, E ,R), the learner constructs a candidate DTA Aτ = (S, Init, Σ, δ,⊗, F) where (i)

S = S, (ii) Init = ǫ, (iii) F = {t ∈ S | R(t, �) = 1}, (iv) δ(t, α) := t′ such that

row(t′) = row(α · t), and (v) t1 ⊗ t2 := t′ such that row(t′) = row(t1 + t2). Note that

in (iv) and (v) above there is guaranteed to be a unique such t′ since τ is closed and

well-formed, hence Aτ is well-defined.

Consider again the closed table in Figure 5.2a. The learner extracts a conjecture Aτ

from it with a single state s0, which is both initial and final. Figures 5.2b and 5.2c show

the forward and cross transitions of Aτ .

The Learning Algorithm: The algorithm LT is iterative and always maintains a well-

formed observation table τ = (S, E ,R). Initially, S = {ǫ} and E = {�}. In each iteration,

LT proceeds as follows:

1. Make τ closed as described previously.

2. Construct a conjecture DTA Aτ from τ , and make a candidate query with Aτ . If Aτ

is a correct conjecture, then LT terminates with Aτ as the answer. Otherwise, let

CE be the counterexample returned by the teacher.

3. Extract a context c from CE, add it to E , and proceed with the next iteration from

step 1. The newly added c is such that when we make τ closed in the next iteration,

the size of S is guaranteed to increase.

Extracting an Experiment From CE: Let r be the run function of the failed candidate

Aτ . For any tree t, let τ(t) = r(t), i.e., τ(t) is the state at which the run of Aτ on t ends.

Note that since states of Aτ are elements in S, τ(t) is itself a tree. The unknown language

U induces a natural equivalence relation ≈ on the set of trees as follows: t1 ≈ t2 iff

t1 ∈ U ⇐⇒ t2 ∈ U .

82

1 procedure ExpGen(c,t)
2 case
3 t = α · t′ : if (c[τ(t)] 6≈ c[α · τ(t)]) then
4 add c to E
5 else ExpGen(c[α · �], t′);

6 t = t1 + t2: if (c[τ(t)] 6≈ c[τ(t1) + τ(t2)]) then
7 add c to E
8 else if (c[τ(t)] ≈ c[τ(t1) + t2]) then
9 ExpGen(c[τ(t1) + �], t2);
10 else ExpGen(c[� + t2], t1)
11 end case
12 end procedure

Figure 5.3: Pseudocode for extracting an experiment from a counterexample.

The procedure ExpGen for extracting a new experiment from the counterexample is

iterative (see Figure 5.3). It maintains a context c and a tree t that satisfy the following

condition: (INV) c[t] 6≈ c[τ(t)]. Initially c = � and t = CE. Note that this satisfies INV

because CE ∈ U ⇐⇒ CE 6∈ L(Aτ). In each iteration, ExpGen either generates an

appropriate experiment or updates c and t such that INV is maintained and the size of

t strictly decreases. Note that t cannot become ǫ since at that point INV can no longer

be maintained; this is because if t = ǫ then τ(t) = ǫ and therefore c[t] ≈ c[τ(t)], which

would contradict INV. Hence, ExpGen must terminate at some stage by generating an

appropriate experiment. Now, there are two possible cases:

Case 1: (t = α · t′) Let c′ = c[α · �]. We consider two sub-cases. Suppose that

c[τ(t)] ≈ c′[τ(t′)]. From INV we know that c[t] 6≈ c[τ(t)]. Hence c′[τ(t′)] 6≈ c[t] ≈ c′[t′].

Hence, ExpGen proceeds to the next iteration with c = c′ and t = t′. Note that INV is

preserved and the size of t strictly decreases.

Otherwise, suppose that c[τ(t)] 6≈ c′[τ(t′)]. In this case, ExpGen terminates by adding

the experiment c to E . Note that Aτ has the transition τ(t′)
α

−→ τ(t), i.e., row(τ(t)) =

row(α · τ(t′)). But now, since c[τ(t)] 6≈ c′[τ(t′)] ≈ c[α·τ(t′)], the experiment c is guaranteed

83

to distinguish between τ(t) and α · τ(t′). Therefore, the size of S is guaranteed to increase

when we attempt to close τ in the next iteration.

Case 2: (t = t1 + t2) There are two sub-cases. Suppose that c[τ(t)] 6≈ c[τ(t1) + τ(t2)].

In this case, ExpGen terminates by adding the experiment c to E . The experiment c is

guaranteed to distinguish between τ(t) and τ(t1)+ τ(t2) and therefore strictly increase the

size of S when we attempt to close τ in the next iteration.

Otherwise, suppose that c[τ(t)] ≈ c[τ(t1) + τ(t2)]. We again consider two sub-cases.

Suppose that c[τ(t1) + τ(t2)] 6≈ c[τ(t1) + t2]. In this case, ExpGen proceeds to the next

iteration with c = c[τ(t1) + �] and t = t2. Note that INV is preserved and the size of t

strictly decreases.

Otherwise, we have c[τ(t1) + t2] ≈ c[τ(t1) + τ(t2)] ≈ c[τ(t)], and by INV we know that

c[τ(t)] 6≈ c[t] ≈ c[t1 + t2]. Hence, it must be the case that c[τ(t1) + t2] 6≈ c[t1 + t2]. In

this case, ExpGen proceeds to the next iteration with c = c[� + t2] and t = t1. Note

that, once again INV is preserved and the size of t strictly decreases. This completes the

argument for all cases.

We show how LT learns the minimal DTA corresponding to the language U of TA A of

Figure 5.1. LT starts with an observation table τ with S = {ǫ} and E = {�}. The table is

then made closed by asking membership queries, first for ǫ and then for its (forward and

cross) extensions {α · ǫ, β · ǫ, ǫ + ǫ}. The resulting closed table τ1 is shown in Figure 5.2a.

LT then extracts a candidate A1
τ from τ1, which is shown in Figure 5.2b.

When the conjecture A1
τ is presented to the teacher, it checks if L(A1

τ) = U . In our

case, it detects otherwise and returns a counterexample CE from the symmetric difference

of L(A1
τ) and U . For the purpose of illustration, let us assume CE to be α · β · ǫ. Note

that CE ∈ L(A1
τ) \ U . The algorithm ExpGen extracts the context α · � from CE and

adds it to the set of experiments E . LT now asks membership queries corresponding to the

new experiment and checks if the new table τ is closed. It finds that row(α · ǫ) 6= row(t)

84

� α · �

ǫ 1 1 (s0)
α · ǫ 1 0 (s1)

α · α · ǫ 0 0 (s2)

β · ǫ 1 0
β · α · ǫ 0 0

α · α · α · ǫ 0 0
β · α · α · ǫ 0 0

ǫ + ǫ 1 1
ǫ + α · ǫ 1 0

α · ǫ + α · ǫ 1 0
ǫ + α · α · ǫ 0 0

α · ǫ + α · α · ǫ 0 0
α · α · ǫ + α · α · ǫ 0 0

δ α β

s0 s1 s1

s1 s2 s2

s2 s2 s2

⊗ s0 s1 s2

s0 s0 s1 s2

s1 s1 s1 s2

s2 s2 s2 s2

(a) (b) (c)

Figure 5.4: (a) observation table τ and (b) transitions for the second conjecture A2
τ .

for all t ∈ S, and hence it moves α · λ from Ŝ \ S to S in order to make τ closed. Again,

membership queries for all possible forward and cross extensions of α · ǫ are asked. This

process is repeated till τ becomes closed. Figure 5.4a shows the final closed τ . As an

optimization, we omit rows for the trees t1 + t2 whenever there is already a row for t2 + t1;

we know that the rows for both these trees will have the same markings. The corresponding

conjecture A2
τ contains three states s0, s1 and s2 and its forward and cross transitions are

shown in Figure 5.4b and Figure 5.4c. s0 is the initial state and both s0 and s1 are final

states. The candidate query with A2
τ returns true since L(A2

τ) = U , and LT terminates

with A2
τ as the output.

Correctness and Complexity:

Theorem 7 Algorithm LT terminates and outputs the minimal DTA that accepts the un-

known regular language U .

Proof. Termination is guaranteed by the facts that each iteration of LT terminates, and in

each iteration |S| must strictly increase, and, by Lemma 14, |S| cannot exceed the number

85

of states of the smallest DTA that accepts U . Further, since LT terminates only after a

correct conjecture, if the DTA Aτ is its output then L(Aτ) = U . Finally, since the number

of states in Aτ equals |S|, by Lemma 14 it also follows that Aτ is the minimal DTA for U .

To keep the space consumption of LT within polynomial bounds, the trees and contexts

in Ŝ and E are kept in a DAG form, where common subtrees between different elements

in Ŝ and E are shared. Without this optimization, the space consumption can be expo-

nential in the worst case. The other point to note is that the time taken by LT depends

on the counterexamples returned by the teacher; this is because the teacher can return

counterexamples of any size in response to a failed candidate query.

To analyze the complexity of LT , we make the following standard assumption: every

query to the teacher, whether a membership query or a candidate query, takes unit time

and space. Further, since the alphabet Σ of the unknown language U is fixed, we assume

that the size of Σ is a constant. Then the following theorem summarizes the complexity

of LT .

Theorem 8 The algorithm LT takes O(mn + n3) time and space where n is the number

of states in the minimal DTA for the unknown language U and m is the size of the largest

counterexample returned by the teacher.

Proof. By Lemma 14, we have |S| ≤ n. Then the number of rows in the table, which is

|Ŝ| = |S ∪ (Σ · S)∪ (S +S)|, is of O(n2). Further, recall that every time a new experiment

is added to E , |S| increases by one. Hence the number of table columns |E| ≤ n, and the

number of table entries |Ŝ||E| is of O(n3).

The trees and contexts in Ŝ and E are kept in a DAG form, where common subtrees

between different elements in Ŝ and E are shared in order to keep the space consumption

within polynomial bounds. Specifically, recall that whenever a tree t is moved from Ŝ \ S

to S, all trees of the form α · t for each α ∈ Σ and t + t′ for each t′ ∈ S (which are O(|S|)

in number) are to be added to Ŝ. Adding the tree α · t to Ŝ only needs constant space

86

since t is already in Ŝ and hence is shared in the DAG representation. Similarly adding a

tree of form t + t′ takes only constant space, since both t and t′ are already in Ŝ. Thus,

each time S is expanded, a total of O(|S|) space is required to add all the new trees to Ŝ.

Since at most n trees can be added S in all, it follows that the total space consumed by

elements in Ŝ is O(n2).

Now, we compute the total space consumed by the contexts in E . Note that the teacher

can return counterexamples of arbitrary size in response to a wrong conjecture. Suppose

m is the size of the largest counterexample. Observe that an experiment is extracted from

CE (procedure ExpGen in Figure 5.3) essentially by replacing some of the subtrees of

CE with trees in S, and exactly one subtree of CE with �. But, since in the DAG form,

common subtrees are shared between trees and contexts in S and E , none of the above

replacements consume any extra space. Hence, the size of the experiment extracted from

CE is utmost the size of CE. Since there are at most n contexts in E , the total space

consumed by contexts in E is O(mn). Putting together all observations so far, we get that

the total space consumed by LT is O(mn + n3).

Now, we compute the time consumed by LT . It takes O(n3) membership queries to fill

in the O(n3) table entries. Since each query is assumed to take O(1) time, this takes a

total of O(n3) time. The time taken to extract an experiment from a counterexample CE

is linear on the size of CE. This is because, as seen in Figure 5.3, the procedure ExpGen

involves making a constant number of membership queries for each node of CE (branch

conditions in lines 3, 6, and 8) as CE is processed in a top down fashion. Thus, the time

taken to extract an experiment from CE is at most O(m). Since there can be at most n

wrong conjectures, the total time spent on processing counterexamples is O(mn). Putting

these observations together we conclude that LT takes O(mn + n3) time. We thus have

the following theorem.

87

5.3 Automating Assume-Guarantee for Simulation

For M1, M2 and MS, suppose we are to check if M1 ‖ M2 4 MS. Recall from Section 5.1

that M1 ‖ M2 4 MS if and only if T (M1 ‖ M2) ⊆ T (MS), and T (M1 ‖ M2) = T (M1) ∩

T (M2). Therefore, the verification problem is equivalent to checking if T (M1) ∩ T (M2) ⊆

T (MS). Now, define Tmax = T (M1) ∩ T (MS). Then

T (M1) ∩ T (M2) ⊆ T (MS) ⇐⇒ T (M2) ⊆ Tmax

Thus, Tmax represents the maximal environment under which M1 satisfies MS, and

M1 ‖ M2 4 MS ⇔ T (M2) ⊆ Tmax

Checking T (M2) ⊆ Tmax is as expensive as directly checking M1 ‖ M2 4 MS since it

involves both M1 and M2. In the following, we show how the LT algorithm can be used

for a more efficient solution.

Since regular tree languages are closed under intersection and complementation, Tmax

is a regular tree language. We therefore use the LT algorithm to learn the canonical DTA

for Tmax in an incremental fashion. The key idea is that when a candidate query is made

by LT , the teacher checks if the NC proof rule can be discharged by using the proposed

candidate as the assumption. Empirical evidence (see Section 5.4) suggests that this often

succeeds well before Tmax is learnt, leading to substantial savings in time and memory

consumption.

We now elaborate on how the teacher assumed by LT is implemented. Specifically, the

membership and candidate queries of LT are processed as follows.

Membership Query. For a given tree t we are to check if t ∈ Tmax. This is equivalent

to checking if t 6∈ T (M1) or t ∈ T (MS). In our implementation, both T (M1) and T (MS)

88

are maintained as tree automata, and the above check amounts to membership queries on

these automata.

Candidate Query. Given a DTA D we are to check if L(D) = Tmax. We proceed in

three steps as follows.

1. Check if (C1) L(D) ⊆ Tmax = T (M1) ∩ L(MS). This is implemented using the

complementation, intersection and emptyness checking operations on tree automata.

If C1 holds, then we proceed to step 2. Otherwise, we return some t ∈ Tmax \ L(D)

as a counterexample to the candidate query D.

2. Check if (C2) T (M2) ⊆ L(D). If this is true, then (C1) and (C2) together imply

that T (M2) ⊆ Tmax, and thus our overall verification procedure terminates concluding

that M1 ‖ M2 4 MS. Note that even though the procedure terminates L(D) may

not be equal to Tmax. On the other hand, if (C2) does not hold, we proceed to step

3 with some t ∈ T (M2) \ L(D).

3. Check if t ∈ Tmax, which is handled as in the membership query above. If this is

true, then it follows that t ∈ Tmax \L(D), and hence we return t as a counterexample

to the candidate query D. Otherwise, if t 6∈ Tmax then T (M2) 6⊆ Tmax, and therefore

we conclude that M1 ‖ M2 64 MS.

Thus, the procedure for processing the candidate query can either answer the query or

terminate the entire verification procedure with a positive or negative outcome. Further,

the reader may note that M1 and M2 are never considered together in any of the above

steps. For instance, the candidate D is used instead of M1 in step 1, and instead of M2 in

step 2. Since D is typically very small in size, we achieve significant savings in time and

memory consumption, as reported in Section 5.4.

89

5.4 Experimental Results

Our primary target has been the analysis of concurrent message-passing C programs.

Specifically, we have experimented with a set of benchmarks derived from the OpenSSL-

0.9.6c source code. We analyzed the source code that implements the critical handshake

that occurs when an SSL server and client establish a secure communication channel be-

tween them. The server and client source code contained roughly 2500 LOC each. Since

these programs have an infinite state space, we constructed finite conservative labeled

transition system (LTS) models from them using various abstraction techniques [30]2. The

abstraction process was carried out component-wise.

We designed a set of eight LTS specifications on the basis of the SSL documentation.

We verified these specifications on a system composed of one server (M1) and one client

(M2) using both the brute-force composition (M1 ‖ M2), and our proposed automated AG

approach. All experiments were carried out on a 1800+ XP AMD machine with 3 GB of

RAM running RedHat 9.0. Our results are summarized in Table 5.5. The learning based

approach shows superior performance in all cases in terms of memory consumption (up to

a factor of 12.8). An important reason behind such improvement is that the sizes of the

(automatically learnt) assumptions that suffice to prove or disprove the specification (shown

in column labeled |A|) are much smaller than the size of the second (client) component

(3136 states).

5.5 Conclusion and Related Work

We have presented an automated AG-style framework for checking simulation conformance

between LTSs. Our approach uses a learning algorithm LT to incrementally construct

the weakest assumption that can discharge the premises of a non-circular AG proof rule.

2Spurious counterexamples arising due to abstraction are handled by iterative counterexample guided
abstraction refinement.

90

Name Direct AG Gain
Result T1 M1 T2 M2 M1/M2 |A| MQ CQ

SSL-1 Invalid * 2146 325 207 10.4 8 265 3
SSL-2 Valid * 2080 309 163 12.8 8 279 3
SSL-3 Valid * 2077 309 163 12.7 8 279 3
SSL-4 Valid * 2076 976 167 12.4 16 770 4
SSL-5 Valid * 2075 969 167 12.4 16 767 4
SSL-6 Invalid * 2074 3009 234 8.9 24 1514 5
SSL-7 Invalid * 2075 3059 234 8.9 24 1514 5
SSL-8 Invalid * 2072 3048 234 8.9 24 1514 5

Figure 5.5: Experimental results. Result = specification valid/invalid; T1 and T2 are times
in seconds; M1 and M2 are memory in mega bytes; |A| is the assumption size that sufficed to
prove/disprove specification; MQ is the number of membership queries; CQ is the number
of candidate queries. A * indicates out of memory (2 GB limit). Best figures are in bold.

Although we have focused on an instantiation of the non-circular rule NC, our approach

can be directly extended to the circular rule C in the manner described in Chapter 3.

We have implemented this framework in the ComFoRT [85] toolkit and experimented

with a set of benchmarks based on the OpenSSL source code and the SSL specification.

Our experiments indicate that in practice, extremely small assumptions often suffice to

discharge the AG premises. This can lead to orders of magnitude improvement in the

memory and time required for verification.

The LT algorithm may be viewed as a branching time analogue of L∗ where the Teacher

must be capable of answering queries on trees and tree automata (as opposed to traces and

finite state machines in L∗). Unlike the algorithms in [20, 62] which learn tree languages

offline from a training set, LT learns actively by querying a teacher. Another algorithm for

learning tree languages [53] is closely related to LT . However, LT has a better the worst-case

complexity of O(n3) as compared to O(n5) of the previous algorithm. We note that learning

from derivation trees was investigated initially in the context of context-free grammars [119]

and forms the basis of several inference algorithms for tree languages [20, 53, 62] including

ours.

91

92

Chapter 6

Efficient AGR using SAT and Lazy

Learning

6.1 Introduction

The automated AGR approach (cf. Chapter 3) using the L∗ algorithm is effective for small

systems. In order to make it scalable, there are two main challenges:

• Efficient Teacher Implementation: The teacher, i.e., the model checker, must be

able to answer membership and candidate queries efficiently. More precisely, each

query may itself involve exploration of a large state space making explicit-state model

checking infeasible.

• Alphabet explosion: Suppose the system to be verified consists of two components

M1 and M2. If M1 and M2 interact using a set X of global shared communication

variables, the alphabet of the assumption A consists of all the valuations of X and is

exponential in size of X. The learning algorithm (cf. Chapter 2) explicitly enumerates

the alphabet set at each iteration and performs membership queries for enumeration

step. Therefore, it is prohibitively expensive to apply L∗ directly to shared memory

93

systems with a large number of shared communication variables. Indeed, it is some-

times impossible to enumerate the full alphabet set, let alone learning an assumption

hypothesis. We refer to this problem as the alphabet explosion problem.

In this chapter, we address the above problems by (i) efficiently implementing the

teacher using SAT-based model checking; and (ii) a lazy learning approach for mitigating

the alphabet explosion problem.

6.2 Notation and Preliminaries

We first define the notions of symbolic transition systems, automata, and composition

which we will use in the rest of the chapter. Our formalism borrows notation from [94, 108].

Let X = {x1, . . . , xn} be a finite set of typed variables defined over a non-empty finite

domain of values D. We define a label a as a total map from X to D which maps each

variable xi to value di. An X-trace ρ is a finite sequence of labels on X. The next-time

label is a′ = a〈X/X ′〉 is obtained from a by replacing each xi ∈ dom(a) by x′
i. Given a

label a over X and Y ⊆ X, we define the label projection a |Y = a′ where dom(a′) = Y and

a(y) = a′(y) for each y ∈ Y . Given variables X and the corresponding next-time variables

X ′, let us denote the (finite) set of all predicates on X ∪X ′ by ΦX (true and false denote

the boolean constants). Given labels a and b on X, we say that a label pair (a, b′) satisfies

a predicate φ ∈ ΦX , denoted φ(a, b′), if φ evaluates to true under the variable assignment

given by a and b′.

6.2.1 Communicating Finite Automata

A communicating finite automata (CFA) C on a set of variables X (called the support

set) is a tuple 〈X, Q, q0, δ, F〉; Q denotes a finite set of states, q0 is the initial state,

δ ⊆ Q × ΦX × Q is the transition relation and F is the set of final states. For states

q, q′ ∈ Q and φ ∈ ΦX , if δ(q, φ, q′) holds, then we say that φ is a transition predicate

94

between q and q′. For each state q, we define its follow set fol(q) to be the set of outgoing

transition predicates, i.e., fol(q) = {φ|∃q′ ∈ Q. δ(q, φ, q′)}. We say that fol(q) is complete

iff
∨
{φ ∈ fol(q)} = true and disjoint iff for all φi, φj ∈ fol(q), φi ∧ φj = false. Also,

we say that δ is complete (deterministic) iff for each q ∈ Q, fol(q) is complete (disjoint).

The alphabet Σ of C is defined to be the set of label pairs (a, a′) on variables X and X ′.

The above definition of transitions (on current and next-time variables) allows compact

representation of CFAs and direct composition with STSs below.

A run of C is defined to be a sequence (q0, . . . , qn) of states in Q such that q0 = q0.

A run is said to be accepting if qn ∈ F . Given a W -trace (X ⊆ W), ρ = a0, . . . , an, is

said to be a trace of C if there exists an accepting run (q0, . . . , qn) of C, such that for all

j < n, there exists a predicate φ, such that δ(qj, φ, qj+1) and φ(aj, a
′
j+1) holds. In other

words, the labels aj and aj+1 must satisfy some transition predicate between qj and qj+1.

The W -trace language LW (C) is the set of all W -traces of C. Note that this definition

of W -trace allows a sequence of labels on X to be extended by all possible valuations of

variables in W \X and eases the definition of the composition operation below. In general,

we assume W is the universal set of variables and write L(C) to denote the language of C.

A CFA can be viewed as an ordinary finite automaton with alphabet Σ which accepts

a regular language over Σ. While the states are represented explicitly, the follow function

allows clustering a set of alphabet symbols into one transition symbolically. The common

automata-theoretic operations, viz., union, intersection, complementation and determiniza-

tion via subset-construction can be directly extended to CFAs. The complement of C is

denoted by C, where L(C) = L(C). Note that the constraint LC1 (cf. Chapter 3) holds

for CFA.

Definition 24 (Product of CFAs.) Given CFAs C1 = 〈X1, Q1, q01, δ1, F1〉 and C2 =

〈X2, Q2, q02, δ2, F2〉, their product C = C1 × C2 is a tuple 〈X, Q, q0, δ, F〉 where X =

X1∪X2, Q = Q1×Q2, q0 = (q01, q02), F = F1×F2 and for a label c over X∪X ′, q1, q
′
1 ∈ Q1

95

x = 0 ∧ x′
= 1

x 6= 0 ∨ x′ 6= 1 Tq0
q1

Figure 6.1: A CFA on support X = {x}; x is a boolean. Σ = {(x = 0, x′ = 0), (x =
0, x′ = 1), (x = 1, x′ = 0), (x = 1, x′ = 1)}. fol(q0) = {(x = 0 ∧ x′ = 1), (x 6= 0 ∨ x′ 6= 1)}.
fol(q1) = {true}. Note that the first element of fol(q0) corresponds to an alphabet symbol
while the second element is an alphabet cluster. Also, both fol(q0) and fol(q1) are disjoint
and complete.

and q2, q
′
2 ∈ Q2, (q′1, q

′
2) ∈ δ((q1, q2), c) iff q′1 ∈ δ1(q1, c |X1∪X′

1
) and q′2 ∈ δ2(q2, c |X2∪X′

2
).

Lemma 15 For CFAs C1 and C2, L(C1 × C2) = L(C1) ∩ L(C2).

Definition 25 (Support set of a Language) We define the support Spt(L) of a regular

language L recursively as follows:

• If L = L(C) for a CFA C with support set X, then Spt(L) = X.

• If L = L1 ∩ L2 for languages L1 and L2, then Spt(L) = Spt(L1) ∪ Spt(L2).

• If L = L1, for a language L1, then Spt(L) = Spt(L1).

It follows that for L = L1 ∪ L2 = L1 ∩ L2, Spt(L) = Spt(L1) ∪ Spt(L2).

Lemma 16 A regular language with support X is accepted by a CFA with support X.

Proof. We prove by structural induction over the definition of Spt(L). The base case

holds trivially since L = L(C) for a C with support set X. If L = L1 ∩ L2, by inductive

hypothesis, there must exist CFAs C1 and C2 where L1 = L(C1) and L2 = L(C2), with

support sets X1 and X2 respectively, so that X = X1 ∪X2. Let C = C1 ×C2. Now, L(C)

= L(C1) ∩ L(C2) = L. Therefore, L is accepted by the CFA C whose support set is X.

Again, if L = L1 on support set X, there exist a CFA C1 on support set X, so that L(C1)

= L1. Let C denote the CFA obtained by determinizing and complementing C1. Note that

C has support X and L(C) = L(C1) = L.

96

6.2.2 Symbolic Transition Systems

A symbolic transition system (STS) M is a tuple 〈X, S, I, R, F〉, defined over a set of

variables X called its support, where S consists of all labels over X, I(X) is the initial

state predicate, R(X, X ′) is the transition predicate and F (X) is the final state predicate.

Given a variable set W (X ⊆ W), a W -trace ρ = a0, . . . , an is said to be a trace of M if

I(a0) and F (an) hold and for all j < n, R(aj , a
′
j+1) holds. The trace language L(M) of M

is the set of all traces of M .1

CFA as an STS. Given a CFA C = 〈XC , QC , q0C, δC , FC〉, there exists an STS M =

〈X, S, I, R, F〉 such that L(C) = L(M). We construct M as follows: (i) X = XC ∪ {q}

where q is a fresh variable which ranges over QC , (ii) I(X) = (q = q0), (iii) F (X) =

∃qi ∈ FC .(q = qi), and (iv) R(X, X ′) =

(∃q1, q2 ∈ QC , φ ∈ Φ. (q = q1 ∧ q′ = q2 ∧ δC(q1, φ, q2) ∧ φ(XC , X ′
C))

Synchronous Composition of STSs. Suppose we are given two STSs

M1 = 〈X1, S1, I1, R1, F1〉 and M2 = 〈X2, S2, I2, R2, F2〉. We define the composition

M1 ‖ M2 to be a STS M = 〈X, S, I, R, F〉 where: (i) X = X1 ∪ X2, (ii) S consists of all

labels over X, (iii) I = I1 ∧ I2, (iv) R = R1 ∧ R2, and (v) F = F1 ∧ F2.

Lemma 17 (LC2 for STSs) (cf. Chapter 3) Given two STSs M1 and M2, L(M1 ‖

M2) = L(M1) ∩ L(M2).

We use STSs to represent system components and CFA on shared variables to represent

assumptions computed in the various AGR sub-tasks, respectively. We assume that all

STSs have total transition predicates. We define the composition of an STS M with a

CFA C, denoted by M ‖ C, to be M ‖ MC , where MC is the STS obtained from C.

Although we use a synchronous notion of composition in this chapter, our work can be

directly extended to asynchronous composition also.

1We overload the symbol L() to describe the trace language of both CFAs and STSs.

97

Lemma 18 (LC2 for STSs and CFAs) The constraint LC2 holds for STS and CFA

models together, i.e., for STS M and CFA C, L(M ‖ C) = L(M) ∩ L(C).

Proof. From definition L(M ‖ C) = L(M ‖ MC) = L(M) ∩ L(MC) = L(M) ∩ L(C) since

L(MC) = L(C).

Definition 26 (Model Checking STSs) Given an STS M and a property CFA P , the

model checking question is to determine if M � P where � denotes a conformance relation.

Using the trace semantics for STSs and CFAs and set containment as the conformance

relation, the problem can be reduced to checking if L(M) ⊆ L(P).

Since CFAs are closed under negation and there is a language-equivalent STS for each CFA,

we can further reduce the model checking question to checking if L(M ‖ MP) is empty,

where the STS MP is obtained by complementing P to form P and then converting it into

an STS. Let STS M = M ‖ MP . In other words, we are interested in checking if there is

an accepting trace in M, i.e., a trace that ends in a state that satisfies FM.

6.2.3 SAT-based Model Checking

It is possible to check for existence of an accepting trace in an STS M using satisfiability

checking. A particular instance of this problem is bounded model checking [21] where we

check for existence of an accepting trace of length k using a SAT solver.

Bounded Model Checking(BMC). Given an integer bound k, the BMC problem

can be formulated in terms of checking satisfiability of the following formula [21]:

BMC(M, k) := IM(s0) ∧
∧

0≤j≤k−1

RM(sj, sj+1) ∧
∨

0≤j≤k

FM(sj) (6.1)

Here sj (0 ≤ j ≤ k) represents the set of variables XM at depth j. The transition relation

of M is unfolded up to k steps, conjuncted with the initial and the final state predicates

at the first and the last steps respectively, and finally encoded as a propositional formula

98

that can be solved by a SAT solver. If the formula is SAT then the satisfying assignment

corresponds to an accepting trace of length k (a counterexample to M � P). Otherwise,

no accepting trace exists of length k or less. It is possible to check for accepting traces of

longer lengths by increasing k and checking iteratively.

Unbounded Model Checking(UMC). The unbounded model checking problem

involves checking for an accepting trace of any length. Several SAT-based approaches

have been proposed to solve this problem [113]. Here, we consider two approaches, one

based on k-induction [14, 56, 120] and the other based on interpolation [102].

The k-induction technique [120] tries to show that there are no accepting traces of any

length with the help of two SAT checks corresponding to the base and induction cases

of the UMC problem. In the base case, it shows that no accepting trace of length k or

less exists. This exactly corresponds to the BMC formula (Eq. 6.1) being UNSAT. In the

induction step, it shows that if no accepting trace of length k or less exists, then there

cannot be an accepting trace of length k + 1 in M, and is represented by the following

formula:

Step(M, k) :=
∧

0≤j≤k

RM(sj , sj+1) ∧
∧

0≤j≤k

¬FM(sj) ∧ FM(sk+1) ∧
∧

0≤i≤j≤k

si 6= sj+1 (6.2)

The induction step succeeds if Step(M, k) is UNSAT. Otherwise, the depth k is increased

iteratively until it succeeds or the base step is SAT (a counterexample is found). The

set of constraints of form si 6= sj+1 in (Eq. 6.2) (also known as simple path or uniqueness

constraints) are necessary for completeness of the method and impose the condition that all

states in the accepting trace must be unique. The method can be implemented efficiently

using an incremental SAT solver [56], which allows reuse of recorded conflict clauses in

the SAT solver across iterations of increasing depths. The k-induction technique has the

drawback that it may require as many iterations as the length of the longest simple path

between any two states in M (also known as recurrence diameter [21]), which may be

99

exponentially larger than the longest of all the shortest paths (or the diameter) between

any two states.

Another approach to SAT-based UMC is based on using interpolants [102]. The method

computes an over-approximation I of the reachable set of states in M, which is also an

inductive invariant for M, by using the UNSAT proof of the BMC instance (Eq. 6.1). If I

does not overlap with the set of final states, then it follows that there exists no accepting

trace in M. An important feature of this approach is that it does not require unfolding

the transition relation beyond the diameter of the state space of M, and, in practice, often

succeeds with shorter unfoldings. We do not present the details of this approach here; they

can be found in [9, 102].

In order to use a SAT solver, the above formula instances have to be translated into

propositional logic. A lot of structural information is lost (e.g., relation between bits of an

encoded variable) due to this translation and may lead to useless computation by the SAT

solver. We can avoid this translation by using an SMT solver [3, 125]. Besides allowing

propositional constraints, an SMT solver also supports input formulas in one or more

(ground) first order theories, e.g., the quantifier-free fragment of linear arithmetic over

integers. Therefore, both BMC and UMC based on k-induction can be carried out using a

SMT solver, provided it supports the theories over which the above formulas are defined.

A particular mixed boolean/integer encoding of hardware RTL constructs can be found

in [24]. Similarly, interpolation-based UMC may be carried out using an interpolating

prover provided it can generate interpolants in the required theories.

6.3 Assume-Guarantee Reasoning using Learning

We now present the automated AGR framework for STSs and CFAs using learning. Here,

we will be concerned mainly with the instantiation of the non-circular AGR rule presented

in Chapter 3 for STSs and CFAs.

100

Definition 27 Non-circular AGR (NC) Given STSs M1, M2 and CFA P , show that

M1 ‖ M2 � P , by picking an assumption CFA A, such that both (n1) M1 ‖ A � P and

(n2) M2 � A hold.

Although we focus our presentation on NC rule, our results can be applied to an

instantiation of the circular rule C (cf. Chapter 3) in a straightforward way. We implement

and experiment with both the rules (cf. Section 6.5).

Lemma 19 (Soundness and Completeness) Both instances of NC and C rules are

sound and complete for STSs and CFAs.

Proof. It follows from the proof of soundness and completeness of the abstract rule in

Chapter 3 and the fact that CL1 holds for CFAs (see Section 6.2.1) and CL2 holds for

STSs and CFAs (from Lemma 18).

Moreover, both the rules can be extended to a system of n STSs M1 . . .Mn by picking

a set of assumptions (represented as a tuple) 〈A1 . . . An−1〉 for NC and 〈A1 . . . An〉 for C

respectively. The proofs of completeness for both these rules rely on the notion of weakest

assumptions (cf. Chapter 3). The following lemma shows that CFAs are suitable for

representing weakest assumptions.

Lemma 20 (Weakest Assumptions) Given a finite STS M with support set XM and

a CFA P with support set XP , there exists a unique weakest assumption CFA, WA, such

that (i) M ‖ WA � P holds, and (ii) for all CFA A where M ‖ A � P , L(A) ⊆ L(WA)

holds. Moreover, L(WA) is regular and the support variable set of WA is XM ∪ XP .

Proof. It follows from the Lemma 17 and Lemma 18 that the weakest assumption language

LW = L(M) ∪ L(P). Also, LW is regular since L(M) and L(P) are regular. The model

class of deterministic CFAs uniquely covers the regular language set. Hence, by Lemma 8,

there exists an unique deterministic CFA WA, so that L(WA) = LW . Since, the support

set of L(M) and L(P) is XM and XP respectively, the support of L(WA) and therefore

WA is XM ∪ XP .

101

As mentioned earlier (cf. Chapter 3), a learning algorithm for regular languages, L∗,

assisted by a model checker based Teacher, can be used to automatically generate the

assumptions. However, there are problems in scaling this approach to large shared memory

systems. Firstly, the Teacher must be able to discharge the queries efficiently even if it

involves exploring a large state space. Secondly, the alphabet Σ of an assumption A

is exponential in its support set of variables. Since L∗ explicitly enumerates Σ during

learning, we need a technique to curb this alphabet explosion. We address these problems

by proposing a SAT-based implementation of the Teacher and a lazy algorithm based on

alphabet clustering and iterative partitioning (Section 6.4).

6.3.1 SAT-based Assume-Guarantee Reasoning

We now show how the Teacher can be implemented using SAT-based model checking. The

Teacher needs to answer membership and candidate queries.

Membership Query. Given a trace t, we need to check if t ∈ L(WA) which corre-

sponds to checking if M1 ‖ {t} � P holds. To this end, we first convert t into a language-

equivalent STS Mt, obtain M = M1 ‖ Mt and perform a single BMC check BMC(M, k)

(cf. Section 6.2.3) where k is the length of trace t. Note that since Mt accepts only at the

depth k, we can remove the final state constraints at all depths except k. The Teacher

replies with a true answer if the above formula instance is UNSAT; otherwise a false

answer is returned.

Candidate Query. Given a deterministic CFA A, the candidate query involves check-

ing the two premises of NC, i.e., whether both M1 ‖ A � P and M2 � A hold. The latter

check maps to SAT-based UMC (cf. Section 6.2.3) in a straightforward way. Note that

since A is deterministic, complementation does not involve a blowup. For the previous

check, we first obtain an STS M = M1 ‖ MA where the STS MA is language-equivalent to

A (cf. Section 6.2) and then use SAT-based UMC for checking M � P .

102

In our implementation, we employ both induction and interpolation for SAT-based

UMC. Although the interpolation approach requires a small number of iterations, comput-

ing interpolants, in many cases, takes more time in our implementation. The induction-

based approach, in contrast, is faster if it converges within small number of iterations.

Now, automated AGR is carried out in the standard way (cf. Chapter 3) based on

the above queries. The learner sets the support variable set for the assumption A to the

support of the weakest assumption (Xwa = XM1
∪XP) and iteratively computes hypothe-

ses assumptions by asking membership and candidate queries until n1 holds. The last

assumption is then presented in a candidate query which checks if n2 holds. If n2 holds,

then the procedure terminates. Otherwise, a counterexample ce is returned. ce may be

spurious; a membership query on ce is used to check if it is spurious. In that case, ce is

projected to Xwa to obtain ce′ and learning continues with the ce′. Otherwise, ce is re-

turned as an actual counterexample to M1 ‖ M2 � P . The termination of this procedure is

guaranteed by the existence of a unique weakest assumption WA. However, it is important

to note that we seldom need to compute WA. In practice, this procedure terminates with

any assumption A that satisfies n1 and n2 and the size of A is much smaller than that of

WA.

6.4 Lazy Learning

This section presents our new lazy learning approach to address the alphabet explosion

problem. In contrast to the eager BDD-based learning algorithm [115], the lazy approach

(i) avoids use of quantifier elimination to compute the set of edges and (ii) introduces new

states and transitions lazily only when necessitated by a counterexample. We first propose

a generalization of the L∗ algorithm (cf. Chapter 2) and then present the lazy l∗ algorithm

based on it.

103

6.4.1 Generalized L∗ Algorithm

Recall that given an unknown language LU defined over alphabet Σ, L∗ maintains an

observation table T = (U,UA, V, T) consisting of trace samples from LU , where U ⊆ Σ∗

is a prefix-closed set, V ⊆ Σ∗ is a set of suffixes, UA contains extensions of elements in U

and T is a map so that T (u, v) = Ju · vK for some u ∈ U ∪ UA and v ∈ V . We generalize

the L∗ using the notion of follow sets for each u ∈ U .

Definition 28 (Follow Sets) For each u ∈ Σ∗, we define a follow function follow :

Σ∗ → 2Σ, where follow(u) consists of the set of alphabet symbols a ∈ Σ that u is extended

by in order to form u · a. We say that follow(u) is the follow set for u.

We also assume that there exists a cluster mapping function cmap : Σ∗ × Σ → 2Σ, which

maps each u ∈ Σ∗ and a ∈ follow(u) to the alphabet cluster cmap(u, a).

The basis of our generalization of L∗ is the follow function; instead of allowing each

u ∈ Σ∗ to be extended by the full alphabet Σ as in original L∗, we only allow u to be

extended by the elements in follow(u). More precisely, the generalized algorithm differs

from the original algorithm in the following ways:

• We initialize follow(u) = Σ for each u ∈ Σ∗.

• We redefine the FillAllSuccs procedure; instead of iterating over all a ∈ Σ, now

FillAllSuccs only iterates over follow(u) for a given u.

• In the procedure MkDFA, the transition relation is determined using the follow set,

i.e., δ([u], a) = [u · a] for all u ∈ U and a ∈ follow(u).

Note that with follow(u) = Σ (for each u) the generalized algorithm reduces to the

original algorithm presented in Chapter 2.

104

6.4.2 Lazy l∗ Algorithm

The main bottleneck in generalized L∗ algorithm is due to alphabet explosion, i.e., it

enumerates and asks membership queries on all extensions of an element u ∈ U on the

(exponential-sized) Σ explicitly. The lazy approach avoids this as follows. Initially, the

follow set for each u contains a singleton element, the alphabet cluster true, which requires

only a single enumeration step. This cluster may then be partitioned into smaller clusters

in the later learning iterations, if necessitated by a counterexample. In essence, the lazy

algorithm not only determines the states of the unknown CFA, but also computes the set

of distinct alphabet clusters outgoing from each state lazily.

More formally, l∗ performs queries on trace sets, wherein each transition corresponds to an

alphabet cluster. We therefore augment our learning setup to handle sets of traces. Let

Σ̂ denote the set 2Σ and concatenation operator · be extended to sets of traces S1 and S2

by concatenating each pair of elements from S1 and S2 respectively. The follow function

is redefined as follow : Σ̂∗ → 2Σ̂ whose range now consists of alphabet cluster elements

(or alphabet predicates). The observation table T is a tuple (U,UA, V, T) where U ⊆ Σ̂∗

is prefix-closed, V ⊆ Σ̂∗ and UA contains all extensions of elements in U on elements in

their follow sets. T (u, v) is defined on a sets of traces u and v, so that T (u, v) = Ju · vK

where the membership function J·K is extended to a set of traces as follows: given a trace

set S, JSK = 1 iff ∀t ∈ S. JtK = 1. In other words, a JSK = 1 iff S ⊆ LU . This definition is

advantageous in two ways. Firstly, the SAT-based Teacher (cf. Section 6.3.1) can answer

membership queries in the same way as before by converting a single trace set into the

corresponding SAT formula instance. Secondly, in contrast to a more discriminating 3-

valued interpretation of JSK in terms of 0, 1 and undefined values, this definition enables

l∗ to be more lazy with respect to state partitioning.

Figure 6.2 shows the pseudocode for the procedure LearnCE, which learns from a coun-

terexample ce and improves the current hypothesis CFA C. LearnCE calls the LearnCE 0

105

and LearnCE 1 procedures to handle negative and positive counterexamples respectively.

LearnCE 0 is the same as LearnCE in generalized L∗: it finds a split of ce at position i

(say, ce = ui · vi = ui · oi · vi+1), so that αi 6= αi+1 and adds a new distinguishing suffix

vi+1 (which must exist by Lemma 21 below) to V to partition the state corresponding to

[ui · oi]. The procedure LearnCE 1, in contrast, may either partition a state or partition

an alphabet cluster. The case when vi+1 is not in V is handled as above and leads to a

state partition. Otherwise, if vi+1 is already in V , LearnCE 1 first identifies states in the

current hypothesis CFA C corresponding to [ui] and [ui · oi], say, q and q′ respectively, and

the transition predicate φ corresponding to the transtion on symbol oi from q to q′. Let

ur = [ui]
r. Note that φ is also an alphabet cluster in follow(ur) and if oi = (ai, b

′
i), then

φ(ai, b
′
i) holds (cf. Section 6.2).

The procedure PartitionTable is then used to partition φ using oi (into φ1 = φ∧oi and

φ2 = φ∧¬oi) and update the follow set of ur by removing φ and adding φ1 and φ2. Note that

U and UA may also contain extensions of ur · φ, given by Uext and UAext respectively. In

order to keep U prefix-closed and have only extensions of U in UA, the procedure removes

Uext and UAext from U and UA respectively. Finally, it adds the extensions of ur on

the new follow set elements φ1 and φ2 to UA and performs the corresponding membership

queries.

Note that since all the follow sets are disjoint and complete at each iteration, the

hypothesis CFA obtained from a closed table T is always deterministic and complete

(cf. Section 6.2).

Example. Figure 6.3 illustrates the l∗ algorithm for the unknown language LU =

(a|b|c|d) · (a|b)∗. Recall that the labels a, b, c and d are, in fact, predicates over pro-

gram variables. The upper and lower parts of the table represent U and UA respectively,

while the columns contain elements from V . The Boolean table entries correspond to the

membership query Ju · vK where u and v are the row and column entries respectively. The

algorithm initializes both U and V with element ǫ and fills the corresponding table entry

106

Init: ∀u ∈ Σ∗, set follow(u) = {true}
LearnCE(ce)
if (JceK = 0)
LearnCE 0(ce)

else LearnCE 1(ce)

LearnCE 1(ce)
Find i so that αi = 1 and αi+1 = 0
if vi+1 6∈ V
V := V ∪ {vi+1}
For all u ∈ U ∪ UA: Fill(u, vi+1)
else
Let ce = ui · oi · vi+1

Let q = [ui] and q′ = [ui · oi]
Suppose RC(q, φ, q′) and oi ∈ φ
PartitionTable([ui]

r, φ, oi)

LearnCE 0(ce)
Find i so that αi = 0 and αi+1 = 1
V := V ∪ {vi+1}
For all u ∈ U ∪ UA: Fill(u, vi+1)

PartitionTable(ur , φ, a)
φ1 := φ ∧ a, φ2 := φ ∧ ¬a
follow(ur) := follow(ur) ∪ {φ1, φ2} \ {φ}

Let Uext = {u ∈ U | ∃v ∈ Σ̂∗. u = ur · φ · v}
Let UAext = {u · φf | u ∈ Uext ∧ φf ∈ follow(u)}
U := U \ Uext
UA := UA \ UAext
For u ∈ {ur · φ1, ur · φ2}
UA := UA ∪ {u}
For all v ∈ V : Fill(u, v)

Figure 6.2: Pseudocode for the lazy l∗ algorithm (mainly the procedure LearnCE).

by asking a membership query. Then, it asks query for a single extension of ǫ on cluster

T (the L∗ algorithm will instead asks queries on each alphabet element explicitly). Since

ǫ 6≡ T , in order to make the table closed, the algorithm further needs to query on the trace

T · T . Now, it constructs the first hypothesis (Figure 6.3(i)) and asks a candidate query

with it. The teacher replies with a counterexample a ·a, which is then used to partition the

follow set of T into elements a and ā. The table is updated and the algorithm continues

iteratively. The algorithm converges to the final CFA using four candidate queries; the

figure shows the hypotheses CFAs for first, third and last queries. The first three queries

are unsuccessful and return counterexamples a · a (positive), a · b (positive), a · d · c (nega-

tive). The first two counterexamples lead to cluster partitioning (by a and b respectively)

and the third one leads to state partitioning. Note that the algorithm avoids explicitly

enumerating the alphabet set for computing extensions of elements in Σ. Also, note that

the algorithm is insensitive to the size of alphabet set to some extent: if LU is of the form

Σ · (a|b)∗, the algorithm always converges in the same number of iterations since only two

cluster partitions from state q1 need to be made. The drawback of this lazy approach is

107

ǫ
ǫ 0 (q0)
T 1 (q1)

T· T 0

ǫ
ǫ 0 (q0)
T 1 (q1)

T·a 1
T·b 1

T·(a|b) 0

ǫ c
ǫ 0 1 (q0)
T 1 0 (q1)

T·(a|b) 0 0 (q2)
T·a 1 0
T·b 1 0

T·(a|b)· T 0 0

q0

T

T
q1

T

(a|b)
(a|b)q0

q1 T
(a|b)

(a|b)

Tq0 q1 q2

(i) (ii) (iii)

Figure 6.3: Illustration of the l∗ algorithm for LU = (a|b|c|d)(a|b)∗. Rows and column
represent elements of U ∪UA and V respectively. Alphabets are represented symbolically:
T = (a|b|c|d), (a|b) = (c|d).

that it may require more candidate queries as compared to the generalized L∗ in order to

converge. This is because the algorithm is lazy in obtaining information on the extensions

of elements in U and therefore builds candidates using less information, e.g., it needs two

candidate queries to be able to partition the cluster T on both a and b (note that the

corresponding counterexamples a · a and a · b differ only in the last transition). We have

developed a SAT-based method (presented below) that accelerates learning in such cases

by generalizing a counterexample ce to include a set of similar counterexamples (ce′) and

then using ce′ to perform a coarser cluster artition.

Lemma 21 The procedure LearnCE 0 must lead to addition of at least one new state in

the next hypothesis CFA.

Proof. We first show that vi 6∈ V . Suppose vi ∈ V . We know that αi = J[ui]
r · oi · viK = 0

and αi+1 = J[ui · oi]
r · viK = 1. Also there must exist φ ∈ follow([ui]

r) so that oi ∈ φ and

T ([ui]
r · A, vi) = T ([ui · oi]

r, vi) = 1. Therefore, by definition, ∀a ∈ A, J[ui]
r · a · viK = 1.

But, oi ∈ φ and J[ui]
r · oi · viK = 0. Contradiction.

Let ua = ([ui]
r · φ) and u′ = ([[ui]

r · φ]r). Adding vi to V makes ua 6≡ u′ which

were equivalent earlier. Moreover, since u′ must be in U already, both ua and u′ must be

108

inequivalent to all other u ∈ U . Therefore, CloseTable must add ua to U and therefore

MkDFA will add at least one new state in the next hypothesis.

Lemma 22 The procedure LearnCE 1 either leads to addition of at least one new state or

one transition in the next hypothesis CFA.

Proof. If vi 6∈ V , we can argue that at least one state will be added in a way similar to

the previous lemma. If vi ∈ V , then we know that J[ui]
r · oi · viK = 1 and there exists

φ ∈ follow([ui]
r) so that oi ∈ φ and J[ui]

r · φ · viK = 0. In this case, LearnCE 1 splits

the cluster φ into φ1 = φ ∧ oi and φ2 = φ ∧ ¬oi. It follows from definition of J·K that

J[ui]
r · φ1 · viK = 1 and J[ui]

r · φ2 · viK = 0. Hence, φ1 and φ2 must go to different states,

causing addition of at least one transition.

Remark. Although LearnCE 1 may add a transition, the number of states in the next

hypothesis may decrease. This is because partitioning a cluster may also cause a state

partition causing [ui]
r to split into two previously existing states, i.e., the new partitioned

traces may become equivalent to some previously existing elements of U .

Theorem 9 l∗ terminates in O(k · 2n) iterations where k is the alphabet size and n is the

number of states in the minimum deterministic CFA Cm corresponding to LU .

Proof. Consider the prefix tree PT obtained from the prefix-closed set of elements in U .

Note that each node in PT corresponds to a different state (equivalence class) in a hy-

pothesis CFA C. Also, consider computation tree CT obtained by unrolling the transition

structure of Cm. Note that PT of depth d can be embedded into CT where different nodes

in PT at a given depth k (k ≤ d) correspond to different (possibly overlapping) subset

of states in CT at depth k. LearnCE 0 introduces a new node in PT while LearnCE 1

partitions an alphabet cluster outgoing from some node in PT , so that the size of each of

the new clusters is smaller. It is sufficient (with respect to adding and removing states)

to consider an PTf of depth d = 2n since each node in PTf corresponds to (i) an element

u ∈ U where T (u) is unique for each u and also (ii)to a subset of states reachable at depth

109

|u| in Cm. Note that a node may be removed from PT only if an outgoing cluster of one of

its ancestor nodes can be partitioned. Now since LearnCE 1 always partitions some cluster

in the prefix tree into smaller ones, this can happen only k number of times for the nodes

at a given depth in PTf until each transition corresponds to a single alphabet symbol.

Using induction on depth of PTf , it follows that the clusters at all nodes in PTf will be

fully partitioned in at most k · 2n iterations. Therefore, the algorithm will make at most

(k · 2n) calls to LearnCE (or candidate queries) before terminating.

6.4.3 Optimizing l∗

Although the complexity is bad (mainly due to the reason that l∗ may introduce a state

corresponding to each subset of states reachable at a given depth in Cm), our experimental

results show that the algorithm is effective in computing small size assumptions on real-life

examples. Moreover, in context of AGR, we seldom need to learn Cm completely; often,

an approximation obtained at an intermediate learning step is sufficient. We now propose

several optimizations to the basic l∗ algorithm outlined above.

Coarser Cluster partitioning using ce generalization. Recall that ce = ui ·a ·vi+1

where a is a label on X ∪X ′. Let ur = [ui]
r. Cluster partitioning occurs in the LearnCE 1

procedure where Jur ·a·viK = 1 and Jur ·φ·viK = 0. The PartitionTable procedure uses the

symbol a (called the refining predicate) to partition the cluster φ in follow(ur) into φ1 and

φ2. Since a is an alphabet symbol, this leads to a fine-grained partitioning of follow(ur).

Moreover, note that multiple similar counterexamples may cause repeated partitioning of

follow(ur), which may lead to explicit enumeration of Σ in the worst case. For example,

there may be several positive counterexamples of form ui ·a
′ ·vi+1 where a′ ∈ φ and a′ differs

from a only in a few variable assignments. Therefore, we propose a SAT-based technique

that performs a coarser partitioning of φ by first enlarging the refining predicate a to a

new predicate, say, A, and then using A to partition φ.

110

Recall that the value of Jur · a · vi+1K is computed using a BMC instance. Given

a predicate p over X ∪ X ′, let E(p) represent the BMC formula corresponding to the

evaluating Jur · p · vi+1K. We know that the formula E(a) is UNSAT while E(φ) is SAT

(cf. Section 6.3.1). We say that a predicate A is an enlargement of a if a ⇒ A. We

are interested in computing the maximum enlargement A of a so that E(A) is UNSAT.

This is equivalent to solving an All-SAT problem [113] and is computationally expensive

with SAT. Instead, we propose a greedy approach to compute a maximal enlargement of

a by using a variable lifting technique [116] in the following way. Since a may be viewed

as a conjunction of variable assignment constraints, we iteratively remove these variable

assignments to obtain larger enlargements A as long as the formula E(A) remains UNSAT.

The procedure Enlarge shows the pseudocode for this technique. It can be implemented

efficiently using an incremental SAT solver and made efficient by observing the UNSAT

core obtained at each iteration [121].

Enlarge (E, a)

A = a

// A is a set of constraints of form (xi = di)

Loop:

Pick a new constraint xi = di in A; If impossible, return A

A := A \ {(xi = di)}

if (E(A) is SAT)

A := A ∪ {(xi = di)}

Lemma 23 The procedure Enlarge finds a maximal enlargement Am of a when it termi-

nates. Also, Am must partition the cluster φ into two disjoint clusters.

Proof. Note that E(p) can be written as F ∧ p for some formula F . We know that E(a)

is UNSAT and E(φ) is SAT. Enlarge must terminate with at least one constraint in A,

since E(true) is SAT. (E(true) = F ∧ true = F ∧ (φ ∨ ¬φ) = E(φ) ∨ f ′ for some formula

111

f ′). It is clear from the pseudocode that Am computed on termination is maximal.

Since a ⇒ φ and a ⇒ Am, so φ∧Am 6= false. Hence Am must split φ into two disjoint

clusters φ1 = φ ∧ Am and φ2 = φ ∧ ¬Am.

Follow transfer on partitioning. Recall that PartitionTable procedure partitions

the cluster φ in follow set of ur into φ1 and φ2 and removes all extensions Uext of ur.

However, this may lead to loss of information about follow sets of elements of Uext which

may be useful later. We therefore copy the follow set information for each u ∈ Uext (u =

ur · φ · v for some v) to the corresponding partitioned traces, ur · φ1 · v and ur · φ2 · v.

Reusing v ∈ V . In the LearnCE 1 algorithm, it is possible that vi+1 6∈ V . Instead of

eagerly adding vi+1 to set V , we check if some v ∈ V can act as a substitute for vi+1, i.e.,

αi = 1 and αi+1 = 0 with v substituted for vi+1. If we find such v, we use the other case in

LearnCE 1 which performs cluster partitioning. Intuitively, adding an element to V may

cause unnecessary state partitions corresponding to other elements in U , while reusing a

previous element in V will lead to a cluster partition whose effect will be local to ui ·φ and

its successors.

Membership Cache and Counterexample History The results of all membership

queries are stored in a membership cache so that multiple queries on the same trace are

not brought to the Teacher each time, but instead looked up in the cache. We also keep a

counterexample history set, which stores all the counterexamples provided by the Teacher.

Before making a candidate query, we check that the new hypothesis agrees with the un-

known language on all the previous counterexamples in the counterexample history set.

This is useful because of the lazy nature of the algorithm: it may become necessary to

learn again from an older counterexample since the previous learning step only extracted

partial information from it.

112

6.4.4 Another Lazy Learning Algorithm: l∗r

An algorithm for learning parameterized systems was presented in [19]. In such systems,

the alphabet is parameterized, i.e., it consists of a small set of basis symbols, each of which

is parameterized by a set of boolean variables. Note that the alphabet in CFAs can be

viewed as being parameterized by the set of support variables (with a single basis alphabet,

that may be omitted). Although the above algorithm can be adapted to learn CFAs, it

is not efficient in practice because the counterexample analysis is inefficient and it may

also enumerate the exponential alphabet set in the worst case. In this section, we first re-

formulate the algorithm (called l∗r) based on the generalized L∗ presented in Section 6.4.1.

We then describe the details of the learning procedure LearnCE for l∗r . We compare l∗

(Lazy-AGR) with l∗r (P-AGR) in the next section.

Recall that the generalized L∗ algorithm maintains a follow set of alphabet symbols

for each u ∈ Σ∗. In the original L∗ algorithm, the follow set equals Σ for each u, which

ensures that the obtained DFA is complete. In contrast, the l∗r algorithm only keeps a

set of representative alphabet symbols in the follow set for each u. Each of these symbols

in mapped to an alphabet cluster by a cluster mapping function cmap. Each u ∈ U

and a ∈ follow(u) is mapped to the cluster cmap(u, a). In other words, each element

a ∈ follow(u) represents a different outgoing transition cluster cmap(u, a) from the state

[u]. The procedure MkDFA obtains the transition relation as follows: δ([u], cmap(u, a)) =

[u · a] for a ∈ follow(u). Note that if ∪a∈follow(u)(cmap(u, a)) = Σ, then the obtained

deterministic CFA will be complete. Note that the elements of the follow set in l∗ are

alphabet clusters while in l∗r , they are individual alphabet symbols.

The l∗r algorithm learns from a given counterexample (procedure LearnCE) by parti-

tioning a state in the current hypothesis either by adding a distinguishing suffix to the

suffix set V or by adding a new representative element to the follow set for some u ∈ U . In

the latter case, the function cmap is recomputed for u and leads to a cluster partition and

113

may also lead to addition of a new state. Figure 6.4 shows the pseudocode for the LearnCE

procedure in the l∗r algorithm. The procedure finds the representative follow set element

f for the mis-classified transition label oi in the counterexample. Then, it checks if f and

oi belong to the same cluster class by asking membership queries. If they don’t, then a

distinguishing trace vi+1 is added to V and the observation table is updated. Otherwise,

oi has been wrongly classified to the cluster containing f by the cluster mapping function

cmap. Therefore, oi is added to the follow set for ur (that also contains f) and the cor-

responding cmap function is updated. In order to avoid enumerating the alphabet set as

the result of the partitioning, we can use the counterexample generalization optimization

to enlarge oi before partitioning, in a way similar to that presented for the l∗ algorithm.

LearnCE(ce)
Init: ∀u ∈ Σ∗, set follow(u) = {a}, for some fixed a ∈ Σ

Find i so that αi 6= αi+1

Let ce = ui · oi · vi+1

Let ur = [ui]
r, q = [ui] and q′ = [ui · oi]

Suppose RC(q, φ, q′) and oi ∈ φ
Obtain f so that cmap(ur, f) = φ
Let b1 = Jur · oi · vi+1K
Let b2 = Jur · f · vi+1K

if (b1 6= b2) // oi and f can be distinguished by vi+1, add vi+1 to V
V := V ∪ {vi+1}
For all u ∈ U ∪ UA: Fill(u, vi+1)

else // update follow(ur), partition φ cluster
φ1 := φ ∧ oi, φ2 := φ ∧ ¬oi

follow(ur) := follow(ur) ∪ {oi}
cmap(ur, oi) := φ1, cmap(ur, f) = φ2

For all v ∈ V : Fill(ur · oi, v)

Figure 6.4: Pseudocode for the LearnCE procedure in the l∗r algorithm

114

6.5 Implementation and Experiments

We have implemented our SAT-based AGR approach based on NC and C rules in a tool

called Symoda, written in C++. The l∗ algorithm is implemented together with related

optimizations. The input language of the tool is a simple intermediate language (SIL),

which allows specification of a set of concurrent modules which execute synchronously.

Each module may have its internal variables and communicates with other modules using

global variables. Variables are of boolean, enumerated and bit-vector types and sequential

logic are specified in terms of control flow based on guarded commands. Each module may

also have a block of combinational logic in terms of boolean equations. In order to evaluate

our approach, we translate both SMV and Verilog programs into SIL. Translator from

Verilog to SIL is implemented using the ICARUS Verilog parser. Translation from SMV is

done using a python script. The encoding of programs into formula is done as follows. We

translate enumerated types to integers with bound constraints. Bit-vector variables are

”bit-blasted” currently. We check the correctness of the translation by monolithic SAT-

based model checking on the translated models. We use the incremental SMT solver

YICES [3, 55] as the main decision procedure. Interpolants are obtained using the library

interface to the FOCI tool [1]. We represent states of a CFA explicitly while BDDs are

used to represent transitions compactly and avoid redundancy.

Experiments. All experiments were performed on a 1.4GHz AMD machine with 3GB

of memory running Linux. Table 6.5 compares three algorithms for automated AGR: a

BDD-based approach [107, 115] (BDD-AGR), our SAT-based approach using l∗ (Lazy-

AGR) and (P-AGR), which uses a learning algorithm for parameterized systems [19]. The

last algorithm was not presented in context of AGR earlier; we have implemented it using

a SAT-based Teacher and other optimizations for comparison purposes. The BDD-AGR

approach automatically partitions the given model before learning assumptions while we

manually assign each top-level module to a different partition. Benchmarks s1a, s1b,

115

guidance, msi and syncarb are derived from the NuSMV tool set and used in the previous

BDD-based approach [107] while peterson and CC are obtained from the VIS and Texas97

benchmark sets [2]. All examples except guidance and CC can be proved using monolithic

SAT-based UMC in small amount of time. Note that in some of these benchmarks, the

size of the assumption alphabet is too large to be even enumerated in a short amount of

time.

The SAT-based Lazy-AGR approach performs better than the BDD-based approach

on s1a and s2a (cf. Table 6.5); although they are difficult for BDD-based model check-

ing [115], SAT-based UMC quickly verifies them. On the msi example, the Lazy-AGR

approach scales more uniformly compared to BDD-AGR. BDD-AGR is able to compute

an assumption with 67 states on the syncarb benchmark while our SAT-based approaches

with interpolation timeout with assumption sizes of around 30. The bottleneck is SAT-

based UMC in the candidate query checks; the k-induction approach keeps unfolding tran-

sition relations to increasing depths while the interpolants are either large or take too much

time to compute. On the peterson benchmark, BDD-AGR finishes earlier but with larger

assumptions of size up to 34 (for two partitions) and 13 (for four partitions). In contrast,

Lazy-AGR computes assumptions of size up to 6 while P-AGR computes assumptions of

size up to 8. This shows that it is possible to generate much smaller assumptions using

the lazy approach as compared to the eager BDD-based approach. Both the guidance and

syncarb examples require interpolation-based UMC and timeout inside a candidate query

with the k-induction based approach. P-AGR timeouts in many cases where Lazy-AGR

finishes since the former performs state partitions more eagerly and introduces unnecessary

states in the assumptions.

116

Example TV GV T/F BDD-AGR P-AGR Lazy-AGR
NC C NC C NC C

#A Time #A Time #A Time #A Time #A Time #A Time
s1a 86 5 T 2 754 2 223 3 3 3 3 3 3.5 3 1.3
s1b 94 5 T 2 TO 2 1527 3 3.3 3 3.3 3 3.9 3 2
guidance 122 22 T 2 196 2 6.6 1 31.5i 5 146i 1 40i 3 55i

msi(3) 57 22 T 2 2.1 2 0.3 1 8 * TO 1 8 3 17
msi(5) 70 25 T 2 1183 2 32 1 16 * TO 1 15 3 43

syncarb 21 15 T - - 67 30 * TOi * TOi * TOi * TOi

peterson 13 7 T - - 34 2 6 53i 8 210i 6 13 6 88i

CC(2a) 78 30 T - - - - 1 8 * TO 1 8 4 26
CC(3a) 115 44 T - - - - 1 8 * TO 1 7 4 20
CC(2b)i 78 30 T - - - - * TO * TO 10 1878 5 87
CC(3b)i 115 44 T - - - - * TO * TO 6 2037 11 2143

Table 6.1: Comparison of BDD-based and Lazy AGR schemes. P-AGR uses a learning
algorithm for parameterized systems [19] while Lazy-AGR uses l∗. TV and GV represent
the number of total and global boolean variables respectively. All times are in seconds.
TO denotes a timeout of 3600 seconds.#A denotes states of the largest assumption. ’-’
denotes that data could not be obtained due to the lack of tool support (The tool does
not support the NC rule or Verilog programs as input). The superscript i denotes that
interpolant-based UMC was used.

Example T/F with CE Gen w/o CE Gen
s1a T 1.3 1.1
s1b T 2 1.87
s2a F 26 TO
s2b T 36 TO
msi(5) T 43 86
guidance T 55 57
Peterson T 13 175
CC(3b) T 2143 TO

Table 6.2: Effect of the counterexample generalization optimization on the l∗ algorithm.

117

6.6 Conclusions and Related Work

We have presented a new SAT-based approach to automated AGR for shared memory sys-

tems based on lazy learning of assumptions: alphabet explosion during learning is avoided

by representing alphabet clusters symbolically and performing on-demand cluster partition-

ing during learning. Experimental results demonstrate the effectiveness of our approach

on hardware benchmarks. Since we employ an off-the-shelf SMT solver, we can directly

leverage future improvements in SAT/SMT technology. Future work includes investigating

techniques to exploit incremental SAT solving for answering queries for a particular AGR

premise, e.g., since we need to check M ‖ A � P repeatedly for many different assumptions

A, we could add and remove constraints corresponding to A at each iteration while retain-

ing the rest of the constraints corresponding to M and P . Finally, the problem of finding

good system decompositions for allowing small assumptions needs to be investigated. Al-

though presented for the case of finite-state systems, our technique can be extended to

infinite-state systems, where the weakest assumption has a finite bisimulation quotient. It

can also be applied to compositional verification of concurrent software by first obtaining a

finite state abstraction based on a set of predicate variables and then learning assumptions

based on these predicate variables. We also plan to use interpolants to improve coarse

cluster partitioning.

SAT-based bounded model checking for LTL properties was proposed by Biere et al. [21]

and several improvements, including techniques for making it complete have been pro-

posed [9, 113]. All the previous approaches are non-compositional, i.e., they build a mono-

lithic transition relation for the whole system. To the best of our knowledge, our work

in the first to address automated compositional verification in the setting of SAT-based

model checking.

The symbolic BDD-based AGR approach [115] for shared memory systems and its

extension using automated system decomposition [107] is closely related to ours. The

118

technique uses a BDD-based model checker and avoids alphabet explosion by using ea-

ger state-partitioning to introduce all possible new states in the next assumption, and

by computing the transition relation (edges) using BDD-based quantifier elimination. In

contrast, we use a SAT-based model checker and our lazy learning approach does not

require a quantifier elimination step, which is expensive with SAT. Moreover, due to its

eager state-partitioning, the BDD-based approach may introduce unnecessary states in the

assumptions.

Two approaches for improved learning based on alphabet under-approximation and

iterative enlargement [33, 63] have been proposed. Our lazy approach is complementary:

while the above techniques try to reduce the overall alphabet by under-approximation,

our technique tries to compactly represent a large alphabet set symbolically and performs

localized partitioning. In cases where a small alphabet set is not sufficient, the previous

techniques may not be effective. We also note that both the above approaches can be

combined with our approach by removing assumption variables during learning and adding

them back iteratively. A learning algorithm for parameterized systems (alphabet consists

of a small set of basis symbols, each of which is parameterized by a set of boolean variables)

was proposed in [19]. Our lazy learning algorithm is different: we reason about a set of

traces directly using a SAT-based model checker and perform more efficient counterexample

analysis by differentiating positive and negative counterexamples (cf. Section 6.4).

Similar to a lazy approach for CEGAR [80], the lazy learning algorithm localizes the

cluster partitioning to the follow set of a particular state and adds only a single cluster to

the follow sets at each iteration.

119

120

Chapter 7

Checking Deadlock Compositionally

Ensuring deadlock freedom is one of the most critical requirements in the design and

validation of systems. The biggest challenge toward the development of effective deadlock

detection schemes remains the statespace explosion problem. In this chapter, we extend the

learning-based automated assume guarantee paradigm to perform compositional deadlock

detection. We define Failure Automata, a generalization of finite automata that accept

regular failure sets. We develop a learning algorithm LF that constructs the minimal

deterministic failure automaton accepting any unknown regular failure set using a Teacher.

We show how LF can be used for compositional regular failure language containment, and

in particular, deadlock detection, using non-circular and circular assume guarantee rules.

We present an implementation of our techniques and encouraging experimental results on

several non-trivial benchmarks.

7.1 Problem Formulation and Contributions

Recall that the choice of the learning algorithm is dictated by the kind of automaton that

can represent the weakest assumption, which in turn depends on the verification goal. For

example, in the case of trace containment [44] (cf. Chapter 3), weakest assumptions are

121

naturally represented as deterministic finite automata, and this leads to the use of the L∗

learning algorithm. Similarly, in the case of simulation (cf. Chapter 5), the corresponding

choices are deterministic tree automata and the LT learning algorithm.

However, neither of the above two options are appropriate for deadlock detection. Intu-

itively, word (as well as tree) automata are unable to capture failures [82], a critical concept

for understanding, and detecting, deadlocks. Note that it is possible to devise schemes for

transforming any deadlock detection problem to one of ordinary trace containment. How-

ever, such schemes invariably introduce new components and an exponential number of

actions, and are thus not scalable. Our work, therefore, was initiated by the search for

an appropriate automata-theoretic formalism that can handle failures directly. Our over-

all contribution is a deadlock detection algorithm that uses learning-based automated AG

reasoning, and does not require the introduction of additional actions or components.

As we shall see, two key ingredients of our solution are: (i) a new type of acceptors for

regular failure languages with a non-standard accepting condition, and (ii) a notion of par-

allel composition between these acceptors that is consistent with the parallel composition

of the languages accepted by them. The accepting condition we use is novel, and employs

a notion of maximality to crucially avoid the introduction of an exponential number of

new actions. The failure automata can be viewed as an instance of lattice automata [90],

where the state labels are drawn from a lattice. More specifically, we make the following

contributions.

First, we present the theory of regular failure languages (RFLs) which are downward-

closed, and define failure automata that exactly accept the set of regular failure languages.

Although RFLs are closed under union and intersection, they are not closed under com-

plementation, an acceptable price we pay for using the notion of maximality. Further,

we show a Myhill-Nerode-like theorem for RFLs and failure automata. Second, we show

that the failure language of an LTS M is regular and checking deadlock-freedom for M

is a particular instance of the problem of checking containment of RFLs. We present an

122

algorithm for checking containment of RFLs. Note that checking containment of a failure

language L1 by a failure language L2 is not possible in the usual way by complementing

L2 and intersecting with L1 since RFLs are not closed under complementation. Third,

we present a sound and complete non-circular AG rule, called NC, on failure languages

for checking failure language specifications. Given failure languages L1 and LS, we define

the weakest assumption failure language LW : (i) L1 ‖ LW ⊆ LS and (ii) for every LA, if

L1 ‖ LA ⊆ LS, then LA ⊆ LW . We then show, constructively, that if failure languages L1

and L2 are regular, then LW uniquely exists, is also regular, and hence is accepted by a min-

imum failure automaton AW . Fourth, we develop an algorithm LF (pronounced “el-ef”)

to learn the minimum deterministic failure automaton that accepts an unknown regular

failure language U using a Teacher that can answer membership and candidate queries per-

taining to U . We show how the Teacher can be implemented using the RFL containment

algorithm mentioned above. Fifth, we develop an automated and compositional deadlock

detection algorithm that employs NC and LF . We also define a circular AG proof rule

C for deadlock detection and show how it can be used for automated and compositional

deadlock detection. Finally, we have implemented our approach in the ComFoRT [29]

reasoning framework. We present encouraging results on several non-trivial benchmarks,

including an embedded OS, and Linux device drivers.

7.2 Failure Languages and Automata

In this section we present the theory of failure languages and failure automata. We con-

sider a subclass of regular failure languages and provide a lemma relating regular failure

languages and failure automata, analogous to Myhill-Nerode theorem for ordinary regular

languages. We begin with a few standard [118] definitions.

Definition 29 (Labeled Transition System) A labeled transition system (LTS) is a

quadruple (S, Init, Σ, δ) where: (i) S is a set of states, (ii) Init ⊆ S is a set of initial

123

states, (iii) Σ is a set of actions (alphabet), and (iv) δ ⊆ S×Σ×S is a transition relation.

We only consider LTSs such that both S and Σ are finite. We write s
α

−→ s′ to mean

(s, α, s′) ∈ δ. A trace is any finite (possibly empty) sequence of actions, i.e., the set of

all traces is Σ∗. We denote an empty trace by ǫ, a singleton trace 〈α〉 by α, and the

concatenation of two traces t1 and t2 by t1 · t2. For any LTS M = (S, Init, Σ, δ), we define

the function δ̂ : 2S×Σ∗ → 2S as follows: δ̂(X, ǫ) = X and δ̂(X, t·α) = {s′|∃s ∈ δ̂(X, t)�s
α

−→

s′}. M is said to be deterministic if |Init| = 1 and ∀s ∈ S � ∀α ∈ Σ � |δ̂({s}, α)| ≤ 1, and

complete if ∀s ∈ S �∀α ∈ Σ � |δ̂({s}, α)| ≥ 1. Thus if M is both deterministic and complete

then |Init| = 1 and ∀s ∈ S � ∀t ∈ Σ∗ � |δ̂({s}, t)| = 1. In such a case, we write δ̂(s, t) to

mean the only element of δ̂({s}, t).

Definition 30 (Finite Automaton) A finite automaton is a pair (M, F) such that M =

(S, Init, Σ, δ) is an LTS and F ⊆ S is a set of final states.

Let G = (M, F) be a finite automaton. Then G is said to be deterministic (complete)

iff the underlying LTS M is deterministic (complete).

Definition 31 (Refusal) Let M = (S, Init, Σ, δ) be an LTS and s ∈ S be any state of

M . We say that s refuses an action α iff ∀s′ ∈ S � (s, α, s′) 6∈ δ. We say that s refuses a set

of actions R, and denote this by Ref(s, R), iff s refuses every element of R. Note that the

following holds: (i) ∀s � Ref(s, ∅), and (ii) ∀s, R, R′ � Ref(s, R)∧R′ ⊆ R =⇒ Ref(s, R′),

i.e., refusals are downward-closed.

Definition 32 (Failure) Let M = (S, Init, Σ, δ) be an LTS. A pair (t, R) ∈ Σ∗ × 2Σ is

said to be a failure of M iff there exists some s ∈ δ̂(Init, t) such that Ref(s, R). The set

of all failures of an LTS M is denoted by F(M).

Note that a failure consists of both, a trace, and a refusal set. A (possibly infinite)

set of failures L is said to be a failure language. Let us denote 2Σ by Σ̂. Note that

L ⊆ Σ∗ × Σ̂. Union and intersection of failure languages is defined in the usual way. The

complement of L, denoted by L, is defined to be (Σ∗ × Σ̂) \ L. A failure language is said

124

to be downward-closed iff ∀t ∈ Σ∗ � ∀R ∈ Σ̂ � (t, R) ∈ L =⇒ ∀R′ ⊆ R. (t, R′) ∈ L. Note

that in general, failure languages may not be downward closed. However, as we show later,

failure languages generated from LTSs are always downward closed because the refusal sets

at each state of an LTS are downward-closed. In this article, we focus on downward-closed

failure languages, in particular, regular failure languages.

Definition 33 (Deadlock) An LTS M is said to deadlock iff the following holds: F(M)∩

(Σ∗×{Σ}) 6= ∅. In other words, M deadlocks iff it has a reachable state that refuses every

action in its alphabet.

Let us denote the failure language Σ∗ × {Σ} by LDlk. Then, it follows that M is

deadlock-free iff F(M) ⊆ LDlk.

Maximality.. Let P be any subset of Σ̂. Then the set of maximal elements of P is

denoted by M ax(P) and defined as follows: M ax(P) = {R ∈ P | ∀R′ ∈ P � R 6⊂ R′}

For example, if P = {{a}, {b}, {a, b}, {a, c}}, then M ax(P) = {{a, b}, {a, c}}. A subset

P of Σ̂ is said to be maximal iff it is non-empty and M ax(P) = P . Intuitively, failure

automata are finite automata whose final states are labeled with maximal refusal sets.

Thus, a failure (t, R) is accepted by a failure automaton M iff upon receiving input t, M

reaches a final state labeled with a refusal R′ such that R ⊆ R′. Note that the notion

of maximality allows us to concisely represent downward-closed failure languages by using

only the upper bounds of a set (according to subset partial order) to represent the complete

set.

Definition 34 (Failure Automaton) A failure automaton (FLA) is a triple (M, F, µ)

such that M = (S, Init, Σ, δ) is an LTS, F ⊆ S is a set of final states, and µ : F → 2
bΣ is

a mapping from the final states to 2
bΣ such that: ∀s ∈ F � µ(s) 6= ∅ ∧ µ(s) = M ax(µ(s)).

Let A = (M, F, µ) be a FLA. Then A is said to be deterministic (respectively complete)

iff the underlying LTS M is deterministic (respectively complete). Fig. 7.1(a) shows an

LTS over Σ={a, b, c}. Fig. 7.1(b) and (c) show the corresponding FLA and its deterministic

125

a a

cb

a a

cb

a

c
b

(a) (b) (c)

{b, c}

{a, b}

{b, c}

Σ Σ ΣΣ

{a, c} {{a, b}, {a, c}}

Figure 7.1: (a) LTS M on Σ = {a, b, c}, (b) its FLA (c) its deterministic FLA. All states
of FLAs are accepting.

version, respectively.

Definition 35 (Language of a FLA) Let A = (M, F, µ) be a FLA such that M =

(S, Init, Σ, δ). Then a failure (t, R) is accepted by A iff ∃s ∈ F � ∃R′ ∈ µ(s) � s ∈

δ̂(Init, t) ∧ R ⊆ R′. The language of A, denoted by L(A), is the set of all failures ac-

cepted by A.

Every deterministic FLA A can be extended to a complete deterministic FLA A′ such

that L(A′) = L(A) by adding a non-final sink state. In the rest of this article we consider

FLA and languages over a fixed alphabet Σ.

Lemma 24 A language is accepted by a FLA iff it is accepted by a deterministic FLA,

i.e., deterministic FLA have the same accepting power as FLA in general.

Proof 1 By subset construction. Let L be a language accepted by some FLA A = (M, F, µ).

We construct a deterministic FLA A′ = (M ′, F ′, µ′) as follows. The deterministic finite

automaton G′ = (M ′, F ′) is obtained by the standard subset construction from the finite

automaton G = (M, F). For any state s′ of M ′ let us denote by Ψ(s′) the set of states of M

from which s′ was derived by the subset construction. To define µ′ consider any final state

s′ ∈ F ′. We know that Ψ(s′) ∩ F 6= ∅. Let P =
⋃

s∈Ψ(s′)∩F µ(s). Then µ′(s′) = M ax(P).

Let Init and Init′ be the initial states of M and M ′ respectively. Now, to show that

126

L(A′) = L, consider any failure (t, R). Then:

(t, R) ∈ L(A′)

⇐⇒ ∃s′ ∈ δ̂(Init′, t) ∩ F ′ � ∃R′ ∈ µ′(s′) � R ⊆ R′ ⇐⇒

∃s′ ∈ δ̂(Init′, t) ∩ F ′ � ∃s ∈ Ψ(s′) ∩ F � ∃R′ ∈ µ(s) � R ⊆ R′

⇐⇒ ∃s ∈ δ̂(Init, t) ∩ F � ∃R′ ∈ µ(s) � R ⊆ R′

⇐⇒ (t, R) ∈ L(A) = L

Regular Failure Languages (RFLs).. A failure language is said to be regular iff it

is accepted by some FLA. It follows from the definition of FLAs that RFLs are downward

closed. Hence the set of RFLs is closed under union and intersection but not under comple-

mentation1. In addition, every regular failure language is accepted by an unique minimal

deterministic FLA. The following Lemma is analogous to the Myhill-Nerode theorem for

regular languages and ordinary finite automata.

Lemma 25 Every regular failure language(RFL) is accepted by a unique (up to isomor-

phism) minimal deterministic finite failure automaton.

Proof 2 Our proof follows that of the Myhill-Nerode theorem for finite automata. Let L

be any RFL. Let us define an equivalence relation ≡ over Σ∗ as follows:

u ≡ v ⇐⇒ ∀(t, R) ∈ Σ∗ × Σ̂ � (u · t, R) ∈ L ⇐⇒ (v · t, R) ∈ L

For any u ∈ Σ∗, we denote the equivalence class of u by [u]. Let us define a finite automaton

G = (M, F) where M = (S, Init, Σ, δ) such that: (i) S = {[u] | u ∈ Σ∗}, (ii) Init = {[ǫ]},

(iii) ∀u ∈ Σ∗ � ∀α ∈ Σ � [u]
α

−→ [u · α], and (iv) F = {[u] | ∃R ∈ Σ̂ � (u, R) ∈ L}.

1For example, consider Σ = {α} and the RFL L = Σ∗ × {∅}. Then L = Σ∗ × {{α}} is not downward
closed and hence is not an RFL.

127

Also, let us define a function µ as follows. Consider any [u] ∈ F and let P ⊆ Σ̂ be

defined as: P = {R | ∃v � v ≡ u ∧ (v, R) ∈ L}. Note that since [u] ∈ F , P 6= ∅. Then

µ([u]) = M ax(P). Let A be the FLA (M, F, µ).

We first show, by contradiction, that A is deterministic. First, note that |Init| = 1.

Next, suppose that A is non-deterministic. Then there exists two traces u ∈ Σ∗ and v ∈ Σ∗

and an action α ∈ Σ such that u ≡ v but u · α 6≡ v · α. Then there exists a failure

(t, R) such that (u · α · t, R) ∈ L ⇐⇒ (v · α · t, R) 6∈ L. But then there exists a failure

(t′, R) = (α · t, R) such that (u · t′, R) ∈ L ⇐⇒ (v · t′, R) 6∈ L. This implies that u 6≡ v

which is a contradiction.

Next we show that: (C1) for any trace t, δ̂(Init, t) = [t]. The proof proceeds by

induction on the length of t. For the base case, suppose t = ǫ. Then δ̂(Init, t) = Init =

[ǫ]. Now suppose t = t′ · α for some trace t′ and action α. By the inductive hypothesis,

δ̂(Init, t′) = [t′]. Also, from the definition of A we know that [t′]
α

−→ [t′ · α]. Hence

δ̂(Init, t) = δ̂(Init, t′ · α) = [t′ · α] = [t]. This completes the proof.

Now, consider any DFLA A′ = (M ′, F ′, µ′) where M ′ = (S ′, Init′, Σ, δ′) such that

L(A′) = L. Let us define a function Ω : S ′ → S as follows: ∀t ∈ Σ∗ � Ω(δ̂(Init′, t)) =

δ̂(Init, t). First we show that Ω is well-defined. Consider any two traces u and v such that

δ̂(Init′, u) = δ̂(Init′, v). Then for any failure (t, R), A′ accepts (u · t, R) iff it also accepts

(v · t, R). Since A′ accepts L, we find that u ≡ v. Combining this with C1 above we have

δ̂(Init, u) = [u] = [v] = δ̂(Init, v). Therefore, δ̂(Init, u) = δ̂(Init, v) which proves that

Ω is well-defined. In addition, Ω is a surjection since for any state [u] of A we have the

following from C1 above: [u] = δ̂(Init, u) = Ω(δ̂(Init′, u)).

We are now ready to prove the main result. In essence, we show that A is the unique

minimal DFLA that accepts L. We have already shown that A is deterministic. To show

that L(A) = L we observe that for any trace t and any refusal R, (t, R) ∈ L ⇐⇒ [t] ∈

F ∧ ∃R′ ∈ µ([t]) � R ⊆ R′ ⇐⇒ (t, R) ∈ L(A).

Next, recall that Ω defined above is a surjection. Hence A′ must have at least as many

128

states as A. Since A′ is an arbitrary DFLA accepting L, A must be a minimal DFLA that

accepts L. To show that A is unique up to isomorphism, let A′ be another minimal DFLA

accepting L. In this case, Ω must be a bijection. We show that Ω is also an isomorphism.

Let us write Ω−1 to mean the inverse of Ω. Note that Ω−1 is also a bijection, and

more specifically, ∀t ∈ Σ∗ � Ω−1([t]) = Ω−1(δ̂(Init, t)) = δ̂(Init′, t). We will now prove the

following statements: (C2) Ω−1(Init) = Init′, (C3) ∀u ∈ Σ∗ � ∀v ∈ Σ∗ � ∀α ∈ Σ � [u]
α

−→

[v] ⇐⇒ Ω−1([u])
α

−→ Ω−1([v]), (C4) ∀s ∈ S � s ∈ F ⇐⇒ Ω−1(s) ∈ F ′, and (C5)

∀s ∈ F � µ(s) = µ′(Ω−1(s)).

First, C2 holds since Ω−1(Init) = Ω−1(δ̂(Init, ǫ)) = δ̂(Init′, ǫ) = Init′. To prove

C3, suppose that [u]
α

−→ [v]. Since [u] = δ̂(Init, u) we have [v] = δ̂(Init, u · α). Hence

Ω−1([u]) = δ̂(Init′, u) and Ω−1([v]) = δ̂(Init′, u · α). But this implies that Ω−1([u])
α

−→

Ω−1([v]), which proves the forward implication. For the reverse implication suppose that

Ω−1([u])
α

−→ Ω−1([v]). Since Ω−1([u]) = δ̂(Init′, u) we again have Ω−1([v]) = δ̂(Init′, u ·α).

Therefore, [u] = δ̂(Init, u) and [v] = δ̂(Init, u · α), and hence [u]
α

−→ [v].

To prove C4, consider any s ∈ S such that s = [u] = δ̂(Init, u). Hence, Ω−1(s) =

Ω−1([u]) = δ̂(Init′, u). Then s ∈ F ⇐⇒ [u] ∈ F ⇐⇒ ∃R � (u, R) ∈ L ⇐⇒ δ̂(Init′, u) ∈

F ′ ⇐⇒ Ω−1(s) ∈ F ′. Finally, we prove C5 by contradiction. Suppose that there exists

s = [u] ∈ F such that µ(s) 6= µ′(Ω−1(s)). Without loss of generality, we can always pick

a refusal R such that ∃R′ ∈ µ(s) � R ⊆ R′ and ∀R′ ∈ µ′(Ω−1(s)) � R 6⊆ R′. Now we also

know that s = δ̂(Init, u) and Ω−1(s) = δ̂(Init′, u). Therefore (u, R) ∈ L(A) \ L(A′), which

implies that L(A) = L 6= L = L(A′), a contradiction.

Note that for any LTS M , F(M) is regular2. Indeed, the failure automaton correspond-

ing to M = (S, Init, Σ, δ) is A = (M, S, µ) such that ∀s ∈ S �µ(s) = M ax({R | Ref(s, R)}).

2However, there exists RFLs that do not correspond to any LTS. In particular, any failure language
L corresponding to some LTS must satisfy the following condition: ∃R ⊆ Σ � (ǫ, R) ∈ L. Thus, the RFL
{(α, ∅)} does not correspond to any LTS.

129

7.3 Assume-Guarantee Reasoning for Deadlock

We now present an assume-guarantee (cf. Chapter 3) proof rule for deadlock detection for

systems composed of two components. We use the notion of parallel composition proposed

in the theory of CSP [82] and define it formally.

Definition 36 (LTS Parallel Composition) Consider LTSs M1 = (S1, Init1, Σ1, δ1)

and M2 = (S2, Init2, Σ2, δ2). Then the parallel composition of M1 and M2, denoted by

M1 ∐M2, is the LTS (S1 × S2, Init1 × Init2, Σ1 ∪ Σ2, δ), such that ((s1, s2), α, (s′1, s
′
2)) ∈ δ

iff the following holds: ∀i ∈ {1, 2} � (α ∈ Σi ∧ (si, α, s′i) ∈ δi) ∨ (α 6∈ Σi ∧ si = s′i).

Without loss of generality, we assume that both M1 and M2 have the same alphabet Σ.

Indeed, any system with two components having different alphabets, say Σ1 and Σ2, can be

converted to a bisimilar (and hence deadlock equivalent) system [42] with two components

each having the same alphabet Σ1 ∪ Σ2. Thus, all languages and automata we consider

in the rest of this article will also be over the same alphabet Σ. We now extend the

notion of parallel composition to failure languages. Observe that the composition involves

set-intersection on the trace part and set-union on the refusal part of failures.

Definition 37 (Failure Language Composition) The parallel composition of any two

failure languages L1 and L2, denoted by L1 ‖ L2, is defined as follows: L1 ‖ L2 = {(t, R1 ∪

R2) | (t, R1) ∈ L1 ∧ (t, R2) ∈ L2}.

Lemma 26 For any failure languages L1, L2, L
′
1 and L′

2, the following holds: (L1 ⊆ L′
1)∧

(L2 ⊆ L′
2) =⇒ (L1 ‖ L2) ⊆ (L′

1 ‖ L′
2).

Proof 3 Let (t, R) be any failure in (L1 ‖ L2). Then there exists refusals R1 and R2 such

that: (A) R = R1 ∪ R2, (B) (t, R1) ∈ L1 and (C) (t, R2) ∈ L2. From (B), (C) and the

premise of the lemma we have: (D) (t, R1) ∈ L′
1 and (E) (t, R2) ∈ L′

2. But then from

(A), (D), (E) and Definition 37 we have (t, R) ∈ (L′
1 ‖ L′

2), which completes the proof.

Definition 38 (FLA Parallel Composition) Consider two FLAs A1 = (M1, F1, µ1)

130

and A2 = (M2, F2, µ2). The parallel composition of A1 and A2, denoted by A1 ∐ A2
3,

is defined as the FLA (M1 ∐ M2, F1 × F2, µ) such that µ(s1, s2) = M ax({R1 ∪ R2 | R1 ∈

µ1(s1) ∧ R2 ∈ µ2(s2)}).

Note that we have used different notation (∐ and ‖ respectively) to denote the par-

allel composition of automata and languages. Let M1, M2 be LTSs and A1, A2 be FLAs.

Then the following two lemmas bridge the concepts of composition between automata and

languages.

Lemma 27 F(M1 ∐ M2) = F(M1) ‖ F(M2).

Proof 4 For any LTSs M1 and M2 over the same alphabet Σ, it can be proved that:

F(M1 ∐ M2) =

{(t, R1 ∪ R2) | (t, R1) ∈ F(M1) ∧ (t, R2) ∈ F(M2)}

The lemma then follows from the above fact and Definition 37.

Lemma 28 L(A1 ∐ A2) = L(A1) ‖ L(A2).

Proof 5 Let A1 = (M1, F1, µ1) and A2 = (M2, F2, µ2) where M1 = (S1, Init1, Σ, δ1) and

M2 = (S2, Init2, Σ, δ2). Then we know that A1 ∐ A2 = (M1 ∐ M2, F1 × F2, µ). Let (t, R)

be any element of L(A1 ∐ A2). Then, we know that:

∃(s1, s2) ∈ δ̂(Init1 × Init2, t) ∩ F1 × F2�

∃R′ ∈ µ(s1, s2) � R ⊆ R′

From the definition of µ we find that:

∃R1 ∈ µ1(s1) � ∃R2 ∈ µ2(s2) � R ⊆ R1 ∪ R2

3We overload the operator ∐ to denote parallel composition in the context of both LTSs and FLAs.
The actual meaning of the operator will be clear from the context.

131

Therefore, (t, R1) ∈ L(A1), (t, R2) ∈ L(A2), and (t, R) ∈ L(A1) ‖ L(A2). This proves that

L(A1 ∐ A2) ⊆ L(A1) ‖ L(A2). Now let (t, R) be any element of L(A1) ‖ L(A2). Then we

know that:

∃s1 ∈ δ̂(Init1, t) ∩ F1 � ∃s2 ∈ δ̂(Init2, t) ∩ F2�

∃R1 ∈ µ1(s1) � ∃R2 ∈ µ2(s2) � R ⊆ R1 ∪ R2

Therefore, (s1, s2) ∈ δ̂(Init1 × Init2, t) ∩ F1 × F2 and ∃R′ ∈ µ(s1, s2) � R ⊆ R′. Hence

(t, R) ∈ L(A1 ∐A2). This show that L(A1) ‖ L(A2) ⊆ L(A1 ∐A2) and completes the proof.

Regular Failure Language Containment (RFLC).. We develop a general com-

positional framework for checking regular failure language containment. This framework

is also applicable to deadlock detection since, as we illustrate later, deadlock freedom is

a form of RFLC. Recall that regular failure languages are not closed under complementa-

tion and hence, given RFLs L1 and L2, it is not possible to verify L1 ⊆ L2 in the usual

manner, by checking if L1 ∩L2 = ∅. However, as is shown by the following crucial lemma,

it is possible to check containment between RFLs using their representations in terms of

deterministic FLA, without having to complement the automaton corresponding to L2.

Lemma 29 Consider any FLA A1 and A2. Let A′
1 = (M1, F1, µ1) and A′

2 = (M2, F2, µ2)

be the FLA obtained by determinizing A1 and A2 respectively, and let M1 = (S1, Init1, Σ, δ1)

and M2 = (S2, Init2, Σ, δ2). Then L(A1) ⊆ L(A2) iff for every reachable state (s1, s2) of

M1 ∐ M2 the following condition holds: s1 ∈ F1 =⇒ (s2 ∈ F2 ∧ (∀R1 ∈ µ1(s1) � ∃R2 ∈

µ2(s2) � R1 ⊆ R2)).

Proof 6 First, we note that L(A1) = L(A′
1) and L(A2) = L(A′

2). Now let M1 =

(S1, Init1, Σ, δ1) and M2 = (S2, Init2, Σ, δ2). For the forward implication, we prove the

contrapositive. Suppose that there exists a reachable state (s1, s2) of M1 ∐ M2 such that

s1 ∈ F1 and either s2 6∈ F2 or ∃R1 ∈ µ1(s1) � ∀R2 ∈ µ2(s2) � R1 6⊆ R2. Since M1 and

M2 are deterministic, let t ∈ Σ∗ be a trace such that (s1, s2) = δ̂(Init1 × Init2, t). Now

132

we choose a refusal R as follows. If s2 6∈ F2 then let R be any element of µ1(s1). Oth-

erwise let R be some R1 ∈ µ1(s1) such that ∀R2 ∈ µ2(s2) � R1 6⊆ R2. Now it follows that

(t, R) ∈ L(A′
1) \ L(A′

2). Hence L(A′
1) 6⊆ L(A′

2) and therefore L(A1) 6⊆ L(A2).

For the reverse implication we also prove the contrapositive. Suppose L(A1) 6⊆ L(A2)

and let (t, R) be any element of L(A1) \ L(A2) = L(A′
1) \ L(A′

2). Let s1 = δ̂(Init1, t)

and s2 = δ̂(Init2, t). But then we know that ∃R1 ∈ µ1(s1) � R ⊆ R1 and either s2 6∈ F2

or ∀R2 ∈ µ2(s2) � R 6⊆ R2. However, this implies that s1 ∈ F1 and either s2 6∈ F2 or

∃R1 ∈ µ1(s1) �∀R2 ∈ µ2(s2) �R1 6⊆ R2. In addition (s1, s2) is a reachable state of M1 ∐M2.

This completes the proof.

In other words, we can check if L(A1) ⊆ L(A2) by determinizing A1 and A2, constructing

the product of the underlying LTSs and checking if the condition in Lemma 29 holds on

every reachable state of the product. The condition essentially says that for every reachable

state (s1, s2), if s1 is final, then s2 is also final and each refusal R1 labeling s1 is contained

in some refusal R2 labeling s2.

Now suppose that L(A1) is obtained by composing two RFLs L1 and L2, i.e., L(A1) =

L1 ‖ L2 and let L(A2) = LS, the specification language. In order to check RFLC between

L1 ‖ L2 and LS, the approach presented in lemma 29 will require us to directly compose

L1, L2 and LS, a potentially expensive computation. In the following, we first show that

checking deadlock-freedom is a particular case of RFLC and then present a compositional

technique to check RFLC (and hence deadlock-freedom) that avoids composing L1 and L2

(or their FLA representations) directly.

Deadlock as Regular Failure Language Containment.. Given three RFLs L1,

L2 and LS , we can use our regular language containment algorithm to verify whether

(L1 ‖ L2) ⊆ LS. If this is the case, then our algorithm returns true. Otherwise it returns

false along with a counterexample CE ∈ (L1 ‖ L2) \ LS. Also, we assume that L1,

L2 and LS are represented as FLA. To use our algorithm for deadlock detection, recall

133

that for any two LTSs M1 and M2, M1 ∐ M2 is deadlock free iff F(M1 ∐ M2) ⊆ LDlk.

Let L1 = F(M1), L2 = F(M2) and LS = LDlk. Using Lemma 27, the above deadlock

check reduces to verifying if L1 ‖ L2 ⊆ LS . Observe that we can use our RFLC algorithm

provided L1, L2 and LS are regular. Recall that since M1 and M2 are LTSs, L1 and L2 are

regular. Also, LDlk is regular since it is accepted by the failure automaton A = (M, F, µ)

such that: (i) M = ({s}, {s}, Σ, δ), (ii) δ = {s
α

−→ s | α ∈ Σ}, (iii) F = {s}, and (iv)

µ(s) = M ax({R | R ⊂ Σ}). For instance, if Σ = {a, b, c} then µ(s) = {{a, b}, {b, c}, {c, a}}.

Thus, deadlock detection is just a specific instance of RFLC.

Suppose we are given three RFLs L1, L2 and LS in the form of their accepting FLA A1,

A2 and AS. To check L1 ‖ L2 ⊆ LS, we can construct the FLA A1 ∐ A2 (cf. Lemma 38)

and then check if L(A1 ∐ A2) ⊆ L(AS) (cf. Lemma 28 and 29). The problem with this

naive approach is statespace explosion. In order to alleviate this problem, we present a

compositional language containment scheme based on AG-style reasoning.

7.3.1 A Non-circular AG Rule

Consider RFLs L1, L2 and LS. We are interested in checking whether L1 ‖ L2 ⊆ LS. In

this context, the following non-circular AG proof rule, which we call NC, is both sound

and complete:

L1 ‖ LA ⊆ LS L2 ⊆ LA

L1 ‖ L2 ⊆ LS

Proof 7 The completeness of NC follows from the fact that if the conclusion holds, then

L2 can be used as LA to discharge the two premises. To prove soundness, let us assume

that the two premises hold. Then from the second premise and Lemma 26, we have L1 ‖

L2 ⊆ L1 ‖ LA. Combining this with the first premise we get L1 ‖ L2 ⊆ LS which is the

desired conclusion.

134

In principle, NC enables us to prove L1 ‖ L2 ⊆ LS by discovering an assumption LA

that discharges its two premises. In practice, it leaves us with two critical problems. First,

it provides no effective method for constructing an appropriate assumption LA. Second,

if no appropriate assumption exists, i.e., if the conclusion of NC does not hold, then NC

does not help in obtaining a counterexample to L1 ‖ L2 ⊆ LS.

In this chapter, we develop and employ a learning algorithm that solves both the above

problems. More specifically, our algorithm learns automatically, and incrementally, the

weakest assumption LW that can discharge the first premise of NC. During this process, it is

guaranteed to reach, in a finite number of steps, one of the following two situations, and thus

always terminate with the correct result: (1) It discovers an assumption that can discharge

both premises of NC, and terminates with true. (2) It discovers a counterexample CE

to L1 ‖ L2 ⊆ LS, and returns false along with CE.

7.3.2 Weakest Assumption

Consider the proof rule NC. For any L1 and LS, let L̂ be the set of all languages that

can discharge the first premise of NC. In other words, L̂ = {LA | (L1 ‖ LA) ⊆ LS}. The

following central theorem asserts that L̂ contains a unique weakest (maximal) element LW

that is also regular. This result is crucial for showing the termination of our approach.

Theorem 10 Let L1 and LS be any RFLs and f is a failure. Let us define a language LW

as follows: LW = {f | (L1 ‖ {f}) ⊆ LS}. Then the following holds: (i) L1 ‖ LW ⊆ LS ,

(ii) ∀L � L1 ‖ L ⊆ LS ⇐⇒ L ⊆ LW , and (iii) LW is regular.

Proof 8 We first prove (i) by contradiction. Suppose there exists (t, R1) ∈ L1 and (t, R2) ∈

LW such that (t, R1 ∪ R2) 6∈ LS. But then (t, R1 ∪ R2) ∈ L1 ‖ {(t, R2)} which means

L1 ‖ {(t, R2)} 6⊆ LS . However, this contradicts (t, R2) ∈ LW .

Now, we only prove the forward implication of (ii). The reverse implication follows from

(i) and Lemma 26. This proof is also by contradiction. Suppose there exists a language L

135

such that L1 ‖ L ⊆ LS and L 6⊆ LW . Then there exists some (t, R2) ∈ L \ LW . But since

(t, R2) 6∈ LW , there exists (t, R1) ∈ L1 such that (t, R1 ∪ R2) 6∈ LS. However, this means

that (t, R1 ∪ R2) ∈ L1 ‖ L which contradicts L1 ‖ L ⊆ LS.

Finally, to prove that LW is regular we construct a FLA AW such that L(AW) = LW .

Let A1 = (M1, F1, µ1) and AS = (MS, FS, µS) be deterministic and complete FLA accepting

L1 and LS respectively such that M1 = (S1, Init1, Σ, δ1) and MS = (SS, InitS, Σ, δS). Then

AW = (M1 ∐ MS, FW , µW). In order to define the set of final states FW and the labeling

function µW of AW we define the extended labeling function µ̂ : S → 2
bΣ of any FLA as

follows: µ̂(s) = µ(s) if s is a final state and ∅ otherwise. Then the extended labeling

function µ̂ of AW is defined as follows:

µ̂(s1, sS) =

{R ∈ Σ̂ | ∀R1 ∈ µ̂(s1) � ∃RS ∈ µ̂(sS) � (R1 ∪ R) ⊆ RS}

Note that the set µ̂(s1, sS) is always downward closed. In other words:

∀R ∈ Σ̂ � ∀R′ ∈ Σ̂ � R ∈ µ̂(s1, sS) ∧ R′ ⊆ R =⇒ R′ ∈ µ̂(s1, sS)

Then the definitions of FW and µW follow naturally as below:

FW = {(s1, sS) | µ̂(s1, sS) 6= ∅}

∀(s1, sS) ∈ FW � µW (s1, sS) = M ax(µ̂(s1, sS))

Note that since A1 and AS are both deterministic and complete, so is AW . Also, for

any state (s1, sS) of AW and any t ∈ Σ∗, we have δ̂((s1, sS), t) = (δ̂(s1, t), δ̂(sS, t)). We

now prove that L(AW) = LW . Consider any failure (t, R) ∈ (Σ∗ × Σ̂). Let (s1, sS) =

δ̂((Init1, InitS), t). We consider two sub-cases.

136

Case 1 [(t, R) ∈ L(AW)].. Then we know that R ∈ µ̂(s1, sS). Now consider the

language L = L1 ‖ {(t, R)}. By Definition 37, any element of L must be of the form

(t, R1 ∪ R) for some R1 ∈ µ̂(s1). Also, from the definition of µ̂ above we have ∃RS ∈

µ̂(sS) � (R1∪R) ⊆ RS. Hence (t, R1 ∪R) ∈ LS. Since (t, R1 ∪R) is an arbitrary element of

L we conclude that L ⊆ LS. Hence, from the definition of LW above we have (t, R) ∈ LW

which completes the proof of this sub-case.

Case 2 [(t, R) 6∈ L(AW)].. In this case R 6∈ µ̂(s1, sS). Then, from the definition of µ̂

above we have ∃R1 ∈ µ̂(s1) � ∀RS ∈ µ̂(sS) � (R1 ∪ R) 6⊆ RS. Now consider the language

L = L1 ‖ {(t, R)}. By Definition 37, (t, R1∪R) ∈ L. But from ∀RS ∈ µ̂(sS)�(R1∪R) 6⊆ RS,

we have (t, R1 ∪ R) 6∈ LS. Hence L 6⊆ LS. Thus, from the definition of LW above we have

(t, R) 6∈ LW , which completes the proof of this sub-case and of the entire theorem.

Now that we have proved that the weakest environment assumption LW is regular, we

can apply a learning algorithm to iteratively construct a FLA assumption that accepts

LW . In particular, we develop a learning algorithm LF that iteratively learns the minimal

DFLA corresponding to LW by asking queries about LW to a Teacher and learning from

them. In the next section, we present LF . Subsequently, in Section 7.5, we describe how LF

is used in our compositional language containment procedure. A reader who is interested

in the overall compositional deadlock detection algorithm more than the intricacies of LF

may skip directly to Section 7.5 at this point.

7.4 Learning FLA

In this section we present an algorithm LF to learn the minimal FLA that accepts an

unknown RFL U . Our algorithm will use a Teacher that can answer two kinds of queries

regarding U : (1) Membership query: Given a failure e the Teacher returns true

if e ∈ U and false otherwise. (2) Candidate query: Given a deterministic FLA

C, the Teacher returns true if L(C) = U . Otherwise it returns false along with a

137

counterexample failure CE ∈ (L(C) \ U)
⋃

(U \ L(C)).

Observation Table.. LF uses an observation table to record the information it

obtains by querying the Teacher. The rows and columns of the table correspond to specific

traces and failures respectively. Formally, a table is a triple (T, E, R) where: (i) T ⊆ Σ∗ is

a set of traces, (ii) E ⊆ Σ∗ × Σ̂ is a set of failures or experiments, and (iii) R is a function

from T̂ × E to {0, 1} where T̂ = T ∪ (T · Σ).

For any table T = (T, E, R), the function R is defined as follows: ∀t ∈ T̂ �∀e = (t′, R) ∈

E, R(t, e) = 1 iff (t · t′, R) ∈ U . Thus, given T and E, algorithm LF can compute R via

membership queries to the Teacher. For any t ∈ T̂, we write R(t) to mean the function

from E to {0, 1} defined as follows: ∀e ∈ E � R(t)(e) = R(t, e).

An observation table T = (T, E, R) is said to be well-formed iff: ∀t1 ∈ T �∀t2 ∈ T � t1 6=

t2 =⇒ R(t1) 6= R(t2). Essentially, this means that any two distinct rows t1 and t2 of a

well-formed table can be distinguished by some experiment e ∈ E. This also imposes an

upper-bound on the number of rows of any well-formed table, as expressed by the following

lemma.

Lemma 30 Let n be the number of states of the minimal DFLA accepting U and let

T = (T, E, R) be any well-formed observation table. Then |T| ≤ n.

Proof 9 The proof is by contradiction. Suppose that |T| > n. Let the minimal DFLA

accepting U be A. Then there exists two distinct traces t1 and t2 in T such that δ̂(Init, t1) =

δ̂(Init, t2). In other words, the FLA A reaches the same state on input t1 and t2. But since

T is well-formed, there exists some failure e = (t, p) ∈ E such that R(t1, e) 6= R(t2, e). In

other words, (t1 · t, p) ∈ U iff (t2 · t, p) 6∈ U . This is impossible since A would reach the

same state on inputs t1 · t and t2 · t.

Closed observation table.. An observation table T = (T, E, R) is said to be closed

iff it satisfies the following: ∀t ∈ T �∀α ∈ Σ �∃t′ ∈ T �R(t ·α) = R(t′). Intuitively, this means

that if we extend any trace t ∈ T by any action α then the result is indistinguishable from

138

Input: Well-formed observation table T = (T, E, R)
while T is not closed do

pick t ∈ T and α ∈ Σ such that ∀t′ ∈ T � R(t · α) 6= R(t′)
add t · α to T and update R accordingly

return T

Figure 7.2: Algorithm MakeClosed extends an input well-formed table T so that the
resulting table is both well-formed and closed.

an existing trace t′ ∈ T by the current set of experiments E. Note that any well-formed

table can be extended so that it is both well-formed and closed. This can be achieved by the

algorithm MakeClosed shown in Figure 7.2. Observe that at every step of MakeClosed,

the table T remains well-formed and hence, by Lemma 30, cannot grow infinitely. Also

note that restricting the occurrence of refusals to E allows us to avoid considering the

exponential possible refusal extensions of a trace while closing the table. Exponential

number of membership queries will only be required if all possible refusals occur in E.

Overall LF algorithm.. Algorithm LF is iterative. It initially starts with a table

T = (T, E, R) such that T = {ǫ} and E = ∅. Note that the initial table is well-formed.

Subsequently, in each iteration LF performs the following steps:

1. Make T closed by invoking MakeClosed.

2. Construct candidate DFLA C from T and make candidate query with C.

3. If the answer is true, LF terminates with C as the final answer.

4. Otherwise LF uses the counterexample CE to the candidate query to add a single

new failure to E and repeats from step 1.

In each iteration, LF either terminates with the correct answer (step 3) or adds a new

failure to E (step 4). In the latter scenario, the new failure to be added is constructed in a

way that guarantees an upper bound on the total number of iterations of LF . This, in turn,

ensures its ultimate termination. We now present the procedures for: (i) constructing a

candidate DFLA C from a closed and well-formed table T (used in step 2 above), and (ii)

139

adding a new failure to E based on a counterexample to a candidate query (step 4).

Candidate construction. Let T = (T, E, R) be a closed and well-formed observation

table. The candidate DFLA C is constructed from T as follows: C = (M, F, µ) and M =

(S, Init, Σ, δ) such that: (i) S = T, (ii) Init = {ǫ}, (iii) δ = {t
α

−→ t′ | R(t · α) = R(t′)},

(iv) F = {t | ∃e = (ǫ, R) ∈ E � R(t, e) = 1}, and (v) µ(t) = M ax({R | R(t, (ǫ, R)) = 1}).

Adding new failures. Let C = (M, F, µ) be a candidate DFLA such that M =

(S, Init, Σ, δ). Let CE = (t, R) be a counterexample to a candidate query made with C.

In other words, CE ∈ L(C) ⇐⇒ CE 6∈ U . The algorithm ExpGen adds a single new

failure to T as follows. Let t = α1 · . . . ·αk. For 0 ≤ i ≤ k, let ti be the prefix of t of length

i and ti be the suffix of t of length k − i. In other words, for 0 ≤ i ≤ k, we have ti · t
i = t.

Additionally, for 0 ≤ i ≤ k, let si be the state of C reached by executing ti. In other

words, si = δ̂(ti). Since the candidate C was constructed from an observation table T , it

corresponds to a row of T , which in turn corresponds to a trace. Let us also refer to this

trace as si. Finally, let bi = 1 if the failure (si · t
i, R) ∈ U and 0 otherwise. Note that we

can compute bi by evaluating si and then making a membership query with (si · t
i, R). In

particular, s0 = ǫ, and hence b0 = 1 if CE ∈ U and 0 otherwise. We now consider two

cases.

Case 1: [b0 = 0] This means CE 6∈ U and hence CE ∈ L(C). Recall that CE = (t, R)

and t = α1 · . . . · αk. Consider the state sk = δ̂(t) as described above. Since CE ∈ L(C)

we know that sk ∈ F and ∃R′ ∈ µ(sk) � R ⊆ R′.

Also, since C was constructed (cf. Section 7.4) from a table T = (T, E, R) we know

that (ǫ, R′) ∈ E and R(sk, R
′) = 1. However, this means that the failure (sk, R

′) ∈ U .

Since R ⊆ R′, it follows that (sk, R) ∈ U and therefore bk = 1. Since b0 = 0 and bk = 1,

there exists an index j ∈ {0, . . . , k} such that bj = 0 and bj+1 = 1. In this case, LF finds

such an index j and adds the failure (tj+1, R) to E.

We now show that the failure e = (tj+1, R) has a special property.

Since C contained a transition sj

αj+1

−→ sj+1, it must be the case that R(sj · αj+1) =

140

R(sj+1). However, R(sj · αj+1, e) = bj 6= bj+1 = R(sj+1, e). Thus, after adding e to E,

the table is no longer closed. Hence when LF attempts to make T closed in the very next

iteration, it will be forced to increase the number of rows of T by at least one.

Case 2: [b0 = 1] This means CE ∈ U and hence CE 6∈ L(C). We consider two

sub-cases. First, suppose that bk = 0. Then there exists an index j ∈ {0, . . . , k} such that

bj = 1 and bj+1 = 0. In this case, LF finds such an index j and adds the failure (tj+1, R) to

E. As in case 1 above, this guarantees that the number of rows of T must strictly increase

in the next iteration of LF .

Otherwise, we have bk = 1. But this means that the failure (sk, R) ∈ U . However, since

CE 6∈ L(C) we know that either sk is not a final state of C or ∀R′ ∈ µ(sk) �R 6⊆ R′. In this

scenario, LF computes a maximal element Rmax such that R ⊆ Rmax and (sk, Rmax) ∈ U .

It then adds the failure (ǫ, Rmax) to E.

The addition of (ǫ, Rmax) to E must lead to at least one of two consequences in the next

iteration of LF in terms of the next computed candidate DFLA. First, the number of rows

of T , and hence the number of states of the candidate, may increase. Otherwise, either

the state sk changes from a non-final to a final state, or the set µ(sk) gets an additional

element, viz., Rmax.

Relationship between LF and L∗.. Although LF and L∗ are very similar in

their overall structure, there are a number of differences. Firstly, since LF learns a failure

automaton, the columns of the observation table store failures instead of traces as in L∗.

Secondly, when LF learns from a counterexample, every iteration may not involve increase

in number of states; instead, the failure label on one or more states may be enlarged.

Correctness of LF .. Algorithm LF always returns the correct answer in step 3 since

it always does so after a successful candidate query. To see that LF always terminates,

observe that in every iteration, the candidate C computed by LF undergoes at least one

of the following three changes:

141

• (Ch1) The number of states of C, and hence the number of rows of the observation

table T , increases.

• (Ch2) The states and transitions of C remain unchanged but a state of C that was

previously non-final becomes final.

• (Ch3) The states, transitions and final states of C remain unchanged but for some

final state s of C, the size of µ(s) increases.

Of the above changes, Ch1 can happen at most n times where n is the number of

states of the minimal DFLA accepting U . Between any two consecutive occurrences of

Ch1, there can only be a finite number of occurrences of Ch2 and Ch3. Hence there can

only be a finite number of iterations of LF . Therefore, LF always terminates.

Number of iterations.. To analyze the complexity of LF we have to impose a tighter

bound on the number of iterations. We already know that Ch1 can happen at most n

times. Since a final state can never become non-final, Ch2 can also occur at most n times.

Now let the minimal DFLA accepting U be A = (M, F, µ) such that M = (S, Init, Σ, δ).

Consider the set P =
⋃

s∈F µ(s) and let n′ = |P |. Since each Ch3 adds an element to

µ(s) for some s ∈ F , the total number of occurrences of Ch3 is at most n′. Therefore the

maximum number of iterations of LF is 2n + n′ = O(n + n′).

Time complexity.. Let us make the standard assumption that each Teacher query

takes O(1) time. From the above discussion we see that the number of columns of the

observation table is at most O(n + n′). The number of rows is at most O(n). Let us

assume that the size of Σ is a constant. Then the number of membership queries, and

hence time, needed to fill up the table is O(n(n + n′)).

Let m be the length of the longest counterexample returned by a candidate query.

Then to add each new failure, we have to make O(log(m)) membership queries to find

the appropriate index j. Also, let the time required to find the maximal element Rmax be

O(m′). Then total time required for constructing each new failure is O((n + n′)(log(m) +

142

m′)). Finally, the number of candidate queries equals the number of iterations and hence

is O(n + n′). Thus, in summary, we find that the time complexity of LF is O((n + n′)(n +

log(m) + m′)), which is polynomial in n, n′, m and m′.

Space complexity.. Let us again make the standard assumption that each Teacher

query takes O(1) space. Since the queries are made sequentially, total space requirement

for all of them is still O(1). Also, the procedure for constructing a new failure can be

performed in O(1) space. A trace corresponding to a table row can be O(n) long and there

are O(n) of them. A failure corresponding to a table column can be O(m) long and there

are O(n + n′) of them. Space required to store the table elements is O(n(n + n′)). Hence

total space required for the observation table is O((n+m)(n+n′)). Space required to store

computed candidates is O(n2). Therefore, the total space complexity is O((n+m)(n+n′))

which is also polynomial in n, n′ and m.

7.5 Compositional Language Containment

Given RFLs L1, L2 and LS (in the form of FLA that accept them) we want to check whether

L1 ‖ L2 ⊆ LS. If not, we also want to generate a counterexamples CE ∈ (L1 ‖ L2)\LS. To

this end, we invoke the LF algorithm to learn the weakest environment corresponding to L1

and LS. We present an implementation strategy for the Teacher to answer the membership

and candidate queries posed by LF . In the following we assume that A1, A2 and AS are

the given FLAs such that L(A1) = L1, L(A2) = L2 and L(AS) = LS.

Membership Query.. The answer to a membership query with failure e = (t, R)

is true if the following condition (which can be effectively decided) holds and false

otherwise: ∀(t, R1) ∈ L1 � (t, R1 ∪ R) ∈ LS.

Candidate Query.. A candidate query with a failure automaton C is answered

step-wise as follows:

1. Check if L(A1 ∐C) ⊆ L(AS). If not, let (t, R1 ∪R) be the counterexample obtained.

143

Note that (t, R) ∈ L(C) \U . We return false to LF along with the counterexample

(t, R). If L(A1 ∐ C) ⊆ L(AS), we proceed to step 2.

2. Check if L(A2) ⊆ L(C). If so, we have obtained an assumption, viz., L(C), that

discharges both premises of NC. In this case, the overall language containment algo-

rithm terminates with true. Otherwise let (t′, R′) be the counterexample obtained.

We proceed to step 3.

3. We check if there exists (t′, R′
1) ∈ L(A1) such that (t′, R′

1 ∪ R′) 6∈ L(AS). If so, then

(t′, R′
1 ∪ R′) ∈ L(A1 ∐ A2) \ L(AS) and the overall language containment algorithm

terminates with false and the counterexample (t′, R′
1 ∪ R′). Otherwise (t′, R′) ∈

U \ L(C) and we return false to LF along with the counterexample (t′, R′).

Note that in the above we are never required to compose A1 with A2. In practice, the

candidate C (that we compose with A1 in step 1 of the candidate query) is much smaller

than A2. Thus we are able to alleviate the statespace explosion problem. Also, note that

our procedure will ultimately terminate with the correct result from either step 2 or 3 of

the candidate query. This follows from the correctness of LF algorithm: in the worst case,

the candidate query will be made with a FLA C such that L(C) = LW . In this scenario,

termination is guaranteed to occur due to Theorem 10.

7.6 Arbitrary Components and Circularity

We investigated two approaches for handling more than two components. First, we applied

NC recursively. This can be demonstrated for languages L1, L2, L3 and LS by the following

proof-rule.

L1 ‖ L1
A ⊆ LS

L2 ‖ L2
A ⊆ L1

A L3 ⊆ L2
A

L2 ‖ L3 ⊆ L1
A

L1 ‖ L2 ‖ L3 ⊆ LS

144

Exp LOC C St No Deadlock
Plain NC C

T M T M A T M A

MC 7272 2 2874 - * 308 903 5 307 903 6
MC 7272 3 2874 - * 766 1155 11 459 1155 12
MC 7272 4 2874 - * * 1453 - 716 1453 24

ide 18905 3 672 571 * 338 50 11 62 47 12
ide 18905 4 716 972 * * 63 - 195 55 24

ide 18905 5 760 1082 * * 84 - 639 85 48

syn 17262 4 117 733 * 1547 19 21 58 21 24
syn 17262 5 127 713 * * 19 - 224 47 48

syn 17262 6 137 767 * * 27 - 1815 189 96

mx 15717 3 1995 1154 * 2079 140 11 639 123 12
mx 15717 4 2058 1545 * - 168 - 713 139 24
mx 15717 5 2121 1660 * - 179 - 2131 185 48

tg3 36774 3 1653 971 * 1568 118 11 406 111 12
tg3 36774 4 1673 927 * - 149 - 486 131 24
tg3 36774 5 1693 1086 * - 158 - 1338 165 48
tg3 36774 6 1713 1252 * - 157 - 3406 313 96

IPC 818 3 302 195 α 703 338 49 478 355 49

DP 82 6 30 274 * 100 330 11 286 414 9

DP 109 8 30 302 * 1551 565 11 * 1474 -

Exp LOC C St Deadlock
Plain NC C

T M T M A T M A

MC 7272 2 2874 372 β 386 980 13 313 979 16
MC 7272 3 2874 - - - - - - - -
MC 7272 4 2874 - - - - - - - -

ide 18905 3 672 755 * * 80 - 557 551 125

ide 18905 4 716 978 * * 84 - 2913 * -
ide 18905 5 760 1082 * * 89 - * 498 -

syn 17262 4 117 864 * 127 181 2 133 181 6
syn 17262 5 127 1088 * 844 * - 867 * -
syn 17262 6 137 - * 1188 * - - * -

mx 15717 3 1995 1182 * 657 364 2 630 364 5
mx 15717 4 2058 1309 * 1627 * - 1206 * -
mx 15717 5 2121 - * 3368 * - 2276 * -

tg3 36774 3 1653 894 * 486 393 2 499 393 5
tg3 36774 4 1673 1096 * 1036 * - 1037 * -
tg3 36774 5 1693 - * 2186 * - 1668 * -
tg3 36774 6 1713 1278 * * - - 1954 * -

Table 7.1: Experimental results for AGR for checking deadlock. C = # of components;
St = # of states of largest component; T = time (seconds); M = memory (MB); A = #
of states of largest assumption; * = resource exhaustion; - = data unavailable; α = 1247;
β = 1708. Best figures are highlighted.

145

At the top-level, we apply NC on the two languages L1 and L2 ‖ L3. Now the second

premise becomes L2 ‖ L3 ⊆ L1
A and we can again apply NC. In terms of the implementation

of the Teacher, the only difference is in step 2 of the candidate query (cf. Section 7.5).

More specifically, we now invoke the language containment procedure recursively with

L(A2), L(A3) and L(C) instead of checking directly for L(A2) ⊆ L(C). This technique can

be extended to any finite number of components.

7.6.1 Circular AG Rule

We also explored a circular AG rule. Unlike NC however, the circular rule is specific to

deadlock detection and not applicable to language containment in general. For any RFL

L let us write W (L) to denote the weakest assumption against which L does not deadlock.

In other words, ∀L′ � L ‖ L′ ⊆ LDlk ⇐⇒ L′ ⊆ W (L). It can be shown that: (PROP)

∀t ∈ Σ∗ � ∀R ∈ Σ̂ � (t, R) ∈ L ⇐⇒ (t, Σ \ R) 6∈ W (L). The following theorem provides a

circular AG rule for deadlock detection.

Theorem 11 Consider any two RFLs L1 and L2. Then the following proof rule, which

we call C, is both sound and complete.

L1 ‖ L1
A ⊆ LDlk L2 ‖ L2

A ⊆ LDlk

W (L1
A) ‖ W (L2

A) ⊆ LDlk

L1 ‖ L2 ⊆ LDlk

Proof 10 We first prove soundness by contradiction. Assume that three premises hold but

the conclusion does not. Then there exists a trace t and a refusal R such that (t, R) ∈ L1

and (t, Σ \ R) ∈ L2. From the first premise we see that (t, Σ \ R) 6∈ L1
A. Similarly,

from the second premise we get (t, R) 6∈ L2
A. Therefore, we have (t, R) ∈ W (L1

A) and

(t, Σ \ R) ∈ W (L2
A). But then (t, Σ) ∈ W (L1

A) ‖ W (L2
A) which contradicts the third

premise.

146

We now prove completeness. Let us assume the conclusion. We show that if we set L1
A =

W (L1) and L2
A = W (L2), then all three premises are satisfied. The first two premises follow

from the very definition of W (L1) and W (L2). We prove the third premise by contradiction.

Suppose that there exists a trace t and a refusal R such that (t, R) ∈ W (W (L1)) and

(t, Σ \ R) ∈ W (W (L2)). But then we know that (t, Σ \ R) 6∈ W (L1) and (t, R) 6∈ W (L2).

But this means that (t, R) ∈ L1 and (t, Σ\R) ∈ L2 which implies that (t, Σ) ∈ L1 ‖ L2 and

contradicts the conclusion.

Implementation.. To use this rule for deadlock detection for two components L1 and

L2 we use the following iterative procedure:

1. Using the first premise, construct a candidate C1 similar to Step 1 of the candidate

query in NC (cf. Section 7.5). Similarly, using the second premise, construct another

candidate C2. Construction of C1 and C2 proceeds exactly as in the case of NC.

2. Check if W (L(C1)) ‖ W (L(C2)) ⊆ LDlk. This is done either directly or via a compo-

sitional language containment using NC. We compute the automata for W (L(C1))

and W (L(C2)) using the procedure described in the proof of Theorem 10. If the check

succeeds then there is no deadlock in L1 ‖ L2 and we exit successfully. Otherwise,

we proceed to Step 3.

3. From the counterexample obtained above construct t ∈ Σ∗ and R ∈ Σ̂ be such that

(t, R) ∈ W (L(C1)) and (t, Σ\R) ∈ W (L(C2)). Check if (t, R) ∈ L1 and (t, Σ\R) ∈ L2.

If both these checks pass then we have a counterexample t to the overall deadlock

detection problem and therefore we terminate unsuccessfully. Otherwise, without

loss of generality, suppose (t, R) 6∈ L1. But then, from PROP, (t, Σ \ R) ∈ W (L1).

Again from PROP, since (t, R) ∈ W (L(C1)), (t, Σ \ R) 6∈ L(C1). This is equivalent

to a failed candidate query for C1 with counterexample (t, Σ\R), and we repeat from

Step 1 above.

147

Note that even though we have presented C in the context of only two components, it

generalizes to an arbitrary, but finite, number of components.

7.7 Experimental Validation

We implemented our algorithms in the ComFoRT [29] reasoning framework and exper-

imented with a set of real-life examples. All our experiments were done on a 2.4 GHz

Pentium 4 machine running RedHat 9 and with time limit of 1 hour and a memory limit

of 2 GB. Our results are summarized in Table 7.1. The MC benchmarks are derived

from Micro-C version 2.70, a lightweight OS for real-time embedded applications. The

IPC benchmark is based on an inter-process communication library used by an industrial

robot controller software. The ide, syn, mx and tg3 examples are based on Linux device

drivers. Finally, DP is a synthetic benchmark based on the well-known dining philosophers

example.

For each example, we obtained a set of benchmarks by increasing the number of compo-

nents. For each such benchmark, we tested a version without deadlock, and another with

an artificially introduced deadlock. In all cases, deadlock was caused by incorrect synchro-

nization between components – the only difference was in the synchronization mechanism.

Specifically, the dining philosophers synchronized using “forks”. In all other examples,

synchronization was achieved via a shared “lock”.

For each benchmark, a finite LTS model was constructed via a predicate abstraction [29]

that transformed the synchronization behavior into appropriate actions. For example, in

the case of the ide benchmark, calls to the spin lock and spin unlock functions were

transformed into lock and unlock actions respectively. Note that this makes sense because,

for instance, multiple threads executing the driver for a specific device will acquire and

release a common lock specific to that device by invoking spin lock and spin unlock

respectively.

148

For each abstraction, appropriate predicates were supplied externally so that the result-

ing models would be precise enough to display the presence or absence of deadlock. In ad-

dition, care was taken to ensure that the abstractions were sound with respect to deadlocks,

i.e., the extra behavior introduced did not eliminate any deadlock in the concrete system.

Each benchmark was verified using explicit brute-force statespace exploration (referred to

in Table 7.1 as “Plain”), the non-circular AG rule (referred as NC), and the circular AG

rule (referred as C). When using C, Step 2 (i.e., checking if W (L(C1)) ‖ W (L(C2)) ⊆ LDlk)

was done via compositional language containment using NC.

We observe that the AG-based methods outperform the naive approach for most of the

benchmarks. More importantly, for each benchmark, the growth in memory consumption

with increasing number of components is benign for both AG-based approaches. This in-

dicates that AG reasoning is effective in combating statespace explosion even for deadlock

detection. We also note that larger assumptions (and hence time and memory) are required

for detecting deadlocks as opposed to detecting deadlock freedom. Among the AG-based

approaches, C is in general faster than NC but (on a few occasions) consumes negligible

extra memory. In several cases, NC runs out of time while C is able to terminate suc-

cessfully. Overall, whenever NC and C differ significantly in any real-life example, C is

superior.

7.8 Conclusions and Related Work

In this chapter, we presented a learning-based automated assume guarantee paradigm for

deadlock detection. We have defined a new kind of automata that are similar to finite

automata but accept failures instead of traces. We have also developed an algorithm, LF ,

that learns the minimal failure automata accepting an unknown regular failure language

using a Teacher. We have shown how LF can be used for compositional deadlock detection

using both circular and non-circular assume-guarantee rules. Finally, we have implemented

149

our technique and have obtained encouraging experimental results on several non-trivial

benchmarks.

Overkamp has explored synthesis of supervisory controller for discrete-event sys-

tems [110] based on failure semantics [82]. His notion of the least restrictive supervisor that

guarantees deadlock-free behavior is similar to the weakest failure assumption in our case.

However, our approach differs from his as follows: (i) we use failure automata to represent

failure traces, (ii) we use learning to compute the weakest failure assumption automati-

cally, and (iii) our focus is on checking deadlocks in software modules. Williams et al. [128]

investigate an approach based on static analysis for detecting deadlocks that can be caused

by incorrect lock manipulation by Java libraries, and also provide an excellent survey of

related research. The problem of detecting deadlocks for pushdown programs communi-

cating only via nested locking has been investigated by Kahlon et al. [89]. In contrast,

we present a model checking based framework to compositionally verify deadlock freedom

for non-recursive programs with arbitrary lock-based or rendezvous communication. Other

non-compositional techniques for detecting deadlock have been investigated in context of

partial-order reduction [83] and for checking refinement of CCS processes, using a more

discriminative (than failure trace refinement) notion called stuck-free conformance [61].

Brookes and Roscoe [25] use the failure model to show the absence of deadlock in undi-

rectional networks. They also generalize the approach to the class of conflict-free networks

via decomposition and local deadlock analysis. In contrast, we provide a completely auto-

mated framework for detecting deadlocks in arbitrary networks of asynchronous systems

using rendezvous communication. Our formalism is based on an automata-theoretic rep-

resentation of failure traces. Moreover, in order to analyze the deadlock-freedom of a set

of concurrent programs compositionally, we use both circular and non-circular assume-

guarantee rules.

150

Chapter 8

Conclusions and Future Directions

Compositional reasoning methods have been of limited use in practice due to lack of au-

tomation. In this thesis, we have presented an automated assume-guarantee reasoning

(AGR) framework for verifying both hardware and software systems which utilizes ma-

chine learning algorithms for finite state models together with model checking algorithms.

We have instantiated this framework for both asynchronously executing software systems

with rendezvous communcation and synchronous hardware systems with shared memory

based communication. Compositional techniques for checking both simulation and dead-

lock on finite state systems were presented. Finally, we proposed a method to scale the

above framework based on SAT-based model checking and lazy learning algorithms.

The automated AGR framework has been put to use in solving the pervasive compo-

nent substitutability problem for hardware and software systems. Our solution consists

of two parts: the containment check involves the simultaneous use of over- and under-

approximation of the upgraded components, while the compatibility check uses an in-

cremental AGR technique to check substitutability. The compatibility check focuses on

re-validating safety properties with respect to the notion of trace-containment. Since the

check is based on the automated AGR framework and the learning algorithm L∗, it can be

extended to checking other kinds of properties, i.e., simulation and deadlock, based on the

151

algorithms developed in this thesis.

The use of machine learning algorithms for computing environment assumptions auto-

matically has made automated compositional reasoning feasible, and to a certain extent,

scalable. However, there are a number of interesting open problems to be solved for scaling

the technique to industrial size models. Automated techniques for decomposing systems

for efficient AGR need to be investigated. An initial approach has been proposed by Nam

and Alur [107] based on using hypergraph partitioning algorithms. In the AGR framework

for the generalized rule NC, we observed that the order of components in the instantiation

of the rule has a significant impact on the algorithm run times. Therefore, the problem of

ordering of system decompositions in the non-circular rule needs investigation.

Another important research direction is towards making the AGR framework scale to

industrial size systems. In particular, we believe that AGR will be effective for systems

whose components are loosely-coupled, i.e., there is a weak correlation or inter-dependency

between the local variables of different components. It may be possible to improve the

framework by exploiting the fact that the components are loosely-coupled. We think that

a formal characterization of the inter-dependency between system components needs to be

developed.

A large number of useful specifications are of the form something good must happen

eventually. Formally, they are known as liveness specifications and and useful for specify-

ing behaviors of non-terminating systems. Extending the automated AGR framework to

checking liveness properties is a non-trivial problem. The main issue is that we need to

develop a learning algorithm for the set of ω-regular languages. Recall that the algorithm

L∗ relies on the characterization of the regular languages in terms of Nerode congruence:

the states in the DFA accepting a regular language L are isomorphic to the Nerode con-

gruence classes of L. Unfortunately, the congruence-based characterization of ω-regular

languages are non-trivial and do not have this isomorphism property with respect to ω-

automata, e.g., Müller or Büchi automata. Hence, developing a learning algorithm for the

152

set of ω-regular languages is a difficult task and needs investigation. Another interesting

problem is to learn models with respect to the notion of bisimulation minimization [42].

In contrast to learning regular languages in form of a deterministic finite automata, the

bisimulation-based approach may lead to smaller models as a product of learning.

153

154

Bibliography

[1] Foci: An interpolating prover. http://www.kenmcmil.com/foci.html. 6.5

[2] The vis home page. http://vlsi.coloradu.edu/ vis/. 6.5

[3] Yices: An SMT Solver. http://yices.csl.sri.com/. 6.2.3, 6.5

[4] Concurrency verification: introduction to compositional and noncompositional meth-

ods. Cambridge University Press, New York, NY, USA, 2001. ISBN 0-521-80608-9.

3.5

[5] abb-site. ABB Inc. http://www.abb.com. 4.5

[6] R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interface specifications

for java classes. In Symp. on Principles Of Programming Languages (POPL), 2005.

2.5.2

[7] Rajeev Alur, Luca de Alfaro, Thomas A. Henzinger, and Freddy Y. C. Mang. Au-

tomating modular verification. In International Conference on Concurrency Theory,

pages 82–97, 1999. 3.5.2

[8] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K.

Rajamani, and Serdar Tasiran. Mocha: Modularity in model checking. In CAV,

pages 521–525, 1998. 3.5.2

[9] Nina Amla, Xiaoqun Du, Andreas Kuehlmann, Robert P. Kurshan, and Kenneth L.

McMillan. An analysis of sat-based model checking techniques in an industrial envi-

155

ronment. In CHARME, pages 254–268, 2005. 6.2.3, 6.6

[10] Nina Amla, E. Allen Emerson, Kedar S. Namjoshi, and Richard J. Trefler. Abstract

patterns of compositional reasoning. In CONCUR, pages 423–438, 2003. 3.5.2

[11] G. Ammons, R. Bodik, and J.R. Larus. Mining specifications. ACM SIGPLAN

Notices, 37(1):4–16, 2002. 2.5.2

[12] Dana Angluin. Learning regular sets from queries and counterexamples. In Infor-

mation and Computation, volume 75(2), pages 87–106, November 1987. 2.2, 2.3, 1,

3.3

[13] Dana Angluin and Carl H. Smith. Inductive inference: Theory and methods. ACM

Comput. Surv., 15(3):237–269, 1983. 2.1

[14] Roy Armoni, Limor Fix, Ranan Fraer, Scott Huddleston, Nir Piterman, and Moshe Y.

Vardi. Sat-based induction for temporal safety properties. Electr. Notes Theor.

Comput. Sci., 119(2):3–16, 2005. 6.2.3

[15] Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. Au-

tomatic predicate abstraction of C programs. In Proceedings of the ACM SIGPLAN

2001 Conference on Programming Language Design and Implementation (PLDI ’01),

volume 36(5) of SIGPLAN Notices, pages 203–213. ACM Press, June 2001. ISBN

1-58113-414-2. 1, 4.3

[16] Thomas Ball and Sriram K. Rajamani. Generating abstract explanations of spuri-

ous counterexamples in C programs. Technical report MSR-TR-2002-09, Microsoft

Research, Redmond, Washington, USA, January 2002. 2.5.1

[17] H. Barringer, D. Giannakopoulou, and C.S Păsăreănu. Proof rules for automated

compositional verification. In 2nd Workshop on Specification and Verification of

Component-Based Systems, ESEC/FSE 2003. 3.2, 3.2, 3.4, 3.5.2

[18] Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, and Joseph Sifakis. Property

156

preserving simulations. In CAV ’92: Proceedings of the Fourth International Work-

shop on Computer Aided Verification, pages 260–273, London, UK, 1993. Springer-

Verlag. ISBN 3-540-56496-9. 3.5.1

[19] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for state ma-

chines with parameters. In FASE, pages 107–121, 2006. 6.4.4, 6.5, 6.1, 6.6

[20] Marc Bernard and Colin de la Higuera. Gift: Grammatical inference for terms. In

International Conference on Inductive Logic Programming, 1999. 2.5, 5.5

[21] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Y. Zue.

Bounded Model Checking, volume 58 of Advances in computers. Academic Press,

2003. 6.2.3, 6.2.3, 6.6

[22] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Yhu. Symbolic

model checking without BDDs. In Rance Cleaveland, editor, Proceedings of the 5th

International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS ’99), volume 1579 of Lecture Notes in Computer Science, pages

193–207. Springer-Verlag, March 1999. ISBN 3-540-65703-7. 1

[23] Colin Blundell, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Assume-

guarantee testing. In 4th Workshop on Spec. and Ver. of Component-based Systems,

FSE, 2005. 3.5.2

[24] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Ziyad

Hanna, Zurab Khasidashvili, Amit Palti, and Roberto Sebastiani. Encoding rtl con-

structs for mathsat: a preliminary report. Electr. Notes Theor. Comput. Sci., 144

(2):3–14, 2006. 6.2.3

[25] Stephen D. Brookes and A. W. Roscoe. Deadlock analysis in networks of communi-

cating processes. Distributed Computing, 4:209–230, 1991. 7.8

[26] Randal E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE

157

Trans. Computers, 35(8):677–691, 1986. 1

[27] Rafael C. Carrasco, Jos Oncina, and Jorge Calera-Rubio. Stochastic inference of

regular tree languages. In ICGI ’98: Proceedings of the 4th International Colloquium

on Grammatical Inference, pages 187–198. Springer-Verlag, 1998. ISBN 3-540-64776-

7. 2.5

[28] S. Chaki, E. Clarke, D. Giannakopoulou, and C. S. Păsăreănu. Abstraction and

assume-guarantee reasoning for automated software verification. Technical Report

05.02, Research Institute for Advanced Computer Science (RIACS), 2004. 2.5.2

[29] S. Chaki, J. Ivers, N. Sharygina, and K. Wallnau. The ComFoRT reasoning frame-

work. In Proc. of CAV, pages 164–169, 2005. 7.1, 7.7

[30] Sagar Chaki, Edmund Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman, and

Karen Yorav. Efficient verification of sequential and concurrent C programs. Formal

Methods in System Design (FMSD), 25(2–3):129–166, September – November 2004.

4.3, 5.4

[31] Sagar Chaki, Edmund Clarke, Natasha Sharygina, and Nishant Sinha. Dynamic

component substitutability analysis. In Proc. of Conf. on Formal Methods, 2005.

3.5.2

[32] Sagar Chaki, Edmund Clarke, Nishant Sinha, and Prasanna Thati. Automated

assume-guarantee reasoning for simulation conformance. In Proc. of 17th Int. Conf.

on Computer Aided Verification, 2005. 3.5.2

[33] Sagar Chaki and Ofer Strichman. Optimized L* for assume-guarantee reasoning. In

TACAS, 2007. 3.5.2, 6.6

[34] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, Marcin Jurdzinski,

and Freddy Y.C. Mang. Interface compatibility checking for software modules. In

CAV. LNCS 2404, 2002. 4.6

158

[35] Shing-Chi Cheung and Jeff Kramer. Context constraints for compositional reacha-

bility analysis. ACM Trans. Softw. Eng. Methodol., 5(4):334–377, 1996. 3.5.1

[36] Shing-Chi Cheung and Jeff Kramer. Checking safety properties using compositional

reachability analysis. ACM Trans. Softw. Eng. Methodol., 8(1):49–78, 1999. 3.5.1

[37] Edmund Clarke and Allen Emerson. Synthesis of synchronization skeletons for

branching time temporal logic. In Dexter Kozen, editor, Proceedings of Workshop on

Logic of Programs, volume 131 of Lecture Notes in Computer Science, pages 52–71.

Springer-Verlag, May 1981. ISBN 3-540-11212-X. 1

[38] Edmund Clarke, David Long, and Kenneth McMillan. Compositional model check-

ing. In Proceedings of the 4th Annual IEEE Symposium on Logic in Computer Science

(LICS ’89), pages 353–362. IEEE Computer Society Press, June 1989. 3.5.1

[39] Edmund M. Clarke, O. Grumberg, and David E. Long. Model checking and abstrac-

tion. ACM Transactions on Programming Languages and System (TOPLAS), 16(5):

1512–1542, September 1994. ISSN 0164-0925. 1, 3.5.1, 4.3, 4.3

[40] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In E. Allen Emerson and A. Prasad

Sistla, editors, Proceedings of the 12th International Conference on Computer Aided

Verification (CAV ’00), volume 1855 of Lecture Notes in Computer Science, pages

154–169. Springer-Verlag, July 2000. ISBN 3-540-67770-4. 1

[41] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking. Journal

of the ACM (JACM), 50(5):752–794, September 2003. 2.5.1

[42] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press,

Cambridge, MA, 2000. 1, 3.5.1, 7.3, 8

[43] J. M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning as-

159

sumptions for compositional verification. In Hubert Garavel and John Hatcliff, edi-

tors, Proceedings of the 9th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS ’03), volume 2619 of Lecture Notes in

Computer Science, pages 331–346. Springer-Verlag, April 2003. ISBN 3-540-00898-5.

3, 3.2, 4.4.2

[44] J. M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Learning as-

sumptions for compositional verification. In Hubert Garavel and John Hatcliff, edi-

tors, Proceedings of the 9th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS ’03), volume 2619 of Lecture Notes in

Computer Science, pages 331–346. Springer-Verlag, April 2003. ISBN 3-540-00898-5.

1.1, 3.4, 3.5.2, 7.1

[45] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking up is hard

to do: an investigation of decomposition for assume-guarantee reasoning. In ISSTA,

pages 97–108, 2006. 3.5.2

[46] Ariel Cohen and Kedar Namjoshi. Local proofs for global safety properties. In CAV,

2007. 3.5.2

[47] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi. Tree Automata Techniques and Applications, chapter 1. 2002. available

at http://www.grappa.univ-lille3.fr/tata/. 1, 5.1

[48] Dennis Dams, Orna Grumberg, and Rob Gerth. Generation of reduced models for

checking fragments of ctl. In CAV ’93: Proceedings of the 5th International Confer-

ence on Computer Aided Verification, pages 479–490, London, UK, 1993. Springer-

Verlag. 3.5.1

[49] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In FSE, 2001. 4.6

[50] Colin de la Higuera. A bibliographical study of grammatical inference. Pattern

160

Recognition, 38(9):1332–1348, 2005. 2.2, 2.5

[51] Willem P. de Roever, Hans Langmaack, and Amir Pnueli, editors. Compositionality:

The Significant Difference, International Symposium, COMPOS’97, Bad Malente,

Germany, September 8-12, 1997. Revised Lectures, volume 1536 of Lecture Notes in

Computer Science, 1998. Springer. 3.5

[52] Edsger Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. 4.3

[53] Frank Drewes and Johanna Hogberg. Learning a regular tree language. In LNCS

2710, pp. 279–291, Proc. Developments in Language Theory (DLT) ’03. 5.5

[54] Pierre Dupont. Incremental regular inference. In ICGI, pages 222–237, 1996. 2.5

[55] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for DPLL(T).

In CAV, pages 81–94, 2006. 6.5

[56] Niklas Eén and Niklas Sörensson. Temporal induction by incremental sat solving.

Electr. Notes Theor. Comput. Sci., 89(4), 2003. 6.2.3, 6.2.3

[57] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. Dynamically discovering

likely program invariants to support program evolution. In International Conference

on Software Engineering (ICSE’99), pages 213–224, 1999. 2.5.2

[58] Cormac Flanagan, Stephen N. Freund, and Shaz Qadeer. Thread-modular verifica-

tion for shared-memory programs. In European Symposium on Programming, pages

262–277, 2002. 3.5.2

[59] Cormac Flanagan, Stephen N. Freund, Shaz Qadeer, and Sanjit A. Seshia. Modular

verification of multithreaded programs. Theor. Comput. Sci., 338(1-3):153–183, 2005.

3.5.2

[60] Cormac Flanagan and Shaz Qadeer. Thread-modular model checking. In SPIN,

pages 213–224, 2003. 3.5.2

[61] Cédric Fournet, C. A. R. Hoare, Sriram K. Rajamani, and Jakob Rehof. Stuck-free

161

conformance. In CAV, pages 242–254, 2004. 7.8

[62] P. Garca and J. Oncina. Inference of recognizable tree sets. Technical report

dsic ii/47/1993, Departamento de Sistemas Informticos y Computacin, Universidad

Politcnica de Valencia, 1993. 2.5, 5.5

[63] Mihaela Gheorghiu, Dimitra Giannakopoulou, and Corina S. Păsăreanu. Refining

interface alphabets for compositional verification. In TACAS, 2007. 3.5.2, 6.6

[64] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer. Assumption

generation for software component verification. In Proceedings of the ASE, 2002.

ISBN 0-7695-1736-6. 3.5.2

[65] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer. Component

verification with automatically generated assumptions. Autom. Softw. Eng., 12(3):

297–320, 2005. 3.5.2

[66] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Jamieson M. Cobleigh. Assume-

guarantee verification of source code with design-level assumptions. In ICSE, pages

211–220, 2004. 3.5.2

[67] E. Mark Gold. Language identification in the limit. Information and Control, 10(5):

447–474, May 1967. 2.1, 2.5

[68] E. Mark Gold. Complexity of automaton identification from given data. Information

and Control, 37(3):302–320, June 1978. 2.5

[69] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with PVS. In

Orna Grumberg, editor, Proceedings of the 9th International Conference on Computer

Aided Verification (CAV ’97), volume 1254 of Lecture Notes in Computer Science,

pages 72–83. Springer-Verlag, June 1997. ISBN 3-540-63166-6. 1, 4.3

[70] Susanne Graf and Bernhard Steffen. Compositional minimization of finite state sys-

tems. In CAV ’90: Proceedings of the 2nd International Workshop on Computer

162

Aided Verification, pages 186–196, London, UK, 1991. Springer-Verlag. ISBN 3-540-

54477-1. 3.5.1

[71] Susanne Graf, Bernhard Steffen, and Gerald Lüttgen. Compositional minimisation

of finite state systems using interface specifications. Formal Asp. Comput., 8(5):

607–616, 1996. 3.5.1

[72] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive model checking. In

Tools and Algorithms for Construction and Analysis of Systems, pages 357–370, 2002.

2.5.2, 1

[73] Orna Grumberg and David E. Long. Model checking and modular verification. ACM

Trans. Program. Lang. Syst., 16(3):843–871, 1994. 1

[74] Anubhav Gupta, Ken McMillan, and Zhaohui Fu. Automated assumption generation

for compositional verification. In CAV, 2007. 3.5.2

[75] Arie Gurfinkel, Ou Wei, and Marsha Chechik. Yasm: A software model-checker for

verification and refutation. In CAV, pages 170–174, 2006. 4.3, 4.3, 4.5

[76] P. Habermehl and T. Vojnar. Regular model checking using inference of regular

languages. In Proceddings of INFINITY’04, 2004. 2.5.2

[77] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Race checking by context

inference. SIGPLAN Not., 39(6):1–13, 2004. ISSN 0362-1340. 3.5.2

[78] Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. Permissive interfaces.

In ESEC/FSE-13: Proceedings of the 10th European software engineering conference

held jointly with 13th ACM SIGSOFT international symposium on Foundations of

software engineering, pages 31–40, New York, NY, USA, 2005. ACM Press. ISBN

1-59593-014-0. 2.5.2

[79] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Shaz Qadeer. Thread-

modular abstraction refinement. In Warren A. Hunt Jr. and Fabio Somenzi, edi-

163

tors, Proceedings of the 15th International Conference on Computer Aided Verifica-

tion (CAV ’03), volume 2725 of Lecture Notes in Computer Science, pages 262–274.

Springer-Verlag, July 2003. ISBN 3-540-40524-0. 3.5.2

[80] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre. Lazy

abstraction. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Langauges (POPL ’02), volume 37(1) of SIGPLAN No-

tices, pages 58–70. ACM Press, January 2002. ISBN 1-58113-450-9. 4.3, 6.6

[81] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You assume, we

guarantee: Methodology and case studies. In CAV, pages 440–451, 1998. 3.5.2

[82] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, London, 1985.

1.1, 3.4, 3.5.2, 7.1, 7.3, 7.8

[83] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley, 2003. 7.8

[84] JE Hopcroft and JD Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading, Massachusetts, 1979. 1, 2.3, 2.4, 2.5.1

[85] James Ivers and Natasha Sharygina. Overview of ComFoRT: A model checking

reasoning framework. CMU/SEI-2004-TN-018, 2004. 4.1, 4.5, 5.5

[86] Ralph D. Jeffords and Constance L. Heitmeyer. A strategy for efficiently verifying re-

quirements. In ESEC/FSE-11: Proceedings of the 9th European software engineering

conference, with FSE, pages 28–37, New York, NY, USA, 2003. ACM Press. ISBN

1-58113-743-5. 3.5.2

[87] Ranjit Jhala and Kenneth L. McMillan. Microarchitecture verification by composi-

tional model checking. In CAV, pages 396–410, 2001. 3.5.2

[88] Cliff B. Jones. Tentative steps toward a development method for interfering programs.

ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983. 1, 3, 3.5.2

164

[89] V. Kahlon, F. Ivancic, and A. Gupta. Reasoning about threads communicating via

locks. In Proc. of CAV, pages 505–518, 2005. 7.8

[90] O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th International Confer-

ence on Verification, Model Checking, and Abstract Interpretation, volume 4349 of

Lecture Notes in Computer Science, pages 199 – 213. Springer-Verlag, 2007. 7.1

[91] Robert P. Kurshan. Computer-aided verification of coordinating processes: the

automata-theoretic approach. Princeton University Press, 1994. ISBN 0-691-03436-2.

1, 2.5.1

[92] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM

Trans. Program. Lang. Syst., 16(6):1811–1841, 1994. ISSN 0164-0925. 4.6

[93] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Saddek Ben-

salem. Property preserving abstractions for the verification of concurrent systems.

Formal Methods in System Design, 6(1):11–44, 1995. 3.5.1

[94] Patrick Maier. A set-theoretic framework for assume-guarantee reasoning. In ICALP,

pages 821–834, 2001. 3.5.2, 6.2

[95] Patrick Maier. A Lattice-Theoretic Framework For Circular Assume-Guarantee Rea-

soning. PhD thesis, Universität des Saarlandes, Saarbrücken, July 2003. 3.5.2

[96] Stephen McCamant and Michael D. Ernst. Early identification of incompatibilities

in multi-component upgrades. In ECOOP Conference, Olso, Norway, 2004. 4.6

[97] Kenneth L. McMillan. A compositional rule for hardware design refinement. In

Orna Grumberg, editor, Proceedings of the 9th International Conference on Computer

Aided Verification (CAV ’97), volume 1254 of Lecture Notes in Computer Science,

pages 24–35. Springer-Verlag, June 1997. ISBN 3-540-63166-6. 1, 3.5.2

[98] Kenneth L. McMillan. Verification of an implementation of tomasulo’s algorithm by

compositional model checking. In CAV, pages 110–121, 1998. 3.5.2

165

[99] Kenneth L. McMillan. Circular compositional reasoning about liveness. In CHARME,

pages 342–345, 1999. 3.5.2

[100] Kenneth L. McMillan. Verification of infinite state systems by compositional model

checking. In CHARME, pages 219–234, 1999. 3.5.2

[101] Kenneth L. McMillan. A methodology for hardware verification using compositional

model checking. Sci. Comput. Program., 37(1-3):279–309, 2000. 3.5.2

[102] Kenneth L. McMillan. Interpolation and sat-based model checking. In CAV, pages

1–13, 2003. 6.2.3, 6.2.3

[103] Kenneth L. McMillan, Shaz Qadeer, and James B. Saxe. Induction in compositional

model checking. In CAV, pages 312–327, 2000. 3.5.2

[104] Robin Milner. Communication and Concurrency. Prentice-Hall International, Lon-

don, 1989. 1

[105] Jayadev Misra and K. Mani Chandy. Proofs of networks of processes. IEEE Trans.

Software Eng., 7(4):417–426, 1981. 1, 3

[106] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad

Malik. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th ACM

IEEE Design Automation Conference (DAC ’01), pages 530–535. ACM Press, June

2001. ISBN 1-58113-297-2. 1

[107] Wonhong Nam and Rajeev Alur. Learning-based symbolic assume-guarantee reason-

ing with automatic decomposition. In ATVA, pages 170–185, 2006. 3.2, 3.2, 1, 3.5.2,

6.5, 6.6, 8

[108] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional

reasoning. In Proceedings of the 12th Int. Conference on Computer Aided Verification

(CAV2000), number 1855, pages 139–153. Springer-Verlag, 2000. 3.5.2, 6.2

[109] P. Oncina, J.; Garca. Identifying regular languages in polynomial time. World Sci-

166

entific Publishing, 1992. Advances in Structural and Syntactic Pattern Recognition,.

2.5

[110] A. Overkamp. Supervisory control using failure semantics and partial specifications.

Automatic Control, IEEE Transactions on, 42(4):498–510, April 1997. 7.8

[111] D. Peled, M.Y. Vardi, and M. Yannakakis. Black box checking. In FORTE/PSTV,

1999. 2.5.2

[112] A. Pnueli. In transition from global to modular temporal reasoning about programs.

In Logics and models of concurrent systems. Springer-Verlag New York, Inc., 1985.

1, 3, 3.2

[113] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in

sat-based formal verification. STTT, 7(2):156–173, 2005. 1, 6.2.3, 6.4.3, 6.6

[114] Corina S. Păsăreanu and Dimitra Giannakopoulou. Towards a compositional spin.

In SPIN, pages 234–251, 2006. 3.5.2

[115] W. Nam R. Alur, P. Madhusudan. Symbolic compositional verification by learning

assumptions. In Proc. of 17th Int. Conf. on Computer Aided Verification, 2005.

3.5.2, 6.4, 6.5, 6.6

[116] Kavita Ravi and Fabio Somenzi. Minimal assignments for bounded model checking.

In TACAS, pages 31–45, 2004. 6.4.3

[117] Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing

sequences. In Information and Computation, volume 103(2), pages 299–347, 1993.

2.2, 2.3, 3.3, 3

[118] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Int., 1997.

4.2, 7.2

[119] Yasubumi Sakakibara. Learning context-free grammars from structural data in poly-

nomial time. Theor. Comput. Sci., 76(2-3):223–242, 1990. 2.5, 5.5

167

[120] Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties

using induction and a sat-solver. In Proceedings of the Third International Conference

on Formal Methods in Computer-Aided Design, pages 108–125, London, UK, 2000.

Springer-Verlag. 6.2.3

[121] ShengYu Shen, Ying Qin, and Sikun Li. Minimizing counterexample with unit core

extraction and incremental sat. In VMCAI, pages 298–312, 2005. 6.4.3

[122] Thomas R. Shiple, Massimiliano Chiodo, Alberto L. Sangiovanni-Vincentelli, and

Robert K. Brayton. Automatic reduction in ctl compositional model checking. In

CAV ’92: Proceedings of the Fourth International Workshop on Computer Aided

Verification, pages 234–247, London, UK, 1993. Springer-Verlag. ISBN 3-540-56496-

9. 3.5.1

[123] Sharon Shoham and Orna Grumberg. Monotonic abstraction-refinement for ctl. In

TACAS, pages 546–560, 2004. 4.3, 4.3, 4.3

[124] Nishant Sinha and Edmund Clarke. Sat-based compositional verification using lazy

learning. In CAV, 2007. 3.5.2

[125] C. Tinelli and S. Ranise. SMT-LIB: The Satisfiability Modulo Theories Library.

http://goedel.cs.uiowa.edu/smtlib/, 2005. 6.2.3

[126] Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and Gul Agha. Actively learn-

ing to verify safety for FIFO automata. In FSTTCS’04, LNCS, Chennai, India,

December 2004. Springer. 2.5.2

[127] Mahesh Viswanathan and Ramesh Viswanathan. Foundations for circular composi-

tional reasoning. Lecture Notes in Computer Science, 2076:835–847, 2001. 3.5.2

[128] A. Williams, W. Thies, and M. D. Ernst. Static deadlock detection for Java libraries.

In Proc. of ECOOP, pages 602–629, 2005. 7.8

168

	1 Introduction
	1.1 Automated Assume-Guarantee Reasoning
	1.2 Checking Component Substitutability
	1.3 Overview of the thesis

	2 Learning Regular Languages
	2.1 Machine Learning and Inductive Inference
	2.2 Inductive Inference of Regular Languages
	2.3 L* Algorithm
	2.3.1 Observation Table.

	2.4 Termination and Correctness
	2.5 Discussion on Learning Algorithms
	2.5.1 Comparison with CEGAR approach
	2.5.2 Applications of Learning

	3 Automated Compositional Verification
	3.1 Preliminaries
	3.2 Assume-Guarantee Reasoning
	3.2.1 Soundness and Completeness

	3.3 Automated Assume-Guarantee Reasoning
	3.3.1 Rule NC
	3.3.2 Rule C

	3.4 Discussion
	3.5 History and Related Work
	3.5.1 Compositional Minimization
	3.5.2 Assume-Guarantee Reasoning

	4 Checking Component Substitutability
	4.1 Component Substitutability Check
	4.2 Notation and Background
	4.3 Containment Analysis
	4.3.1 Feedback

	4.4 Compatibility Analysis
	4.4.1 Dynamic Regular-Set Learning
	4.4.2 Assume-Guarantee Reasoning
	4.4.3 Compatibility Check for C Components

	4.5 Implementation and Experimental Evaluation
	4.6 Related Work
	4.7 Conclusions

	5 Checking Simulation Conformance Compositionally
	5.1 Preliminaries
	5.2 Learning Minimal DTA
	5.3 Automating Assume-Guarantee for Simulation
	5.4 Experimental Results
	5.5 Conclusion and Related Work

	6 Efficient AGR using SAT and Lazy Learning
	6.1 Introduction
	6.2 Notation and Preliminaries
	6.2.1 Communicating Finite Automata
	6.2.2 Symbolic Transition Systems
	6.2.3 SAT-based Model Checking

	6.3 Assume-Guarantee Reasoning using Learning
	6.3.1 SAT-based Assume-Guarantee Reasoning

	6.4 Lazy Learning
	6.4.1 Generalized L* Algorithm
	6.4.2 Lazy l* Algorithm
	6.4.3 Optimizing l*
	6.4.4 Another Lazy Learning Algorithm: lr*

	6.5 Implementation and Experiments
	6.6 Conclusions and Related Work

	7 Checking Deadlock Compositionally
	7.1 Problem Formulation and Contributions
	7.2 Failure Languages and Automata
	7.3 Assume-Guarantee Reasoning for Deadlock
	7.3.1 A Non-circular AG Rule
	7.3.2 Weakest Assumption

	7.4 Learning FLA
	7.5 Compositional Language Containment
	7.6 Arbitrary Components and Circularity
	7.6.1 Circular AG Rule

	7.7 Experimental Validation
	7.8 Conclusions and Related Work

	8 Conclusions and Future Directions

