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Abstract

Non-parametric graphical models, embedded in reproducing kernel Hilbert spaces, provide a frame-
work to model multi-modal and arbitrary multi-variate distributions, which are essential when mod-
eling complex protein structures. Non-parametric belief propagation requires the structure of the
graphical model to be known a priori. Currently there are nonparametric structure learning algo-
rithms available for tree structures, but a tree structure is not reasonable when modeling protein
molecular networks. In this paper, we compare parametric neighborhood selection structure learn-
ing method, which is capable of recovering true general graph structures, to the non-parametric tree
learning method, for the particular task of modeling protein structures represented as sequences of
torsion angles. Our experiments, performed on molecular dynamics simulation data of Engrailed
Homeodomain protein, show that neighborhood selection method outperforms nonparametric tree
structure learning method. We also find that non-parametric models outperform the semi-parametric
non-paranormal model as well as the parametric sparse Gaussian graphical model, when an appro-
priate kernel is used.

1 Introduction

The three dimensional structures of proteins and other molecules vary in time according to the laws of thermodynam-
ics. The ability to model the resulting probability distribution over structures — and its response to environmental
perturbations, has a number of practical applications, including computer-aided drug design. Probabilistic graphical
models are a natural choice for encodings these distributions.

A protein’s structure can be defined as a set of torsion angles, corresponding to the rotatable bonds within the molecule.
Hence, graphical models over continuous-variables can be used to encode distributions over these angles, and thus over
protein structures. Parametric models, such as Gaussian graphical models[5],[1], or von-Mises graphical models[11],
facilitate inference and learning owing to their compact parametric forms. Gaussian graphical models are especially
common because they have closed form analytical solutions to inference queries. Unfortunately, the distributions of
angles seen in protein data are generally non-Gaussian. Thus, there is a need for graphical models over continuous
variables that capture the statistical features of real proteins.

The literature on non-Gaussian, continuous-variable graphical models includes mixture models[17], semi-parametric
models[8][7], and non-parametric models[14][13]. Mixture models, such as mixtures of Guassians, are powerful
but introduce serious computational challenges, unless simplifying assumptions are made. Semi parametric models,
such as non-paranormals[8], define a parametric form over the transformed data, where the transformations are
smooth functions around the data points. The non-paranormal model, specifically, restricts the transformed data to
have a multivariate Gaussian distribution. Nonparametric graphical models, such as reproducing kernel Hilbert space
(RKHS) embedded models[14][13], do not enforce any parametric form on the transformed data, and are based on
kernel density estimation of any query that is sent to the graphical model. Since these models use the data samples
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themselves to represent the data, they can reflect more model complexity as the amount of available data increases.
This property allows them to scale appropriately with the data, and model arbitrary and multi-modal distributions.

Previous work on nonparametric methods have assumed the structure of the graph is known, or the graph is fully
connected. In large protein structures, residues tend to interact based on their proximity in 3D structure, leading to a
relatively sparse set of interactions. Fully connected networks are not reasonable for inference, and we must find other
methods to estimate these networks before we can perform any nonparametric inference. In this paper, we compare
two existing structure learning methods for RKHS embedded models, and then perform experiments using protein
molecular dynamics simulation data.

2 Belief Propagation in Reproducing Kernel Hilbert Space

A Hilbert space, H , is a complete vector space, endowed with a dot product operation. When elements of H are
vectors, each with elements from some space, F , a Hilbert space requires that the result of the dot product be in F as
well. For example, the space of vectors in <n is a Hilbert space, since the dot product of any two elements is in <.
[3]. Reproducing kernel Hilbert space is a Hilbert space defined over a reproducing kernel function. Reproducing
kernels are the family of kernels that define a dot product function space, which allows any new function, f(x), to be
evaluated as a dot product of the feature vector of x, φ(x), and the f function. Thus:

f(x) = 〈K(x, .), f(.)〉

Consequently, k(x, x0) = 〈K(x, .),K(x0, .)〉

This reproducing property is essential to define operations required for calculating expected values of functions and
belief propagation messages in kernel space.

Given an iid dataset X = {x1, ..., xm}, Smola et al.[12] define two main mappings, µ[Px] = Ex[k(x, , )] and
µ[x] = 1/m

∑m
i=1 k(xi, .), which allows us to estimate the expected value of any function f(x), using the reproducing

property, as: Ex[f(x)] = 〈µ[Px], f〉, and 〈µ[X], f〉 = 1/m
∑m
i=1 f(xi). Song et al [15] then define Covariance

operator, CX,Y = EX,Y [φ(X)
⊗
φ(Y )] − µX

⊗
µY , which allows us to calculate the expected value of product

of any two functions in the f(x) and g(y) non-parametrically, using the reproducing property. Covariance operator
is then used to represent conditional mean mappings: µY |x = CY,XC

−1
X,Xφ(x), which can be estimated from the

samples for any value x, using the reproducing property. Using these two main ideas, Song et al [14] provide a unified
framework to embed tree graphical models as a set of conditional probabilities, and perform nonparametric inference
on trees [14] and loopy[13] graphical models, by representing messages and beliefs in kernel space.

3 Structure Learning Methods for RKHS inference

Recently [16], Song et al proposed a method to perform structure learning for tree graphical models in RKHS. Their
method is based on the structure learning method proposed by Choi et al [2], where a tree metric is first used to
estimate a distance measure between node pairs. A minimum spanning tree is then calculated from the distances [6].
Choi et al define the distance metric based on correlation coefficient, and Song et al define the nonparametric version
of this metric, based on kernel space covariance operator. This method is suitable for nonparametric structure learning,
but it is limited to tree structures, which is not usually the case in protein structures.

For general loopy graphs, neighborhood selection is also a popular method for structure learning in graphical models.
This method, proposed by Meinshausen et al [10], breaks the overall optimization problem into a set of smaller
optimization problems, by maximizing Pseudo − likelihood, instead of the full likelihood. Each optimization term
in the pseudo likelihood becomes equivalent to a regression problem, and can be solved efficiently with the Lasso
regression. In this paper, we use this method to recover our structures, and compared it with the nonparametric tree
structure learning algorithm. We currently limit our experiments to sparse linear regression, which does not take
the nonlinear relations between the variables into account, and leave the use of sparse nonparametric regression for
neighborhood selection for future work.
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Figure 1: Engrailed Homeodomain
Figure 2: Theta and tau angles encoding the structure
of the protein’s alpha carbon atoms.

Dataset RKHS: RKHS: Non-paranormal Gaussian
Dataset Gaussian Kernel Triangular Kernel Graphical Model Graphical Model
First1000 8.42 7.30 8.43 8.46
Uniform1000 54.76 51.34 63 59.4

Table 1: RMSE for RKHS with neighborhood selection(using two kernels), compared with non-paranormal and Gaus-
sian graphical models

4 Experiments

We performed our experiments over Engrailed Homeodomain (Protein ID: 1ENH) MD simulations data, which is a 54-
residue DNA binding domain (Figure 1). The DNA-binding domains of the homeotic proteins, called homeodomains
(HD), play an important role in the development of all multicellular animals, and certain mutations to HDs are known
to cause disease in humans [4]. This protein is an ultra-fast folding protein that is expected to exhibit substantial
conformational fluctuations at equilibrium. [9]

Dataset We performed 50-microsecond simulations of the protein at 350 degrees Kelvin. This simulation was per-
formed on ANTON, a special-purpose supercomputer designed to perform long-timescale simulations. We sampled
more than 500,000 frames through the simulation, and used angular sequence of (θ, τ) to represent each frame. Figure
2 shows what these angles represent on a section of an imaginary protein sequence. Currently our nonparametric
inference method can not scale to the whole dataset, so we created two sub-sampled versions of the data. First1000
includes the first 1000 samples, while Uniform1000 data contains the uniformly sampled 1000 samples. Both these
datasets exhibit multi-modal and non-Gaussian marginal distributions.

Evaluations In our experiments, we performed leave-one-out cross-validation, and calculated the Root Mean
Squared Error (RMSE) of the test frame, given that the model is learned from the training set. For each test frame, we
have also assumed randomly selected 50% of the variables of the frame are observed, and have predicted the rest of the
variables, given these observations and the training data. For each frame we have repeated this 50% subset selection
10 times.

Results Table 1 shows the results of running the full cross validation experiment, on RKHS method with neigh-
borhood selection as the structure learning method with two different kernels, versus the non-paranormal and sparse
Gaussian graphical model. In all cases, we show the RMSE (measured in degrees) of the predicted hidden variables
conditioned on the observed variables, and the RMSE is calculated from the difference of predicted and actual values
of the hidden variables.

We note that in this particular case, where our data is angular, we try two different kernels: Gaussian kernel, K1 =

e−λ||x−y||
2

, and triangular kernel, K2 = e−λ(sin(||x−y||))
2

.

Table 2 shows the RMSE results of tree structure learning, versus the neighborhood selection method, on the first 1000
sample dataset. We used a triangular kernel in both cases, since it outperformed the Gaussian kernel on our angular
data.
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Neighborhood selection with Triangular
kernel

Tree structure learning with Triangular ker-
nel

7.30 7.41

Table 2: RMSE result for RKHS using neighborhood selection, versus tree structure learning on First1000 dataset.
Both methods used triangular kernel.

Figure 3: Effect of structure sparsity in neighborhood selecton on RMSE in RKHS inference

As can be seen from these results, without an appropriate kernel, RKHS models do not outperform the non-paranormal
and Gaussian graphical models. However, if the kernel is well suited for the problem (i.e. triangular kernel function
for our data), we see significant improvement in RMSE score of neighborhood selection for structure learning in
RKHS, over non-paranormal and Gaussian graphical models. Additionally, we observe that neighborhood selection
outperforms the tree-based nonparametric structure learning. However, we note that neighborhood selection with
Gaussian kernel over angular data does worse than tree structured method with triangular kernel. This demonstrates
the importance of kernel selection and learning.

We also investigated the effect of the density of the estimated structure learned by neighborhood selection on the
RMSE of the predictions. Using different regularization penalties in Lasso regression, results in different levels of
sparsity. Figure 3 shows the RMSE for different values of the regularization penalty, measured with both Gaussian
and triangular kernels, when modeling the first1000 dataset. As the graph becomes denser (higher λ corresponds
to denser graphs, as in our implementation λ corresponds to the upper-bound of sum of regression coefficients), the
triangular kernel performs better. The Gaussian kernel, on the other hand, does not benefit from denser graphs.

5 Conclusions and Future Work

In this paper we compared non-parametric tree structure learning to parametric neighborhood selection method based
on l1-regularized linear regression. Our experiments on modeling protein structures represented as sequences of
torsion angles, showed that neighborhood selection outperforms non-parametric tree structure learning method. Fur-
thermore, both these models outperform a semi-parametric non-paranormal model and parametric sparse Gaussian
graphical model when a a triangular kernel is used.

As part of our future work, we are focusing on non-parametric sparse regression and variable selection methods to
improve the neighborhood selection so that non-linear relationships can be utilized when estimating the sparse graph
structure. Another direction for future work includes kernel optimization, as we have already observed the importance
of the correct parameters and form for the kernel. Finally, scalability of the non-parametric belief propagation is an
issue which we will address in our future work.
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