
Exploiting Weak Connectivity in a
Distributed File System

Lily B. Mummert

December 1996
CMU-CS-96-195

School of Computer Science
Computer Science Division
Carnegie Mellon University

Pittsburgh, PA

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Mahadev Satyanarayanan, Chair

Garth Gibson
James Morris

Patrick Mitchell, Intel Corporation

Copyright c 1996 Lily B. Mummert

This research was sponsored by the Air Force Materiel Command (AFMC) and the Defense Advanced Research
Projects Agency (DARPA) under contract number F19628-93-C-0193. Additional support was provided by the
IBM Corporation, Digital Equipment Corporation, and Intel Corporation.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the AFMC, DARPA,
DEC, IBM, Intel, or the U. S. Government.

Keywords: Distributed file systems, weak connectivity, high availability, mobile computing,
Coda, reintegration, application-transparent adaptation, UNIX

To Todd

Abstract

Weak connectivity, in the form of intermittent, low-bandwidth, or expensive networks is a fact
of life in mobile computing. For the foreseeable future, access to cheap, high-performance,
reliable networks, or strong connectivity will be limited to a few oases, such as work or home,
in a vast desert of weak connectivity. The design of distributed file systems has traditionally
been based on an assumption of strong connectivity. Yet, to provide ubiquitous data access, it
is vital that distributed file systems make effective use of weak connectivity.

This dissertation describes the design, implementation, and evaluation of weakly connected
operation in the Coda File System. The starting point of this work is disconnected operation,
in which a file system client operates using data in its cache during server or network failures.
Disconnected clients suffer frommany limitations: updates are not visible to other clients, cache
misses may impede progress, updates are at risk from client loss or damage, and the danger
of update conflicts increases as disconnections are prolonged. Weak connectivity provides an
opportunity to alleviate these limitations.

Coda’s strategy for weakly connected operation is best characterized as application-
transparent adaptation. The system bears full responsibility for coping with the demands
of weak connectivity. This approach preserves upward compatibility by allowing applications
to run unchanged. Coda provides several mechanisms for weakly connected operation moti-
vated by actual experience. The foundation of adaptivity in this system is the communications
layer, which derives and supplies information on network conditions to higher system layers.
The rapid cache validation mechanism enables the system to recover quickly in intermittent
environments. The trickle reintegration mechanism insulates the user from poor network
performance by propagating updates to servers asynchronously. The cache miss handling
mechanism alerts the user to potentially lengthy service times and provides opportunities for
intervention.

A quantitative evaluation of these mechanisms, based on controlled experimentation and
empirical data gathered from the deployed system in everyday use, shows that Coda is able to
provide good performance even when network bandwidth varies over four orders of magnitude
– from modem speeds to LAN speeds.

v

Acknowledgements

First I would like to thank Satya. I could not have asked for a better advisor or mentor. He
always made time to meet with me, despite his increasingly busy schedule, and he never failed
to provide insightful feedback on my work. He was patient and encouraging when I struggled,
and demanding when I needed to be challenged. Satya, working with you has been a privilege.

I’d like to thank the other members of my thesis committee, Garth Gibson, Jim Morris, and
Pat Mitchell, for their feedback on the thesis. Special thanks go to Pat Mitchell, for gallantly
stepping in as my outside committee member at the last minute.

I’d like to thank Jeannette Wing for patiently guiding me through my foray in protocol
analysis. I could not have done that work without her. I’d also like to thank Peter Braam for
providing many thoughtful insights on the analysis.

Past and present members of the Coda group provided a great deal of support: Bob Baron,
Peter Braam, Maria Ebling, Jay Kistler, Puneet Kumar, Qi Lu, Hank Mashburn, Dushyanth
Narayanan, Brian Noble, Josh Raiff, David Steere, and Eric Tilton. They are a very talented
group of people and it has been a pleasure to work with them.

No systems project can survive without users. Thanks go to all of the Coda users for their
patience and tolerance in dealing with an experimental system. I’d like to thank David Eckhardt
in particular for pushing the system in ways we hadn’t imagined, and for his willingness to
listen to all sorts of half-baked ideas.

Many friends provided emotional support during the long process of finishing my Ph.D.
They include: Jay Kistler and Chris Conklin, for making me feel welcome during the first
difficult months at CMU; Joanne Karohl and Dorcie Jasperse, for providing long-distance
thesis support; and Anurag Acharya, Bruce Horn, and Dave Tarditi, for creating a pleasant
office environment.

I’d like to acknowledge my dogs, Tasha, Zoey, and Boo, for reminding me of the importance
of a life outside of work. Gert Sullivan instructed my first dog obedience class and introduced
me to dog sports. I’ve met many wonderful people through dog activities, and I thank them for
their friendship and for many enjoyable training sessions: Ellen Berman, Annette Bush, Marty
Coody, Margo Foster, Phil Gallagher, Gayle Geiger, Nancy Glabicki, Fred Hulme, Doug and

vii

Ann Humbertson, Dorcie Jasperse, Sharon Kilrain, Barb Martin, Erin McGlynn and Harold
Walls, and Libby Simendinger.

I’d like to thank my parents, Victor and Donna Barkovic, for emphasizing the importance
of hard work and encouraging me to strive for excellence. Thanks to my sister Sylvia, for being
a friend.

Finally, I want to thank my husband Todd, for being patient beyond all reasonable expec-
tation. I love you.

Lily Mummert
Pittsburgh, Pennsylvania

December 1996

Contents

1 Introduction 1

1.1 Distributed File Systems : 1

1.2 Disconnected Operation : 2

1.3 The Thesis : 3

1.3.1 Scope of Thesis : 3

1.3.2 Approach : 4

1.3.3 Mechanisms for Weak Connectivity : : : : : : : : : : : : : : : : : : 5

1.3.4 Validation of Thesis : 5

1.4 Document Roadmap : 6

2 Coda File System 7

2.1 Design Goals : 7

2.1.1 Scalability : 7

2.1.2 Performance : 8

2.1.3 Security : 9

2.1.4 Operability : 9

2.2 Mechanisms for High Availability : 9

2.2.1 Server Replication : 10

2.2.2 Disconnected Operation : 12

2.3 Client Overview : 24

2.4 Server Overview : 24

ix

x CONTENTS

3 Communication Layer Adaptation 27

3.1 Design Alternatives : 28

3.2 Remote Procedure Call : 29

3.2.1 Protocol Overview : 29

3.2.2 Retransmission Strategy : 30

3.2.3 Sharing Liveness Information : 35

3.3 Bulk Data Transfer : 36

3.3.1 Protocol Overview : 36

3.3.2 Obtaining RTT Observations : 39

3.3.3 Estimating RTT : 41

3.3.4 Retransmission Strategy : 41

3.4 Exporting Network Information : 42

3.4.1 Liveness : 43

3.4.2 Transmission Logs : 44

3.4.3 Application Uses : 49

3.5 Effects of Server Replication : 51

3.5.1 MultiRPC : 51

3.5.2 Connectivity to an AVSG : 52

3.6 Quality of Service : 52

3.7 Chapter Summary : 53

4 Rapid Cache Validation 55

4.1 Design : 56

4.1.1 Choice of Granularity : 56

4.1.2 Volume Callbacks : 57

4.2 Protocol Description : 57

4.2.1 Obtaining Callbacks : 58

4.2.2 Handling Callback Breaks : 58

4.3 Implementation Details : 61

4.3.1 Server Modifications : 61

CONTENTS xi

4.3.2 VCB Acquisition Policy : 63

4.3.3 Access Rights : 64

4.3.4 Effects of Replication : 65

4.3.5 VCB Maintenance and Updates : 66

4.4 Correctness : 66

4.4.1 General Approach : 67

4.4.2 Benefits of Formal Analysis : 67

4.5 Chapter Summary : 68

5 Trickle Reintegration 69

5.1 Relationship to Write-Back Caching : 69

5.2 Architecture : 70

5.2.1 Structural Modifications : 71

5.2.2 Preserving the Effectiveness of Log Optimizations : : : : : : : : : : 72

5.2.3 Overview of the Algorithm : 73

5.3 Detailed Design : 79

5.3.1 Concurrency Control : 79

5.3.2 Reducing the Impact of Reintegration : : : : : : : : : : : : : : : : : 83

5.3.3 Remote Updates and Volume Callbacks : : : : : : : : : : : : : : : : 85

5.3.4 Ensuring Atomicity : 87

5.3.5 Effects of Server Replication : 89

5.4 Selecting an Aging Window : 92

5.4.1 File Reference Traces : 92

5.4.2 Venus Simulator : 96

5.4.3 Results : 96

5.5 Chapter Summary : 106

xii CONTENTS

6 Handling Cache Misses 113

6.1 Advice Monitor : 114

6.2 User Interactions : 115

6.2.1 Handling Cache Misses : 115

6.2.2 Augmenting the HDB : 116

6.2.3 Controlling Hoard Walks : 119

6.3 Patience Model : 119

6.4 Chapter Summary : 121

7 Evaluation 123

7.1 Evolution and Implementation Status : 123

7.2 Usage Environment : 124

7.3 Transport Protocol : 125

7.4 Rapid Cache Validation : 127

7.4.1 Performance Under Ideal Conditions : : : : : : : : : : : : : : : : : 128

7.4.2 Use in Practice : 136

7.5 Trickle Reintegration : 143

7.5.1 Methodology: Trace Replay : 144

7.5.2 Results : 145

7.6 Chapter Summary : 157

8 Related Work 159

8.1 Systems that Exploit Weak Connectivity : 159

8.1.1 Distributed File Systems : 159

8.1.2 Databases : 161

8.1.3 Read Only Systems : 162

8.1.4 Application-Specific Approaches : : : : : : : : : : : : : : : : : : : 163

8.2 Mechanisms for Weak Connectivity : 164

8.2.1 Communications : 165

8.2.2 Rapid Cache Validation : 165

8.2.3 Trickle Reintegration : 166

CONTENTS xiii

9 Conclusion 167

9.1 Contributions : 167

9.2 Future Work : 169

9.2.1 Refinements for Weakly Connected Operation : : : : : : : : : : : : : 170

9.2.2 Incorporating Monetary Cost : 170

9.2.3 Improving Effectiveness and Usability of Hoarding : : : : : : : : : : 170

9.2.4 Exploiting Reserved Network Services : : : : : : : : : : : : : : : : 171

9.2.5 Application-Level Logging : 171

9.2.6 Application-Aware Adaptation : 172

9.3 Closing Remarks : 173

A Protocol Analysis 175

A.1 System Model : 175

A.2 Logic : 176

A.3 Goal of Cache Coherence : 179

A.4 Protocol Analysis : 179

A.4.1 Cache miss, no failures : 183

A.4.2 Successful validation, no failures : : : : : : : : : : : : : : : : : : : 185

A.4.3 Cache miss, followed by failure : 186

A.4.4 Successful validation, failure : 187

A.4.5 Failed validation : 187

A.4.6 Volume miss, no failures : 188

A.4.7 Volume miss, failure : 191

A.4.8 Volume validation, failure : 191

A.4.9 Volume validation, no failures : 192

A.4.10 Other validations : 194

A.5 Time-Bounded Correctness : 195

A.6 Classifying Beliefs : 197

A.7 Extensions : 197

xiv CONTENTS

B Coda Internals 199

B.1 Client Structure : 199

B.1.1 Coda MiniCache : 201

B.1.2 Venus : 201

B.2 Server Structure : 208

B.2.1 Vice File Server : 208

B.2.2 Authentication Server : 213

B.2.3 Update System : 213

List of Figures

2.1 Venus State Transition Diagram : 13

2.2 Sample Hoard Profile : 14

2.5 Type-independent Fields of the CML Record : : : : : : : : : : : : : : : : : 17

2.9 Coda Client Structure : 23

2.10 Coda Server Structure : 25

3.1 Calculating RPC2 Retransmission Intervals : : : : : : : : : : : : : : : : : : 31

3.2 RPC2 Retransmission Intervals : 32

3.3 Collecting RTT Observations : 34

3.4 SFTP File Transfer: Server to Client : 37

3.5 SFTP File Transfer: Client to Server : 38

3.6 Two-way Timestamping in SFTP : 40

3.7 SFTP Packet Sets : 42

3.8 Transmission Log Record Formats : 43

3.9 Transmission Log : 44

3.10 Measuring SFTP Rounds : 46

3.11 SFTP Records and Retransmission : 48

4.1 Obtaining a Volume Callback : 59

4.2 Validating by Volume : 60

4.3 Breaking a Volume Callback : 62

4.4 Interface for Volume Version Stamps : 63

4.5 Vice Status Block : 65

xv

xvi LIST OF FIGURES

5.1 Venus State Transition Diagram : 71

5.2 CML During Trickle Reintegration : 76

5.3 Reintegration RPC : 76

5.5 Shadowing Cache Files : 81

5.6 Interface for Reintegration by Fragment : 86

5.11 Effect of Aging on CML Optimizations, Base Case, Day Traces : : : : : : : : 99

5.12 Effect of Aging on CML Optimizations, Base Case, Week Traces : : : : : : : 100

5.14 Effect of Aging on CML Optimizations, Day Traces : : : : : : : : : : : : : : 104

5.15 Effect of Aging on CML Optimizations, Week Traces : : : : : : : : : : : : : 105

5.17 Effect of Aging on CML Optimizations, Excluding /tmp, Four-Hour Maxi-
mum, Day Traces : 108

5.18 Effect of Aging on CML Optimizations, Excluding /tmp, Four-Hour Maxi-
mum, Week Traces : 109

5.20 Effect of Aging on CML Optimizations, Excluding /tmp, Day Traces : : : : 111

5.21 Effect of Aging on CML Optimizations, Excluding /tmp, Week Traces : : : 112

6.1 Advice Monitor Interaction : 114

6.3 Weakly Connected Miss : 116

6.4 Cache Miss Handling : 117

6.5 Augmenting the Hoard Database : 118

6.6 Specifying an HDB Entry : 118

6.7 Controlling the Data Walk : 120

6.8 Patience Threshold versus Hoard Priority : : : : : : : : : : : : : : : : : : : 122

7.1 Experiment Configuration : 126

7.6 Validation Time Under Ideal Conditions : 133

7.13 Compressibility of Trace Segments : 146

7.16 Performance of Trace Replay (� = 1 second, A = 300 seconds) : : : : : : : 147

7.18 Performance of Trace Replay (� = 1 second, A = 600 seconds) : : : : : : : 148

7.20 Performance of Trace Replay (� = 10 seconds, A = 300 seconds) : : : : : : 149

7.22 Performance of Trace Replay (� = 10 seconds, A = 600 seconds) : : : : : : 150

LIST OF FIGURES xvii

A.1 Client State Transitions – Invalidation Based, Large Granularity : : : : : : : 182

A.2 Worst Case Behavior During a Failure : 196

xviii LIST OF FIGURES

List of Tables

2.3 4.3 BSD File System Interface : 15

2.4 Coda Updates and UNIX System Call Mapping : : : : : : : : : : : : : : : : 16

2.6 Type-specific Fields of CML Records : 18

2.7 CML Optimization Templates : 19

2.8 Version and Value Certification : 21

5.4 Compatibility Matrix for Object Locks : 79

5.7 Contents of Trace Records : 93

5.8 Summary of the Work-day and Full-week Traces : : : : : : : : : : : : : : : 94

5.9 Trace Filter Specification : 95

5.10 Unoptimized and Optimized CML Sizes, Base Case : : : : : : : : : : : : : : 98

5.13 Unoptimized and Optimized CML Sizes, Full Trace Length : : : : : : : : : : 103

5.16 Unoptimized and Optimized CML Sizes, Excluding /tmp, Four Hour Maximum107

5.19 Unoptimized and Optimized CML Sizes, Excluding /tmp, Full Trace Length 110

6.2 Advice Monitor Interfaces : 115

7.2 Transport Protocol Performance : 127

7.3 Contents of Hoard Profiles for Five Coda Users, by Volume : : : : : : : : : : 129

7.4 Emulated versus Real RPC at 9.6 Kbps : 130

7.5 Cache Recovery Time : 132

7.7 Mond Clients and Data Collection Length : : : : : : : : : : : : : : : : : : : 135

7.8 Volume Classification : 136

7.9 Observed Volume Validation Statistics - Desktops : : : : : : : : : : : : : : : 137

xix

xx LIST OF TABLES

7.10 Observed Volume Validation Statistics - Notebooks : : : : : : : : : : : : : : 138

7.11 Incidence of Volume Callback Breaks : 140

7.12 Incidence of False Sharing : 140

7.14 Segments Used in Trace Replay Experiments : : : : : : : : : : : : : : : : : 146

7.15 Performance of Trace Replay (� = 1 second, A = 300 seconds) : : : : : : : : 147

7.17 Performance of Trace Replay (� = 1 second, A = 600 seconds) : : : : : : : : 148

7.19 Performance of Trace Replay (� = 10 seconds, A = 300 seconds) : : : : : : 149

7.21 Performance of Trace Replay (� = 10 seconds, A = 600 seconds) : : : : : : 150

7.23 Residual Effect of File Contention : 151

7.24 Data Generated During Trace Replay (� = 1 second, A = 300 seconds) : : : 153

7.25 Data Generated During Trace Replay (� = 1 second, A = 600 seconds) : : : 154

7.26 Data Generated During Trace Replay (� = 10 seconds, A = 300 seconds) : : 155

7.27 Data Generated During Trace Replay (� = 10 seconds, A = 600 seconds) : : 156

B.1 VFS and Vnode Interfaces : 200

B.2 MiniCache Interface : 202

B.3 Venus Thread Types : 203

B.4 Callback Interface : 204

B.5 RVM Library Interface : 206

B.6 Vice Interface : 209

B.7 File Server Thread Types : 210

B.8 Server Inode Interface : 211

Chapter 1

Introduction

The focus of this dissertation is the use of low bandwidth, intermittent, and potentially expensive
wireless or wired networks for mobile file access. The ability to access data from anywhere
will be an important capability in future information systems. The demand for ubiquitous data
access is evident in the increasing prevalence of mobile computing and wireless communication.
Mobile computers encounter a wide range of network characteristics in the course of their
journeys. At work, they may have access to the cheap, reliable, high-speed connectivity
typified by a local area network. Strong connectivity refers to such an environment. In other
locations, they must rely on networks with serious shortcomings: intermittence, low bandwidth,
and expense. Weak connectivity encompasses networks with one or more of these properties.
For the foreseeable future, strong connectivity will be limited to a few oases, such as work
or home, in a vast desert of weak connectivity. The design of distributed file systems has
traditionally been based on an assumption of strong connectivity. Yet, to achieve the ideal of
“access to data from anywhere” they must be able to make effective use of weak connectivity.

This chapter begins with context on distributed file systems. It then describes disconnected
operation, an initial step towards providing ubiquitous data access, and discusses its shortcom-
ings. Next, it discusses the use of weak connectivity to alleviate these problems. The chapter
concludes with a road map for the rest of the document.

1.1 Distributed File Systems

Distributed file systems such as the Andrew File System (AFS) [113, 82, 49], Sun’s Network
File System (NFS) [108], and Novell Netware [92] have become popular in a variety of
environments. There are a number of reasons for the success of distributed file systems.
First, they facilitate the sharing of information between users. Second, they increase mobility
of individual users by providing access to data from different locations. Third, they are

1

2 CHAPTER 1. INTRODUCTION

extensible, allowing storage to be added as needed in a cost-effective way. Last, they simplify
the administration of large numbers of machines. Tasks such as backup and software installation
and maintenance are performed by operators rather than individual users.

Most distributed file systems are organized according to the client-server model. A nucleus
of servers acts as the repository for data, which clients access through a standard system
interface. To improve performance, clients cache files or parts of files in memory, on local disk,
or both. To improve availability, some file systems replicate files at multiple sites. Support for
replication varies; client access may be read-only or read-write, and updates during network
partitions may or may not be allowed. Distributed file systems typically assume that clients
and servers are strongly connected.

1.2 Disconnected Operation

Disconnected operation [62, 63] is a mode of operation in which a client uses cached data to
operate during server and network failures. It can be viewed as the extreme case of weakly
connected operation – the mobile client is effectively using a network of zero bandwidth, infinite
latency and no cost. The ability to operate disconnected can be useful even when connectivity
is available. For example, disconnected operation can extend battery life by avoiding wireless
transmission and reception. It can reduce network expense, an important feature when charges
are high. It allows radio silence to be maintained, a vital capability in military applications.
And, of course, it is a viable fallback position when network characteristics degrade beyond
usability.

But disconnected operation is not a panacea. A disconnected client suffers from many
limitations:

� Updates are not visible to other clients.

� Cache misses are not transparent; a user may be able to work in spite of some cache
misses, but certain critical misses may impede progress.

� Updates made while disconnected are at risk if the client is damaged, lost, or stolen.

� The danger of update conflicts (both write-write and read-write) increases with prolonged
disconnections if the system allows partitioned updates [46, 50, 63].

� Resource exhaustion, especially that of cache space, is a concern during long disconnec-
tions.

1.3. THE THESIS 3

1.3 The Thesis

The goal of this research is to alleviate the limitations of disconnected operation by exploiting
weak connectivity. How successful the system is depends on the quality of the network. With
a very weak connection, a user is little better off than when disconnected; as network quality
improves, the limitations decrease in severity and eventually recede into insignificance. This
leads to the thesis statement:

File system availability and usability can be significantly improved by using weak
connectivity to address the limitations of disconnected operation. This goal can be
achieved while preserving binary compatibility with a broad and important class
of existing applications.

1.3.1 Scope of Thesis

This thesis focuses on the use of weak connectivity within a file system. It does not address
external network applications, or their interaction with the file system. This thesis makes the
following assumptions about weak connectivity and the network configuration between the
client and the server.

� The client has only one network active at a time. For example, it is not connected via
LAN and phone line to the same servers at the same time. If a choice of networks is
available, the selection is made by a layer below the file system (e.g., MosquitoNet [7]).

� Replicated servers are strongly connected to each other, but they may be weakly connected
to clients.

� The network connection is reasonably symmetric. Configurations such as a high band-
width forward channel and a low bandwidth backward channel, as in cable TV systems,
are outside the scope of this thesis.

� The client connects to the network at least occasionally, of the order of hours or days.

� The client makes no assumptions about the underlying network topology. In particular,
different clients may see very different topologies.

� The client is given no guarantees about network performance. The focus is on observing
and adapting to conditions, whatever they might be.

4 CHAPTER 1. INTRODUCTION

1.3.2 Approach

The approach of this work is best characterized as application-transparent adaptation. The
system bears full responsibility for coping with the demands of weak connectivity. It strives
to preserve the illusion of strong connectivity regardless of connection strength, straying from
that ideal only when usability would be harmed. This approach preserves upward compatibility
by allowing applications to run unchanged. The design is based on four guiding principles:

� Don’t punish strongly-connected clients.
It is unacceptable to degrade the performance of strongly-connected clients on account
of weakly-connected clients. This precludes use of a broad range of cache write-back
schemes in which a weakly-connected client must be contacted for token revocation or
data propagation before other clients can proceed.

� Don’t make life worse than when disconnected.
While a minor performance penalty may be an acceptable price for the benefits of weakly-
connected operation, a user is unlikely to tolerate substantial performance degradation.

� Do it in the background if you can.
Network delays in the foreground affect a user more acutely than those in the background.
As bandwidth decreases, network usage should be moved into the background whenever
possible. The effect of this strategy is to replace intolerable performance delays by a
degradation of availability or consistency – lesser evils in many situations.

� When in doubt, seek user advice.
As connectivity weakens, the higher performance penalty for suboptimal decisions in-
creases the value of user advice. Users also make mistakes, of course, but they tend to
be more forgiving if they perceive themselves responsible. The system should perform
better if the user gives good advice, but should be able to function unaided.

The unifying theme of this work is an emphasis on higher levels of the system. Because
connectivity assumptions permeate the design of a system, a system based on LAN connectivity
may be casual about network usage not only at the communication protocol layer but also
in higher system layers. For example, upper layers of the system may communicate more
frequently than necessary, and may not cache as aggressively as they could. Therefore, efforts
towards reducing network usage must focus on higher system layers as well as lower ones.
This dissertation will show that an emphasis on higher level mechanisms results in substantial
benefits for weakly-connected operation. Further low level improvements may enhance those
mechanisms, but cannot replace them.

More generally, this work was strongly influenced by two classic principles of system
design: favoring simplicity over unwarranted generality [69], and respecting the end-to-end
argument when layering functionality [107].

1.3. THE THESIS 5

1.3.3 Mechanisms for Weak Connectivity

This goal of this work is to provide the mechanisms necessary to use weak connectivity
effectively. It then defines simple, minimal policies using these mechanisms. The system
provides four mechanisms, which were motivated by actual experience:

� Communications layer adaptation.
To adapt to network conditions, one must first discover what they are. The communi-
cations layer gathers data on network conditions and exports it to higher layers of the
system as well as adapting internally.

� Rapid cache validation.
To recover from network failures, a client must resynchronize its cached state with
servers. This component allows the client to recover quickly in most instances, an
important capability in intermittent environments.

� Trickle reintegration.
This component propagates updates to servers asynchronously to hide network latency.
Updates become visible to other clients sooner, allowing sharing and reducing the window
of vulnerability to conflicts. The probability of data loss through failure or theft of the
mobile is reduced, because data is available at servers. Finally, cache resources can be
reallocated if necessary.

� Cache miss handling.
Weakly connected cache misses may have large service times, rendering them nontrans-
parent. This component attempts to reduce service times on certain kinds of cache
misses. If that is not sufficient, it solicits advice from the user regarding cache misses
whose service times threaten to be lengthy.

All of the mechanisms except for rapid cache validation are reactive; that is, they change
their behavior based on observed network performance. This adaptation is crucial in a system
expected to cope with conditions that are both wide ranging and highly variable. Rapid cache
validation is used regardless of connection strength, but improves performance dramatically
while weakly connected.

1.3.4 Validation of Thesis

This thesis was investigated by designing the above set of mechanisms for weak connectivity
and implementing them in a distributed file system called Coda [114, 63, 115]. Coda, a
descendant of AFS, has as its main goal providing high availability in the face of server and

6 CHAPTER 1. INTRODUCTION

network failures. Its support of disconnected operation makes it an ideal vehicle for this work.
Coda has been in active use since 1991 by roughly two dozen people. An evaluation based on
empirical measurements and controlled experiments provides validation of the thesis statement.

1.4 Document Roadmap

The rest of this document consists of eight chapters. Chapter 2 describes the context of
this work, and gives a high level overview of the Coda file system. Details regarding the
implementation are deferred to Appendix B.

Chapters 3 through 6 describe the mechanisms for weak connectivity in Coda. They begin
in Chapter 3 with the workings of the communications layer. This is the layer that detects and
adapts to changing network conditions, and provides information on network performance to
higher layers of the system.

Chapter 4 describes a mechanism for coping with intermittent environments by providing
a means for clients to recover from failures quickly. A correctness analysis of this mechanism
is provided in Appendix A.

Chapters 5 and 6 describe how weakly connected clients perform updates and handle cache
misses, respectively. The mechanisms described in both chapters adapt to network conditions
based on the information provided by the communications layer.

Chapter 7 evaluates the mechanisms for weak connectivity in Coda. It presents empirical
results gathered from the system in actual use over the past year, and quantitative results from
controlled experiments.

This document concludes with a discussion of related work in Chapter 8, and summarizes
the contributions of this thesis in Chapter 9.

Chapter 2

Coda File System

This chapter describes the context of this thesis, the Coda File System. The first section
provides a high-level overview of Coda, its history, and design rationale. The second section
describes Coda’s mechanisms for high availability at a high level. The last two sections provide
an overview of the implementation of Coda clients and servers. Implementation details are
deferred to Appendix B.

2.1 Design Goals

Coda is a distributed UNIX file system that strives to provide high data availability. It is
a descendant of the Andrew File System (AFS) and as such inherited its design goals of
scalability, performance, security, and operability.1 Like AFS, it exports a single, shared,
location-transparent name space. It also retains some of AFS’s usage assumptions. In particular,
the system is intended for use in an office or research environment, where typical activities
are software development, text editing, document preparation, electronic mail, and so on. It is
specifically not intended to support databases.

2.1.1 Scalability

Coda is divided into a small collection of servers and a much larger collection of clients. The
servers are collectively called Vice, are physically separated from clients, and are dedicated
solely to file service. At the client, the operating system intercepts system calls on Vice objects
and directs them to a process called Venus, which communicates with Vice as necessary to

1Coda is derived from the second of three versions of AFS developed at Carnegie Mellon University. Unless
otherwise specified, the term AFS refers to this version.

7

8 CHAPTER 2. CODA FILE SYSTEM

service file system requests. To maximize the number of clients a server may support, most
of the work required for file access is performed by clients. Because of this division of labor,
clients are assumed to be reasonably powerful, general purpose computers, with a low to
moderate amount of local disk storage. They are usually operated by a single user. Typical
clients are desktop workstations and notebook computers, rather than specialized devices such
as PDAs [119] or ParcTabs [128].

2.1.2 Performance

Venus makes extensive use of caching at the client. In addition to caching files, Venus also
caches directories and symbolic links to improve the efficiency of pathname translation. File
status and data are cached separately. Venus caches entire files rather than file blocks, because
there is substantial empirical evidence that most files are small and applications often access
entire files [6, 13, 39, 95]. This strategy has lower file transfer overhead per byte, and simplifies
cache management considerably.

Cache coherence is maintained using callbacks. When a client caches a file from a server,
the server promises to notify it if the file changes. This promise is called a callback. The
client may use the file without further communication with the server until told otherwise. An
invalidation message is called a callback break. If a client receives a callback break for an
object, it invalidates the cached copy and re-fetches the object when next referenced. Network
partitions complicate matters, because a server may not be able to break a callback with a client.
Until the client realizes the server is unreachable, it believes, perhaps incorrectly, that its cached
files are valid. To bound this window of vulnerability, clients probe servers periodically. If a
failure occurs, Venus considers its cached files suspect until it validates them with the server
upon reconnection.

Venus ensures the currency of objects involved in a system call by checking that the object
is cached and has a callback. There is one exception: for open files, coherence is maintained
at the granularity of open-close sessions. Venus intercepts only open and close system calls.
Reads and writes to a file are performed directly on the cached copy. If the file is written,
Venus forwards the updated copy to the server only when the file is closed. Sessions reduce
client-server communication, but relax UNIX file semantics. Only processes on the same client
can observe the results of a write before a file is closed.

Objects in the distributed file system are named with unique, low-level identifiers called
fids. Venus performs all translation from pathnames to fids; servers are ignorant of pathnames.
Since pathname translation is one of the most frequently performed tasks in a file system, this
two-level naming scheme reduces server load by shifting the burden to clients.

2.2. MECHANISMS FOR HIGH AVAILABILITY 9

2.1.3 Security

Coda and AFS prevent unauthorized release and modification of information in three ways.
First, clients and servers are physically as well as logically separated, and are treated very
differently from a security standpoint. Servers are trusted. They are located in physically
secure areas, are accessible only to trusted operators, and run only trusted programs. Clients,
on the other hand, are untrusted. They are under the control of individual users, who may
modify their hardware and software. They may be located in areas that are not physically
secure, such as a public workstation cluster. The network connecting clients and servers is
not physically secure, and it is possible to eavesdrop on network traffic. Second, clients and
servers use an authentication mechanism based on the Needham and Schroeder private key
authentication scheme [88], and communicate using a remote procedure call package that
supports authenticated connections and packet encryption.2 Third, access to the file system is
controlled through access lists, which specify the access rights of users and groups of users
on directories. The practical upshot of these security mechanisms is if a client is subverted,
the damage is limited to only those files to which the client has access rights. Details on the
security mechanisms are provided by Satyanarayanan [110].

2.1.4 Operability

One of the goals of AFS and Coda is that it should be easy for a small staff to run and monitor
the system. To this end, the file name space is divided into volumes [121], each forming a
partial subtree. Volumes are glued together at mount points. Venus transparently recognizes
and crosses volume boundaries during pathname translation. A volume is assigned to a single
disk partition at a server; multiple volumes may reside on the same partition. Volumes may
grow or shrink in size, and may be subject to disk quotas. Volumes may be moved from server
to server; Venus uses a volume location database (VLDB) to locate the server for a volume.
Read-only copies, or clones, of volumes may be created to increase availability and balance
load over a set of servers. Backups are performed by creating read-only clones of volumes and
then transferring them to backup storage. Volumes are typically created for individual users or
projects.

2.2 Mechanisms for High Availability

Coda uses two complementary mechanisms to provide resilience to server and network fail-
ures. The first, server replication, involves storing copies of data at multiple servers. The

2In practice, Coda uses authenticated connections, but not packet encryption.

10 CHAPTER 2. CODA FILE SYSTEM

second, disconnected operation, allows a client to continue operating when no servers are
accessible. This section provides background on Coda’s high availability mechanisms. The
following descriptions correspond to the original versions of these mechanisms as documented
by Kumar [66, 67, 68] and Kistler [62, 63]. Changes to these mechanisms made prior to this
dissertation are noted. For modifications resulting from this work, the reader is referred to the
appropriate sections later in this document.

2.2.1 Server Replication

Server replication decreases the probability that data is unavailable by storing copies at multiple
sites. The unit of replication is the volume, and the number and identity of the replication sites
is specified when the volume is created. The set of sites at which a volume is stored is the
volume storage group (VSG). At any time, a client may be able to contact only some VSG
members because of server or network failures. This subset is the accessible volume storage
group (AVSG). Different clients may have different, even non-intersecting AVSGs for the same
volume.

2.2.1.1 Optimistic Replication

Coda uses an optimistic replication scheme, allowing updates in any network partition. This
strategy contrasts with pessimistic replication, which restricts updates to at most one partition.
Optimistic replication provides greater availability by trading off consistency between network
partitions. That is, an object may be updated in multiple partitions, and those updates may
conflict. Therefore, a system employing optimistic replication must provide a mechanism for
detecting and coping with partitioned updates. Evidence suggests that optimistic replication
is a reasonable strategy in distributed UNIX file systems because of the low degree of write-
sharing [63].

2.2.1.2 Replica Control Algorithm

The protocol for accessing the servers is best described as read-status-from-all, read-data-from-
one, write-all. When Venus fetches a file from the servers, it transfers file data from only one
AVSG member, called the preferred server. However, it obtains status information from all
of the replicas to verify that the object is consistent across AVSG members, and the preferred
server has the latest copy of the data. If this is not the case, servers with stale data are notified
and the server with the latest copy is made the preferred server.

When an object is updated, Venus contacts all AVSG members. The update proceeds in
two phases. In the first phase (COP1), each server performs the update, and stamps the objects

2.2. MECHANISMS FOR HIGH AVAILABILITY 11

involved with a client-generated version stamp called a store ID. In the second phase (COP2),
Venus distributes to the AVSG the list of servers who performed the update successfully, called
the update set. Communication with servers is performed in parallel using the MultiRPC
parallel remote procedure call package [117].

Callbacks are maintained at all AVSG members. Venus probes the AVSG as in the non-
replicated case to detect connectivity changes. If the AVSG shrinks there is the potential for a
lost callback from the unavailable server. If the AVSG grows, there may be updated data from
the newly available server. Venus considers cache entries suspect in this case until it validates
them with the AVSG.

2.2.1.3 Conflict Detection

Coda detects write-write conflicts on files using version vectors, originally proposed for Lo-
cus [97]. A version vector is a summary of the update history of an object. The length of the
vector is the number of replicas (i.e., the size of the VSG) for the object. Each entry contains
the number of updates performed at the corresponding replication site. The version vector also
includes the store ID of the most recent update to the object. Each replica of an object has a
version vector associated with it.

When two version vectors A and B have the same values for each entry, the replicas are
equal. If every entry in A is greater than or equal to the corresponding entry in B, A is said
to dominate B. In this case, the replica at A is the more recent one. If some entries in A are
greater than those in B and others are smaller, then A and B are said to be inconsistent. In this
case, the replicas are diverging.

Venus detects conflicts lazily as it obtains the status for objects involved in a file system
request. When Venus obtains the status of an object, it compares the version vectors. If
they are not equal, Venus suspends the file system request and invokes a resolution protocol
to merge the replicas automatically. If resolution completes successfully, Venus continues
servicing the request using the merged version of the object. Otherwise, Venus flags the object
as inconsistent, making it appear to the user as a dangling symbolic link. The object is rendered
inaccessible until the user repairs it manually; a repair tool is provided for this purpose.

2.2.1.4 Resolution and Repair

Coda’s resolution protocol is executed between servers and consists of determining the set of
partitioned updates, communicating that set to the AVSG, checking the resolvability of the
updates, performing the partitioned updates at relevant sites, and marking the object as either
resolved or inconsistent. There are separate strategies for files and directories because of their
different structure and update methods. Directories are structured objects with a well-defined

12 CHAPTER 2. CODA FILE SYSTEM

set of update operations known to the system. On the other hand, files are unstructured byte
streams whose update patterns are specific to an application.

Directory resolution is a four-phase protocol based on operation logging [67]. Each server
maintains a log of updates to the directory. When Venus triggers resolution, a single server
acts as coordinator for the protocol. The coordinator collects and compares the server logs to
determine the partitioned updates, and then distributes the logs to the other servers. The servers
read the logs to determine which updates they missed, and then perform them as compensating
operations.

File resolution comes in two flavors. Servers can resolve file replicas among themselves if
there is a dominant replica. In that case, the original version of resolution sends the dominant
copy of the file to all AVSG members. The implementation has since been refined to send the
dominant copy to only those AVSG members that need it. In effect, servers with stale versions
perform the compensating operation of replacing the file. This refinement is described in more
detail in Section 5.3.5. If the version vectors are inconsistent, Venus invokes an application
specific resolver (ASR), if supplied by the application writer, that contains enough information
about the semantics of the file data to resolve the replicas [68].

If an object is marked inconsistent, it is inaccessible until repaired manually. Coda supplies
a repair tool that, when run at a client, exposes the replicas of the object in situ, and provides
commands with which a user can resolve the object manually.

2.2.2 Disconnected Operation

Disconnected operation occurs when the AVSG becomes empty. Disconnections come in two
flavors – involuntary, which are caused by network or server failures, and voluntary, which
occur when a user unplugs a client such as a notebook computer from the network. Venus
bears the brunt of supporting disconnected operation. It has three main responsibilities. First,
while connected, it must cache files that will be useful during a disconnection. Second, while
disconnected, it must service file requests using cached data. Last, upon reconnection, it must
propagate disconnected updates to the servers.

These tasks are represented as states within Venus, shown in Figure 2.1. Most of the time,
Venus is in the hoarding state. In this state, it services connected mode requests with the AVSG,
maintains cache coherence using callbacks, and caches useful files. When a disconnection
occurs, Venus enters the emulating state, so named because it emulates the distributed file
service using local resources. It services requests from its cache, and records updates performed
locally. Upon reconnection, Venus enters the transient reintegrating state, merges disconnected
updates with servers, and then proceeds to the hoarding state. Since VSGs vary between
volumes, Venus may be in different states with respect to different volumes. Modifications to
this state diagram are described in Section 5.2.1.

2.2. MECHANISMS FOR HIGH AVAILABILITY 13

Hoarding

Emulation Reintegration

di
sc

on
ne

ct
io

n
physical

reconnection
logical

reconnection

Figure 2.1: Venus State Transition Diagram

This figure shows Venus volume states and transitions as described by Kistler [62].

2.2.2.1 Hoarding

When Venus is connected to a server, it is in the hoarding state. In addition to its connected
mode responsibilities, it must also cache useful data to prepare for disconnection. Normally,
Venus manages its cache using an LRU algorithm. However, caching for disconnection is
a long-term endeavor, for which standard LRU algorithms are insufficient. Venus therefore
allows a user to indicate which data would be most valuable during a disconnection by loading
hoard profiles. A hoard profile specifies a set of files to be cached and gives an indication of
their importance, called the hoard priority. An example of a hoard profile is shown in Figure
2.2. Venus stores hoard specifications in its hoard database (HDB).

In managing its cache, Venus must balance both the short-term need of caching for per-
formance (LRU) with the long-term need of caching for availability (hoarding). Venus uses a
prioritized caching algorithm which combines both reference information and the hoard prior-
ity of an object, if any. Periodically, Venus executes a hoard walk to ensure that the highest
priority items are cached and valid. The hoard walk is executed in two phases. The first phase,
called the status walk, obtains status information for missing objects and determines which, if
any, should be cached. The second phase, called the data walk, fetches the data for objects
selected during the status walk. A hoard walk may also be requested by a user, usually before
a voluntary disconnection.

14 CHAPTER 2. CODA FILE SYSTEM

a /coda/usr/zoey/thesis 1000:d+
a /usr/misc/.tex/bin/virtex 100
a /usr/misc/.tex/bin/xdvi 50
a /usr/misc/.tex/lib/xdvi 50:c
a /usr/misc/.tex/bin/bibtex

Figure 2.2: Sample Hoard Profile

This figure shows part of a hoard profile. Hoard priorities range from 1-1000, and default to 10
if not specified. The specifiers “c” and “d” mean hoard children and descendants of the object,
respectively. The “+” means hoard future children or descendants of an object as well as those
present when the profile is loaded.

2.2.2.2 Server Emulation

When Venus detects that an AVSG has become empty, it places the affected volumes in the
emulating state. In this state, Venus attempts to mask the disconnection by servicing file system
requests locally using cached data. Of course, if an object is not cached, file service is impeded.
In this case, Venus can either return an error or block until reconnection.

Disconnected update requests are performed locally and logged in stable storage, so that
they may be replayed at the server upon reconnection. The structure that describes the updates
is called the client modify log (CML). Venus maintains a CML for each volume represented in
the cache. When it performs a disconnected update, it appends a log record to the CML for the
appropriate volume. As shown in Tables 2.3 and 2.4, CML records correspond for the most
part to updates in the UNIX API. The two main exceptions are the the store record, which
corresponds to the closing of a file opened for write, and the repair record, which is part of
Coda’s application specific resolution mechanism.

Each CML record consists of a type-independent part and a type-specific part. The type-
independent part is shown in Figure 2.5, while Table 2.6 shows CML record types and their
type-specific fields. Every CML record, except for store, is self-sufficient. That is, there is
no client state other than the record itself needed to correctly and completely replay the record
at the server. The store records contains a reference to the cache container file for the object
for the new file data. Objects referenced by a CML record are marked dirty. Dirty objects
may not be replaced until cleaned by a successful reintegration, repaired after an unsuccessful
reintegration, or purged forcibly from the cache.

Because updates can cancel each other, Venus takes advantage of this behavior by perform-
ing log optimizations over the CML. There are two kinds of log optimizations – overwrites

2.2. MECHANISMS FOR HIGH AVAILABILITY 15

Operation Description

access Determine access permissions of an object.
chmod Change mode bits of an object.
chown Change owner of an object.
close Delete an open descriptor.
creat Create a new file.
fsync Synchronize a file’s in-core state with that on disk.
ioctl Perform a control function on an open descriptor.
link Make a hard link to an object.
lseek Move the read/write pointer for an open descriptor.
mkdir Make a directory with the specified path.
mknod Make a special file.
mount Mount a file system.
open Open a file for reading or writing, or create a new file.
read, readv Read input from an open descriptor.
readlink Read value of a symbolic link.
rename Change the name of an object.
rmdir Remove a directory.
stat Get object status.
statfs Get file system statistics.
symlink Make a symbolic link to an object.
sync Write modified in-memory file system data to disk.
truncate Truncate a file to a specified length.
umount Remove a file system.
unlink Remove a directory entry.
utimes Set “accessed” and “updated” times for an object.
write, writev Write output to an open descriptor.

Table 2.3: 4.3 BSD File System Interface

This table shows the 4.3 BSD UNIX file system API. In the descriptions above, the term “object”
refers to a file, directory, or symbolic link.

16 CHAPTER 2. CODA FILE SYSTEM

chown(object, user)
chown

chmod(object, user)
chmod

utimes(object, user)
utimes

store(file, user)
[[creat j open] [read j write]� close] j truncate

create(directory, name, file, user)
creat j open

mkdir(directory1, name, directory2, user)
mkdir

symlink(directory, name, symlink, user)
symlink

remove(directory, name, file, user)
remove(directory, name, symlink, user)

rename j unlink

rmdir(directory1, name, directory2, user)
rename j rmdir

link(directory, name, file, user)
link

rename(directory1, name1, directory2, name2, object, user)
rename

repair(file, user)
(no mapping)

Table 2.4: Coda Updates and UNIX System Call Mapping

The leftmost lines show the interface for Coda update operations, and the indented lines show
the mapping from UNIX system calls. Syntax is that of regular expressions. Source: Adapted
from Kistler [62], Table 3.2, page 28.

2.2. MECHANISMS FOR HIGH AVAILABILITY 17

ClientModifyLog *log;
rec_dlink handle;

ViceStoreId sid;
Date_t time;
UserId uid;
int tid;
CmlFlags flags;

< type specific fields >

dlist *fid_bindings;
dlist *pred;
dlist *succ;

Figure 2.5: Type-independent Fields of the CML Record

This figure shows the fields of the CML record common to all updates. Each record contains
a backpointer to the CML itself (log) and to its successor handle. The modify-time of
the update is in time, the author of the update is indicated by uid. Two fields are used as
“transaction identifiers”; they are the store idsid and tid. The fid bindings field contains
pointers to the fsobjs that the record references. Pointers to lists of preceding and succeeding
records are contained in pred and succ, respectively.

18 CHAPTER 2. CODA FILE SYSTEM

Record Type Items recorded (with type independent fields)

chown fid, new owner, version id

chmod fid, new mode, version id

utimes fid, new modify time, version id

store fid, new length, new contents, version id, offset, server handles

create parent fid, name, child fid, mode, version id

mkdir parent fid, name, child fid, mode, parent version id

symlink parent fid, old name, new name, child fid, mode, parent version id

remove parent fid, name, child fid, link count, parent version id, child version id

rmdir parent fid, name, child fid, parent version id, child version id

link parent fid, name, child fid, parent version id, child version id

rename from parent fid, from name, to parent fid, to name, from fid, from parent version
id, to parent version id, from version id

repair fid, length, modify time, owner, mode, version id

Table 2.6: Type-specific Fields of CML Records

This table shows the type-specific contents of CML records for each operation. The type-
independent fields are given in Figure 2.5. The store record, which represents the close of a
file opened for write, includes new data by reference from a separate UNIX file.

2.2. MECHANISMS FOR HIGH AVAILABILITY 19

Overwritten Subsequence Overwriter

[store(f, u) | utimes(f, u)]+ store(f, u)

chown(f, u) chown(f, u)

chmod(f, u) chmod(f, u)

utimes(f, u) utimes(f, u)

[store(f, u) | chown(f, u) | chmod(f, u) | utimes(f, u)]+ remove(�, �, f, u)

[chown(s, u) | chmod(s, u) | utimes(s, u)]+ remove(�, �, s, u)

[chown(d, u) | chmod(d, u) | utimes(d, u)]+ rmdir(�, �, d, u)

(a) Overwrite Optimizations

Identity Subsequence

Initiator Intermediaries Terminator

create(�, �, f, �) [store(f, �) | chown(f, �) |
chmod(f, �) | utimes(f, �) |
link(�, �, f, �) |
remove(�, �, f, �) |
rename(�, �, �, �, f, �)]�

remove(�, �, f, �)

symlink(�, �, s, �) [chown(s, �) | chmod(s, �) |
utimes(s, �) |
rename(�, �, �, �, s, �)]�

remove(�, �, s, �)

mkdir(�, �, d, �) [chown(d, �) | chmod(d, �) |
utimes(d, �) |
rename(�, �, �, �, d, �)]�

rmdir(�, �, d, �)

(b) Identity Subsequence Optimizations

Table 2.7: CML Optimization Templates

This figure shows optimizations that may be taken over CML records. There are two kinds of
optimizations – overwrites, shown in Part (a), and identity subsequences, shown in Part (b).
Overwrites replace a sequence of log records (the overwritten subsequence) with a single update
(the overwriter). Identity subsequences remove a sequence of log records, beginning with the
initiator, including intermediaries, and ending with the terminator. In the tables above, f is a
file, s is a symbolic link, d is a directory, u is a user ID, and �means the value of the argument is
not relevant for the cancellation. All updates must be authored by the same user; this condition
is satisfied trivially by CML ownership. Source: Adapted from Kistler [62], Tables 6.2 and 6.3,
pages 130 and 131.

20 CHAPTER 2. CODA FILE SYSTEM

and identity subsequences. In an overwrite optimization, a series of records collapses into one
(e.g. repeated stores to the same file). In an identity subsequence optimization, a series of
records may be eliminated completely (e.g., a create of a file followed by a remove). Log
optimizations are given in Table 2.7. To simplify optimizations and reintegration, a non-empty
CML is owned by one user. Only the CML owner may perform updates in a disconnected
volume.

Persistence of the CML is guaranteed by placing it in recoverable virtual memory using
the RVM package [116, 75], which provides failure atomicity and permanence of recoverable
virtual memory structures. Details on the use of RVM are provided in Sectionsss:Persistence.

2.2.2.3 Reintegration

Reintegration is a transient process by which Venus transforms a volume from the emulating
state to the hoarding state. It proceeds in three stages – the prelude, the interlude, and the
postlude. The prelude refers to activities performed by Venus in preparation for reintegration.
Venus places the volume in reintegrating state when it notices the AVSG has become non-empty
and the following three conditions are met. First, a triggering event in the volume has occured,
such as a reference to an object in the volume. Second, all current activity in the volume has
ceased. Reintegration obtains exclusive control of the volume; new activity is blocked for the
duration. Third, there are authentication tokens for the CML owner.

The remainder of the prelude consists of the following four tasks. First, Venus cancels
store records for files open for write. This is necessary because the data associated with the
store record (i.e., the container file) may have been modified since the record was logged,
and may no longer be consistent with that record. Second, Venus allocates permanent fids for
objects that have temporary fids.3 Third, Venus marshals the log records into an in-memory
buffer. Finally, the reintegrator thread sends an RPC to the server requesting reintegration.

The interlude is the processing of the reintegration request at the server. The server retrieves
the CML fromthe client and unmarshals the log records. It then write-locks the objects identified
in the CML. The server then checks the soundness of each operation through a process called
certification. The server applies different checks depending on the update and object type, as
summarized in Table 2.8. If the operations are sound, the server performs them tentatively.
Next the server transfers new data associated with store records. These data transfers are
called backfetches. If all is well, the server atomically commits the changes to recoverable
storage. Otherwise, it discards the changes. In the current implementation, new data transfers
can occur before reintegration. This reordering of backfetch is discussed in Section 5.3.2. An
error in performing any part of the interlude, for any record, is sufficient cause for the server to

3If Venus runs out of pre-allocated fids while logging updates, it assigns newly-created objects temporary fids.
Before reintegration, it must obtain permanent fids from the server and replace the temporary ones.

2.2. MECHANISMS FOR HIGH AVAILABILITY 21

Operation Certification

chown(o, u) o.version-id

chmod(o, u) o.version-id

utimes(o, u) o.version-id

store(f, u) f.version-id

create(d, n, f, u) d.data[n]

mkdir(d1, n, d2, u) d1.data[n]

symlink(d, n, s, u) d.data[n]

remove(d, n, f, u) d.data[n], f.version-id

remove(d, n, s, u) d.data[n], s.version-id

rmdir(d1, n, d2, u) d1.data[n]

link(d, n, f, u) d.data[n]

rename(d1, n1, d2, n2, o, u) d1.data[n1], d2.data[n2]

o.data[‘‘..’’] (if o a directory)

Table 2.8: Version and Value Certification

The purpose of certification is to ensure that reintegrated updates can be serialized after inter-
vening activity at the server. The table above lists, for each operation, the fields that must match
at the client and server before the update. In addition, the user u must have sufficient access
rights to complete the update.

In version certification, the client must have updated the same version of the object present
at the server. The version-id field of the object uniquely identifies its last update. (In the
implementation, the version-id is the store ID field of the version vector.) If the server copy
changed after the client performed the disconnected update, the version-ids will differ, and the
check will fail.

The server uses value certification for directory operations. In value certification, the server
checks the object’s data, in this case directory entries. The update succeeds if the server can
perform it on its copy of the directory, regardless of the version of the directory at the client.
For example, if the client creates a file, the server checks that there is no directory entry with
the same name in its copy. For remove, on the other hand, the server checks that there is a
directory entry with the specified name. Value checking is less stringent than version checking;
it takes advantage of the semantics of directory operations to allow the server to accept more
reintegrated updates. In the table above, the checking of directory contents is denoted by the
data field. The value of d.data[n] is the fid of the object bound to the name n in directory d, if
any.

22 CHAPTER 2. CODA FILE SYSTEM

reject the entire reintegration. This failure model has changed, as described later in this section.
Finally, the server releases the objects, and responds to the client.

The postlude occurs back at the client. If reintegration succeeds, Venus commits the local
changes by clearing the dirty flags of the objects represented in the CML, and discarding the
CML records. The behavior of Venus on failure has evolved. In the original implementation,
Venus aborts the changes by spiriting the objects involved away to a local file called a closure,
purging them from the cache, and discarding the CML records. Failure representation in the
current implementation takes a different form, described below. Commit and abort actions are
performed as single RVM transactions. Venus then changes the volume state from reintegrating
to hoarding.

Several refinements were made to the original implementation to support an early version of
isolation only transactions (IOT), a mechanism for detecting read/write conflicts and encapsu-
lating sequences of file system operations [73, 72]. The two main refinements are incremental
reintegration and an improved failure model. Incremental reintegration allows Venus to rein-
tegrate sets of CML records pertaining to a particular transaction instead of the whole log. The
CML record includes a transaction identifier, and the prelude and postlude are parameterized
by transaction identifier.

The failure model has been improved in two ways – the grain of failure reporting, and
failure representation. The original implementation used coarse-grained failure reporting.
Reintegration of a CML succeeds if and only if reintegration of each and every record succeeds.
A single failure causes the entire CML to be rejected, even if the other records are independent
of the offending update. The advantages of coarse-grained failure handling are simplicity and
ease of implementation. This approach also captures certain dependencies the system cannot
currently detect, such as read-write dependencies (e.g., store foo, cat foo > bar).
The coarse-grained model has some disadvantages as well. Bandwidth used to transfer unrelated
operations is wasted. Users find it difficult to determine which operation caused the failure,
and inconvenient to restore the changes to an entire volume. The current implementation uses
fine-grained failure reporting. If a failure occurs, the server aborts the reintegration and returns
an index containing the position of the offending record. The client may then resend only those
operations that are likely to succeed transparently to the user.

The failure representation has changed from exiling the offending objects to a closure, to
marking them in conflict. They appear to the user in place, as dangling symbolic links, and must
be repaired using the repair tool. The repair tool has been extended to expose and manipulate
the local copy of an object along with the server replicas. Updates corresponding to objects
requiring local repair remain in the CML.

Reintegration has undergone further transformation as a result of this work. These changes
are described in detail in Chapter 5.

2.2. MECHANISMS FOR HIGH AVAILABILITY 23

System call interface

Application

RPC2

Venus

VFS interface Socket layer

Network device to Coda servers
Kernel

Coda MiniCache

Figure 2.9: Coda Client Structure

24 CHAPTER 2. CODA FILE SYSTEM

2.3 Client Overview

Coda support on a client workstation consists of two components. The first component, called
the MiniCache [123], is a small in-kernel module that implements the Sun Microsystems Vir-
tual File System (VFS) interface [64], a standard system call intercept mechanism that allows
multiple file systems to co-exist within a single Unix kernel. This interface is summarized in
Table B.1. The second component is a much larger user-level cache manager called Venus.
The primary responsibilities of Venus are to service user file system requests, maintain cache
coherence while connected, and manage the cache within predefined resource limits. In ad-
dition, it must hoard data in anticipation of disconnection, log and reintegrate disconnected
updates, detect diverging replicas and trigger their resolution or quarantine them for repair.
Venus is implemented as a multi-threaded process using a lightweight co-routine thread pack-
age called LWP [111]. Although its functionality could be provided within the kernel for
better performance, the user-level implementation is more portable and considerably easier to
debug. The structure of a Coda client is illustrated in Figure 2.9. Details on the structure and
implementation of client components are provided in Section B.1.

An application system call involving a Coda object is directed by the VFS layer to the Coda
VFS. If the information required is contained within the Coda VFS, the call is serviced without
involving Venus and control returns to the application. Otherwise, the kernel contacts Venus
by writing a message to a pseudo-device. Venus reads the request from the pseudo-device, and
if remote access is necessary, contacts the Coda file servers using the RPC2 remote procedure
call package [111]. When Venus completes processing the request, it writes a response on the
pseudo-device, and control returns back through the kernel to the application process.

2.4 Server Overview

Server support for Coda consists of a set of user-level processes, the Vice file server, and
authentication server, and either an update server or an update client. One server is designated
the System Control Machine (SCM), and runs an update server; all other servers run an update
client. Most servers run all three components, but this configuration is not necessary. Figure
2.10 shows an example server configuration.

The primary responsibilities of a Vice file server are to handle file system requests from
Venus, break callbacks to Venus when objects are updated, and participate in the resolution
protocol. The Vice file server exports the Vice interface, shown in Table B.6. Like Venus, the
file server is a multi-threaded user-level process. The authentication server provides the means
for establishing secure RPC connections between clients and servers. The update subsystem
replicates and maintains the consistency of certain slowly changing system databases. Details
on the structure and implementation of server components are provided in Section B.2.

2.4. SERVER OVERVIEW 25

server
File

server
Auth Update

server

Kernel

Kernel

server
File Update

client

Kernel

server
Auth Update

client

server
File

server
Auth

Kernel

Update
client

System control machine (SCM)

Figure 2.10: Coda Server Structure

26 CHAPTER 2. CODA FILE SYSTEM

Chapter 3

Communication Layer Adaptation

To adapt to changes in network conditions, a system must be able to gather information on
network performance, and then adjust its behavior accordingly. Adaptation can occur at many
levels of a system. For example, a transport protocol might adapt by collecting data on packet
round trip times and adjusting its retransmission timeout. At a higher level, a movie player
application might adapt by observing network throughput and adjusting the picture quality. An
assumption underlying this adaptation at all levels is that performance in the recent past is a
good predictor of performance in the near future.

The source of information on network conditions in Coda is its communications layer,
consisting of transport protocols and connection management at the client and server. This
layer gathers measurements on network transmissions between client and server which form
the basis of estimates of future network performance used by Venus to adapt its behavior. The
goals for this measurement gathering are as follows. First, the performance impact of obtaining
the measurements should be minimal. Second, because network resources may be scarce, the
communications layer should not perform any additional communication to gather information.
Third, although Venus is the target “application” for this work, the mechanism should be general
enough to support other adaptive applications. Finally, because this communications layer is
part of an actively used production system, data gathering should be introduced in a compatible
way, with minimal design and implementation changes to existing code.

This chapter describes the Coda communications layer. It begins with a discussion of design
alternatives and describes the approach taken in this work. The next two sections describe the
adaptive transport protocols Coda uses. The fourth section describes how the measurements
exported to applications are collected, and how Venus derives and uses the estimates based
on these measurements. The fifth section discusses the effect of server replication on the
communications layer. The last section explores the relationship between the communications
layer and quality of service (QoS) support.

27

28 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

3.1 Design Alternatives

Approaches for estimating network performance may be characterized by type of estimate,
monitoring strategy, and placement of monitoring within the system. Estimates of network
performance fall into two categories – static and dynamic. Static estimates are based on known
characteristics of a network connection. For example, an Ethernet connection is nominally
rated at 10 Mb/sec and is reasonably reliable. Static estimates may be derived from a variety of
sources, such as from hints supplied by a user or application (e.g., “I’m connecting via modem
now.”), the current network interface, or upcalls from lower layers when a mobile host changes
location [56]. Static information allows the system to converge more rapidly to accurate
estimates when discontinuities in performance occur, such as when a mobile host switches
between network devices or changes locations. The obvious drawback of static estimates is
they contain no information on actual network performance as observed by an application.
Under pathological conditions, observed performance can deviate by orders of magnitude from
nominal performance. In addition, an estimate based on the current network interface may be
only a weak upper bound on performance, because the path to a destination may traverse a
network segment whose characteristics are substantially worse than the segment adjacent to the
client. Indeed, this is often the case with communication between stationary and mobile hosts.

Dynamic estimates are obtained by monitoring network usage. Monitoring may be active
or passive. In active monitoring, a host generates network traffic for the sole purpose of
collecting measurements (e.g., see [104]). Traffic may be generated periodically to keep
estimates up-to-date. Active monitoring may affect or be affected by existing traffic (e.g.,
probe compression [12]), particularly if connectivity is weak. The cost of measurement may
also be significant. In passive monitoring, a host measures only existing traffic. Passive
monitoring has been used extensively on local area networks [81], where some or all traffic
may be monitored using “promiscuous mode” [125]. Estimates based on passive monitoring
can become stale if traffic is infrequent or irregular.

Where within a system should monitoring be performed? Its placement is influenced by
the kinds of measurements one wishes to make. Monitoring at lower system layers, such as
at the device driver level, may yield a more accurate picture of network usage, particularly if
there are multiple tasks competing for that resource. On the other hand, measurements taken in
higher layers may be more meaningful to applications. For example, effective throughput for
a bulk transfer can be measured only at or above the transport layer, because protocol-specific
knowledge is required to exclude overheads such as packet headers and retransmissions.

The communications layer of Coda uses adaptive transport protocols that export end-to-end
measurements of network performance to applications. End-to-end measurements are the most
meaningful in that they reflect the performance the application actually observes. Measurements
are obtained through passive monitoring, but applications may implement active monitoring by

3.2. REMOTE PROCEDURE CALL 29

generating their own traffic. Venus derives estimates based on both measurements and static
information to determine connectivity with respect to servers.

3.2 Remote Procedure Call

Client-server communication in Coda is performed using remote procedure call (RPC) [10].
Coda uses the RPC2 remote procedure call package [111], a portable, user-level RPC package
built on UDP/IP [98]. This section describes the extensions to RPC2 that enable it to cope with
poor or highly variable network performance.

3.2.1 Protocol Overview

RPC2 implements a remote procedure call service with at-most-once semantics [83]. Clients
bind to servers using a hhost; portal; subsystemi triple, where subsystem refers to a group of
related remote procedure calls. Once a client binds to a server and establishes a connection, it
may then send a request, which consists of an operation code and a set of parameters. The server
replies with a return code and result parameters, if any. Only one request may be in progress
on a connection at a time, but multiple connections may be established to permit concurrency.

RPC2 connections may include side effects to allow specialized network operations to be
performed. Coda uses only one side effect, SFTP, a specialized streaming protocol for efficient
bulk data transfer. Side effects are initiated by the server during an RPC, and operate from a
different portal. For extensibility reasons, the RPC and side effect implementations are isolated
from each other; RPC2 calls side effect routines only at certain well-defined points.

Since RPC2 is implemented using datagrams, it must provide its own reliable delivery. In
the absence of failures, a reply serves as an acknowledgement for the request, and the next
request serves as an acknowledgement for the reply. To detect failures, the client specifies
a timeout period for an RPC, during which it must receive some sort of response from the
server. During an RPC, the client periodically sends a keepalive, which is a retransmission of
the request packet. If the server receives a keepalive for a request it has already received but
has not yet serviced, it responds with a busy packet1. To cope with lost reply packets, the server
retains a copy of the most recent reply for one timeout period. If the server receives a keepalive
for the most recently serviced request, it simply retransmits its saved copy of the reply.

1Side effects do not affect the failure detection algorithm as long as the server responds to keepalives with
busy packets.

30 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

3.2.2 Retransmission Strategy

Timeout and retransmission intervals are determined by two parameters: N , the number of
retransmissions, and Bt, the keepalive interval. The values for these parameters are specified
at RPC2 initialization, and are intended to characterize the likelihood of packet loss and the
amount of time the server may take in responding to requests before the client declares it down.
During an RPC, the client may send up to N retransmissions of a request to a server within Bt

of the original request. The retransmissions B1;B2; . . . ; BN are distributed such that:

B1 +B2 + � � �+BN = Bt; Bi � Bi+1 (3:1)

If the client times out on the request for the ith time, it schedules its next retransmission
for Bi later. If the client receives a busy packet, it schedules its next retransmission for a
full Bt seconds later. The client declares failure at time t after the original request, where
Bt � t � 2Bt. Failure is declared at time Bt after the original request if no retransmission
provokes a response. The worst case occurs if a failure strikes immediately after the server
sends a busy packet. In this case, the client does not declare failure until 2Bt after the original
request.

Since different connections may observe different network performance, the retransmission
intervals Bi are maintained on a per-connection basis. They are initialized as in Equation 3.1,
with Bi+1 = 2Bi, and are calculated using the algorithm shown in Figure 3.1. For example, the
retransmission schedule for the RPC2 defaults of Bt = 60 and N = 6 is 0.47, 0.94, 1.89, 3.78,
7.56, and 15.12 seconds, with failure declared after an additional 30.24 seconds if no response
is received from the server. These intervals are shown in Figure 3.2(a).

A lower bound is placed on the Bi to ensure retransmissions are not sent too soon after
one another. The lower bound is initialized to a minimum lower bound of 300 milliseconds2,
and then adjusted upwards if necessary based on round trip time estimates [57]. Intuitively,
the minimum retransmission interval B1 should be no shorter than the time to send a request
and receive a response. Whenever the round trip time estimate is changed, the retransmission
intervals are recalculated while maintaining Bt, as shown in Figure 3.2(b).

Obviously one cannot increase B1 arbitrarily and maintain both N and Bt; either N must
decrease or Bt must increase. RPC2 decreases N rather than increasing Bt, as shown in Figure
3.2(c), because lengthening the timeout would render system responsiveness unpredictable in
the presence of failures.

3.2.2.1 Obtaining Round Trip Time Observations

An estimate of the round trip time (RTT) is based on observations. RPC2 collects RTT obser-
vations on pairs of request and reply packets, including packet exchanges during connection

2The lower bound of 300 milliseconds was chosen as appropriate for Ethernet.

3.2. REMOTE PROCEDURE CALL 31

/* The connection structure Conn contains:
- the RTT-based lower bound LowerLimit
- the maximum number of retries N
- the keep alive interval Beta[0] and retry intervals Beta[1] . . . Beta[N]

Calculate retry intervals Beta[1] . . .Beta[N+1] such that:
- Beta[i+ 1] = 2�Beta[i]
- Beta[0] =Beta[1]+Beta[2] + � � �+Beta[N+1]

subject to the LowerLimit. */

long betax, beta0, timeused, i;

/* zero everything but the keep alive interval */
Conn->Beta[1] ... Conn->Beta[N] = 0;

/* recompute Beta[1] .. Beta[N] */
betax = Conn->Beta[0] / ((1 << Conn->N+1) - 1); /* shortest interval */
beta0 = Conn->Beta[0]; /* keepalive interval */
timeused = 0;
for (i = 1; i < Conn->N+2 && beta0 > timeused; i++)

f

if (betax < Conn->LowerLimit) /* don’t bother with (beta0 - timeused < LowerLimit) */
f

Conn->Beta[i] = Conn->LowerLimit;
timeused += Conn->LowerLimit;
g

else
f

if (beta0 - timeused > betax)
f

Conn->Beta[i] = betax;
timeused += betax;
g

else
f

Conn->Beta[i] = beta0 - timeused;
timeused = beta0; /* we’re done */
g

g

betax = 2 * betax;
g

Figure 3.1: Calculating RPC2 Retransmission Intervals

This figure shows how RPC2 calculates its retransmission intervals in pseudocode.

32 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

t = 0 t = 60

(a)

t = 0 t = 60

(b)

t = 0 t = 60

(c)

Figure 3.2: RPC2 Retransmission Intervals

This figure illustrates how RPC2 adjusts its retransmission intervals. Part (a) illustrates the
initial retransmission schedule for N = 6 and Bt = 60 seconds. The arrows show when
retransmissions are sent during the period Bt after the original request. If the retransmissions
fail to provokea response from the server, the client times outatBt. In part (b), the retransmission
schedule is adjusted according to a round trip time estimate of 5 seconds. The estimate serves as
the lower bound on the retransmission interval. Part (c) shows adjustment with a lower bound
of 10 seconds. In this case N is decreased to 5.

3.2. REMOTE PROCEDURE CALL 33

establishment. RPC2 uses a packet timestamping scheme, similar to that in recent versions
of TCP [54, 99]. The RPC2 client stamps an outgoing packet with the current time, and the
server echoes the timestamp on the next packet back to the client. The client computes the RTT
observation by subtracting the echoed stamp from the current time.

Packet timestamping requires additional data to be sent on each packet – space that is at
a premium in weakly connected environments. An earlier approach used for collecting RTT
observations that did not require sending additional data on packets simply had the sender
measure the elapsed time between the send of the data and receipt of the acknowledgement.
Unfortunately, this scheme suffers from retransmission ambiguity – if the packet was retrans-
mitted, with which send should an acknowledgement be associated? While there are strategies
for alleviating retransmission ambiguity [57], they involve discarding observations contami-
nated by retransmissions. In contrast, observations collected using packet timestamping are
unambiguous. As long as the timestamps are small, the ability to collect observations outweighs
the space expenditure.

Round trip times are end-to-end measures that reflect not only switching and propagation
delay within the network, but also send and receive processing overheads at the endpoints.
The intent of the RTT measurements is to capture network delay, which is both significant
for the range of networks under consideration and often highly variable [79, 109]. Thus the
measurements exclude RPC queuing and service times, which are strongly dependent on request
type and server load. Lengthy RPCs are addressed by the keepalive mechanism. Protocol
processing overheads remain a part of the RTT measurements. However, with the advent of
gigabit networks, attention has been focused on reducing these overheads [20, 34, 60, 65].

RPC2 timestamps are 32 bits long. The RPC2 packet header contains two timestamps.
RPC2 uses one timestamp field for collecting RTT observations. It uses the other field to send
the time for the bind sequence to the server. The bind time is used to initialize side effects.
Timestamps are relative to RPC2 initialization; they are not synchronized between client and
server. The resolution of the timestamp is 10 msec, which is comparable to the clock resolution
(16 msec) on workstations currently in use. This resolution is coarse enough to allow an RPC2
application to run for over a year before the timestamp wraps around, yet fine enough to yield
useful measurements for exchanges even over LANs.

RPC2 writes and collects timestamps to exclude queuing time from the RTT observation,
and an RPC2 server excludes service time by adding it to the echoed timestamp before sending
it back to the client, as shown in Figure 3.3(a). Retransmitted packets are stamped with the time
of the retransmission, not the original send time. Busy packets echo the request timestamp; the
service time is assumed to be zero, as shown in Figure 3.3(b). The minimum RTT is one unit
(10 msec); an exchange that completes within a clock tick at the client yields an observation
with the minimum value. Packets containing null timestamps are not used for calculating RTT
observations. Such packets can result from erroneous requests and rejected binds.

34 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

t2time =

t1time =

1req(t)

reply(t +s)1

2t - (t +s)1

Client Server

process request

service time = s

obs =

(a)

t1time =

t2time =

obs = t2

time = t3

t3

sservice time =

1req(t)

2req(t)

busy(t)2

reply(t +s)1

Client

(timeout)

time = t4

- 1

Server

process request

obs = t - (t +s)2 4 1

process keepalive

(b)

Figure 3.3: Collecting RTT Observations

This figure shows how RPC2 gathers RTT observations. Part (a) shows the common case. The
server stores the timestamp on the request packet, and returns the timestamp plus the service
time on the reply packet. The observation is calculated based solely on the current time and the
timestamp in the received packet. Part (b) shows a timeout and retransmission. In this example,
the client gathers an additional observation from the returned busy packet.

3.2. REMOTE PROCEDURE CALL 35

3.2.2.2 Estimating Round Trip Time

The RTT estimate is computed from the observations using a weighted average

RTTi+1 = �RTTi + (1 � �)si (3:2)

where si is an RTT observation. This estimate is referred to as the “smoothed RTT”. The choice
of � determines how quickly the smoothed RTT responds to changes in the RTT observations.
In RPC2, � = :875, as recommended by Jacobson [52].

The retransmission timeout (RTO) is based on the RTT and an estimate of the variance, to
adapt to the variance in delay seen from networks under high load [14]. The timeout is

RTO = �RTT (3:3)

where � is the estimate of the variance, as calculated by Jacobson [52]. The RTO is then used
as a lower bound on the retransmission intervals Bi.

RPC2 does not currently take request and reply length into account in its RTT estimate.
Unlike in a file transfer protocol, the amount of data sent on requests and replies is not
constant, nor even predictable. Because of this, the RTT has high variance at low bandwidths.
To improve performance, the calculation of the RTO may need to take packet length into
account [79]. Ideally, RPC2 would derive an RTT independent of length, then apply it given
the length of the request and probable length of the reply. The RTO would be calculated using
ax + b, where x is the packet size and b is the round-trip time for a zero-length request. One
can approximate b with small packets. Then for larger requests, apply a as a correction factor
to take network bandwidth into account.

3.2.3 Sharing Liveness Information

As mentioned earlier, the RPC and side effect protocols are isolated from each other, communi-
cating only at well-defined points. While this separation makes the code extensible, it can cause
unnecessary network traffic. While a side effect is in progress, the RPC layer may retransmit
the request because its RTO has expired. On a high-bandwidth network this behavior is not
a problem – the server simply responds with a busy packet. However, at low bandwidth, the
network may be so congested with side effect traffic that the retransmitted request may not even
arrive at the server before the client times out and declares the request failed.

To address this problem, RPC2 allows the RPC layer to query the side effect layer for
liveness of its peer before retransmitting the request. If a side-effect packet has been received
from the peer within the retransmission interval, the RPC layer suppresses the retransmission
and operates as if a busy packet arrived at that time. The next retransmission is scheduled for
Bt after the last side effect response from the peer.

36 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

Note that while RPC2 can share liveness informationwith a side effect on a given connection,
it cannot share liveness information between different RPC connections to the same server. The
reason is that a client cannot distinguish between remote site failure and a lost request packet
(i.e., a client cannot infer from liveness of one connection that the server received a request on
another connection). The reason the RPC and side effect layers can share liveness information
for a given request is that a client can infer from the execution of a side effect that the server
received the request and is busy servicing it. Thus RPC retransmissions are unnecessary.

3.3 Bulk Data Transfer

RPC2 uses a sliding window protocol [125] called SFTP (Smart File Transfer Protocol) to
perform bulk data transfer. SFTP was originally designed for use on a local area network. It used
a fixed timeout interval with no backoff strategy, and aggressively resent all unacknowledged
data at once on timeouts. Early experiments revealed that it failed to operate below 100 Kb/s
for receive and 9.6 Kb/s for send. To operate over a range of networks, SFTP needed to
take into account the performance of the network before retransmitting data. This section
provides an overview of SFTP, and then describes the changes to SFTP needed to cope with
weak connectivity. For more information on other protocol details, the interested reader should
see [111].

3.3.1 Protocol Overview

An SFTP file transfer occurs as a side effect of a remote procedure call. Since the transfer of
data may flow from RPC2 server or RPC2 client, the sender of the data is called the source and
the receiver is called the sink. The protocol is asymmetric, in that clients and servers are not
treated equally. An RPC2 client is typically a single-user workstation, but an RPC2 server may
be expected to service many hundreds of clients. To preserve scalability, the server controls a
file transfer whether it is the source or the sink.

A file transfer is basically a series of data and acknowledgement exchanges. The source
sends a set of data packets and waits for an acknowledgement to arrive. SFTP uses selective
acknowledgements [54, 125]; in addition to specifying the last consecutive packet received,
they may also indicate which packets in a range were received. When an acknowledgement
arrives, the source resends any packets that the sink did not receive, and the next set of data
packets. The frequency of acknowledgements, the window size, and the amount of data sent
in response to an acknowledgement are among the file transfer parameters that may be set by
client and server at SFTP initialization.

The protocol’s asymmetry manifests itself in how a file transfer is started, and in handling
timeouts. If the source is the server, as in Figure 3.4, the transfer occurs as described above.

3.3. BULK DATA TRANSFER 37

Client Server

RPC2 request

send new data

send ack

send non-acked
+ new data

resend non-acked
+ new data

timeout

send response

RPC2 response

send ack

Figure 3.4: SFTP File Transfer: Server to Client

This figure shows a server to client SFTP file transfer. The server initiates the side effect after
receiving the RPC request. It times out and retransmits data as necessary. When the transfer is
complete, it sends the RPC reply to the client.

38 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

Client Server

RPC2 request

timeout

RPC2 response

send start packet

send new data

send non-acked

send ack

send trigger packet

+ new data

send response

Figure 3.5: SFTP File Transfer: Client to Server

This figure shows a client to server SFTP file transfer. After receiving the RPC request, the
server initiates the side effect by sending a start packet. The client then answers with the first
set of data packets. The server controls retransmission by sending trigger packets, which signal
the client to retransmit data.

3.3. BULK DATA TRANSFER 39

If an acknowledgement does not arrive before a certain period has passed, the server times out
and retransmits its packets. If the source is the client, as in Figure 3.5, data transfer begins only
when the client receives a start packet from the server. After sending data, the client passively
waits for an acknowledgement. It does not retransmit data upon timeout. Instead, the server
times out and sends a trigger packet, which is a copy of the last acknowledgement.

3.3.2 Obtaining RTT Observations

Like RPC2, SFTP collects RTT observations using packet timestamps. The timestamps and
storage of RTT state is the same as presented in Section 3.2.2. The use of packet timestamps
in SFTP to gather RTT observations at the source is similar to that of TCP [54]. However,
because of the asymmetry of SFTP, the sink also gathers RTT observations. If the sink is an
RPC2 server, it may control the transfer even though it does not send data. Thus it must also
gather RTT observations and derive its own RTO.

In SFTP, timestamping is two-way, allowing both source and sink to collect RTT observa-
tions during a transfer. The packet header contains two timestamps: the current timestamp,
which is the time at which the packet was sent; and the echoed timestamp, which was generated
by and returned to the receiver. Both the source and the sink keep an additional word of state
to hold the timestamp that will be echoed next. Packets with null timestamps are not used
for RTT observations. Retransmitted packets are stamped with the time of the retransmission,
not the original send time. Packets retransmitted upon timeout echo null timestamps. These
packets are sent by the server, and can be data (if server = source) or triggers (if server = sink).
These packets do not represent real observations because they are generated spontaneously, not
in response to a transmission from the client.

The measurements collected by source and sink are not equivalent, and only the sink mea-
sures what could be considered a true packet round trip time. The purpose of the measurements
is to determine when to retransmit. Thus, the measurement of interest for the sink is the time
for a start, acknowledgement, or trigger packet to be sent and a data packet received from
the source. As shown in Figure 3.6, the source echoes the timestamp on data packets sent to
the sink, and marks the first packet it sends in response to an acknowledgement. (The source
must mark this packet because it is not necessarily the first packet in the receive window at the
sink.) The sink computes the RTT based on the echoed timestamp in the marked packet. If the
marked packet is lost, the sink may be able to calculate an RTT based on its retransmission. If
the marked packet is delayed, the RTT will reflect the delay.

The measurement of interest for the source is the time for a set of data packets to be sent
and an acknowledgement received. The source timestamps each data packet in the set. The
sink retains and echoes the timestamp from the earliest unacknowledged packet, which is the

40 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

11A (tc ,ts)1

ts1time =

time = ts2D (ts ,0)2 2

ts1ts3obs = -
ts3time =

time = tc2

2tc 1tcobs = - ts4time =
D (ts , tc)14 4

tc1time =

D (ts ,0)11

D (ts , tc)3 3 1

1ts

Client Server

echo =

Figure 3.6: Two-way Timestamping in SFTP

This figure illustrates an SFTP packet exchange with the server as the source. The server times
data-to-acknowledgement exchanges, and the client times acknowledgement-to-data exchanges,
as shown by the dotted vertical arrows. In this transfer, acknowledgements are requested every
other packet. The first data packet of each set is marked, and is shown in bold. Since time
is measured relative to RPC2 initialization, client and server timestamps are not synchronized.
Client timestamps are denoted tci and server timestamps are denoted tsi. When D1 arrives,
the client retains its timestamp ts1 to echo on the next acknowledgement. There is no RTT
observation to compute from D1 because its timestamp is null (i.e., the file transfer has just
started). The server computes an RTT from A1 when it arrives based on ts1. When D3 arrives,
the client computes an RTT observation from its echoed timestamp tc1.

3.3. BULK DATA TRANSFER 41

packet at the left edge of its receive window3. If the left-edge packet arrives before the sink
sends the next acknowledgement, regardless of its arrival order within the set, its timestamp
will be echoed to the source. If the left-edge packet does not arrive before the sink sends the
next acknowledgement, the sink has several options:

1. Echo the timestamp from the packet that most recently advanced the left edge of its
receive window. This timestamp may be older than the one on the left-edge packet, and
may result in a larger RTT.

2. Echo the timestamp from the earliest of the received packets. This timestamp may be
newer than the one on the left-edge packet, and may result in a smaller RTT.

3. Echo a zero timestamp. The RTT estimate at the source will remain unchanged.

RPC2 uses the first option; the sink echoes the older timestamp. If packets are delayed or
lost, the source should be more conservative about retransmission. If the left-edge packet is
delayed and arrives eventually, the timestamp echoed to the source will reflect the delay. If the
left-edge packet is lost, its retransmission will contain a more recent timestamp. The resulting
RTT observation will be based on the newer information. When the acknowledgement arrives
at the source, the source computes the round trip time for the set of packets based on the echoed
timestamp.

3.3.3 Estimating RTT

The smoothed RTT and RTO are derived from the RTT observations as in Equations 3.2 and
3.3. Note that during a file transfer, the source and sink usually have different smoothed RTTs
and therefore different RTOs. The RTT on the source is a measure of the time to send some
number of data packets and receive an acknowledgement. In contrast, the RTT on the sink is a
measure of the time to provoke a response (i.e., a data packet) from the source. The two RTTs
are equivalent only if the source requests an acknowledgement on every packet.

When a new connection is established the RTT state is initialized at the client using
observations from the RPC2 bind sequence. This information is also sent to the server on the
first request on the connection to initialize its SFTP RTT state.

3.3.4 Retransmission Strategy

SFTP uses an adaptive, RTT-based retransmission strategy with exponential backoff. The
retransmission timer is separate from the smoothed RTT estimate. When the retransmission
timer is backed off, RTT observations may still be collected.

3The left edge of the receive window is advanced as necessary when an acknowledgement is sent.

42 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

window

in-transit need-ack worried

Figure 3.7: SFTP Packet Sets

This figure illustrates SFTP packet sets for a window of ten packets, where acknowledgements
are requested every four packets. Packets on the left were sent most recently. Packets for which
an acknowledgement has been requested but not received and the RTO has expired are in the
worried set. Only these packets are retransmitted. Packets for which an acknowledgement has
been requested but not received and the RTO has not yet expired are in the need-ack set. Packets
for which an ack has not yet been requested are in the in-transit set.

In the original version of SFTP, the retransmission strategy was as follows: data packets
sent by the source and for which an acknowledgement had been requested but not received
were placed in a worried set. If the source was an RPC2 server, all of the packets in the worried
set would be resent upon timeout, followed by the next set of data packets. If the source was an
RPC2 client, the packets above would be sent upon receipt of a trigger. If the window became
full, only the first packet in the worried set was sent.

The problem with this strategy for slow networks is that a source becomes worried about a
packet the instant it is sent. The key change to this strategy is to delay worrying about a packet
until after at least a round trip time interval. The worried set is now partitioned into two sets –
the need-ack set and the worried set, as illustrated in Figure 3.7. Packets in the need-ack set
have been sent and an acknowledgement has been requested, but not enough time has passed to
be worried about the fact that an acknowledgement has not been received. Packets are moved
to the worried set when the RTO expires. Only packets in the worried set are retransmitted.

3.4 Exporting Network Information

How should RPC2 convey information on network performance to higher levels of the system?
Different applications may use the information in different ways. For example, they may differ
in how they average the observations, how recent the observations should be, and how many
samples are taken during any one interval. The form of the information should be flexible

3.4. EXPORTING NETWORK INFORMATION 43

ConnObservation time Bytes ElapsedType = M

Observation time BandwidthType = S

4 bytes

Figure 3.8: Transmission Log Record Formats

A transmission log may contain records of different types. Currently there are two record types,
the measured record (M) and the static record (S). The timestamp contains the system time
(8 bytes). The measured record contains the connection identifier, number of data bytes, and
elapsed time in milliseconds. The static record contains the nominal bandwidth.

enough to satisfy different application requirements. RPC2 exports two kinds of performance
information – liveness and transmission logs.

3.4.1 Liveness

Liveness refers to the last time a packet was received from a h host, portali pair. Since RPC2
does not send keepalives between requests, applications must probe their peers to detect site
failures. Exporting liveness information allows applications to suppress probes. RPC2 tracks
liveness for each hhost, portali pair, independent of connection. Applications can query RPC2
for the liveness of a connection’s peer and its side effect, if any:

RPC2_GetPeerLiveness(ConnId, Time, SETime)

The times returned are those of the last receipt from the host and portal and its side effect, on
any connection. These times reflect the liveness of the process reachable at that endpoint. They
do not convey any information about a specific request, and as explained in Section 3.2.3, they
cannot be used in that way. In particular, RPC2 keepalives can occur even in the presence of
high-level deadlock.

44 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

Elapsed

150

170

180

120

Bytes

11200

11200

11200

11200

1245287

1179726

1245277

1179726

Conn

 90

 7180

1245277

Type

M

M

M

M

M

822938159.257492

822938159.335613

822938159.366871

822938159.429364

822938159.616868

Timestamp

Figure 3.9: Transmission Log

This figure shows a fragment of a transmission log written by SFTP. The records shown are
all of the measured type, and represent observations from three different connections. The
bytes field is the number of data bytes involved in the exchange. The elapsed time shown is in
milliseconds.

3.4.2 Transmission Logs

Transmission logs contain recent observations of network performance. A transmission log is
a fixed length circular buffer4 containing a series of timestamped records. A transmission log
is associated with each h host, portal i; observations from different connections are multiplexed
onto the same log. Side effects maintain separate transmission logs.

Transmission log records may be of two types, as shown in Figure 3.8. The measured
log record contains measurements of an exchange between client and server. Connections are
distinguished by connection identifier. The bytes field refers to the amount of application data
involved in the exchange, not protocol overheads such as packet headers. The elapsed time field
is measured in milliseconds. A fragment of an SFTP transmission log containing measured
records is shown in Figure 3.9. The static log record allows incorporation of externally-supplied
static information, such as the nominal bandwidth of the network connection. This record could
easily be expanded to include additional static performance measures, such as latency and cost.

There are three RPC2 calls pertaining to transmission logs.

RPC2_GetNetInfo(ConnId, RPCLog, SELog)
RPC2_PutNetInfo(ConnId, RPCLog, SELog)
RPC2_ClearNetInfo(ConnId)

4The default log size is 32 entries. At this size, a log and accompanying data structures within RPC2 amount
to 820 bytes per h host, portal i pair. This is acceptable even for a server with connections to thousands of clients.

3.4. EXPORTING NETWORK INFORMATION 45

An application may obtain RPC or side effect transmission logs for the peer of a connection using
the RPC2 GetNetInfo call. The last two calls allow an application to modify a transmission
log. RPC2 PutNetInfo allows an application to add log records. This facility is useful for
depositing static estimates obtained at the application layer. Finally, RPC2 ClearNetInfo
clears a transmission log. This call allows applications to cope with drastic changes in connec-
tivity, such as if the client switches between network connections with significantly different
performance characteristics.

3.4.2.1 RPC2 Log Records

An RPC2 client writes a transmission log record when it updates the RTT as described in Section
3.2.2.1. Although RPC2 servers do not write log records, a transmission log is associated with
each peer because a process may be both an RPC2 client and an RPC2 server.5 A record at
client C in the transmission log for server S means:

C and S exchanged B bytes of data between time ts and time tr.

where B is the amount of actual user data transferred (not packet headers or duplicates), ts is an
echoed packet timestamp (suitably converted), and tr is the current time when the client writes
the log record. The log record then contains tr as the observation time, B as the data amount,
and (tr � ts) as the elapsed time. For RPC2, the elapsed time is exactly an RTT observation,
and the byte count is the sum of the data amounts on the request and reply packets. RPC2
writes log records for exchanges of packets during the bind sequence, as well as exchanges of
keepalives and busy packets. Since most RPC request and reply packets are small, RPC log
entries may be used as measures of end-to-end latency.

3.4.2.2 Side Effect Log Records

Side effects define the meaning of their log records. In SFTP, log records are measures of
effective network throughput for bulk transfer. For large files or weak connections, bulk
transfers may be lengthy. Rather than wait until the transfer completes to measure effective
throughput, SFTP measures exchanges of data and acknowledgement packets. Both the source
and the sink write SFTP log records. A record at host H1 in the SFTP transmission log for host
H2 means:

H1 and H2 transferred B bytes of data between time t
s

and time t
r
.

5An example occurs in Coda: Venus is a client of Vice for file system requests, and Vice is a client of Venus
for callbacks.

46 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

D (ts ,0)11

time = ts2

ts1time =

11A (tc ,ts)1

ts3time =

ts3

bytes = data(D) + data(D)
1 2

ts1

3D (ts , tc)13

ts4time =

time = tc2

tc1time =

2tc 1tc

3 4
bytes = data(D) + data(D)

A (tc ,ts)2 2 3

D (ts ,0)22

D (ts , tc)4 14

ServerClient

elapsed = -

-elapsed =

Figure 3.10: Measuring SFTP Rounds

This figure shows how information for SFTP log records is collected during a file transfer. In this
example, the server is the source and the client is the sink. Acknowledgements are requested
every other packet, as shown in bold. The rounds measured are shown with dotted vertical
arrows. The server writes a log record when A1 arrives acknowledgingD1 and D2. The elapsed
time is based on ts1 echoed on A1. The byte count reflects the packets acknowledged by A1,
not those sent by the server, though in this example they happen to be equivalent. The client
writes a log record when packet D4 marked for acknowledgement arrives. The elapsed time in
its record is based on the echoed timestamp tc1, which is the time the sink sent the most recent
acknowledgement received by the server. The byte count reflects the new data acknowledged
by A2, namely D3 and D4.

3.4. EXPORTING NETWORK INFORMATION 47

where B is the amount of actual user data transferred (the direction depends on which host
is the sink), tr and ts are times measured at H1, tr is the observation time, and tr � ts is the
elapsed time. In other words, the data is known to have been sent and received between ts and
tr.

SFTP writes log records based on the packet timestamps used for measuring round trip
times as described in Section 3.3.2. To measure elapsed time, the source measures the time
from sending the first data packet to receiving the acknowledgement. As shown in Figure 3.10,
it writes a log record when an acknowledgement packet acknowledging new data arrives. The
echoed timestamp on the acknowledgement is t

s
, and the resulting elapsed time is equivalent

to an RTT observation as described for the source in Section 3.3.2. The sink measures the time
from sending the acknowledgement to receiving a data packet marked for acknowledgement. It
writes a log record when a new data packet marked for acknowledgement arrives. The echoed
timestamp on this data packet is ts. In Figure 3.10, the server logs a record when A1 arrives,
and the client logs a record beginning when D4 arrives.

To measure effective throughput, SFTP must guarantee that the byte count in each record
reflects only the new data actually sent and received between ts and tr. The byte count in a log
record includes data on packets that satisfy the following conditions:

1. The packets are in the transmit window (source) or receive window (sink).
2. The packets are acknowledged by the acknowledgement (source) or are about to be

acknowledged (sink).
3. The packets have not been recorded previously.
4. The packets have timestamps no earlier than the echoed timestamp.

Conditions 1 and 2 exclude duplicate packets. Condition 2 ensures only those packets
known to have been received are recorded. Since acknowledgements are cumulative, condition
3 prevents overcounting of packets that are still in the window and have already been included
in a log record. Packets are marked when recorded to detect this condition. Packets must be
acknowledged to be recorded, but are not necessarily recorded if acknowledged. Note that
these conditions do not preclude use of spontaneous retransmissions by the server, as in RTT
estimation. Log records may be written at the client as long as the retransmission by the server
either generates new data or acknowledges new data.

Condition 4 is necessary because packets may by lost or delayed. Consider the example in
Figure 3.11, in which losses and retransmissions cause an acknowledgement to acknowledge
more data than was sent to provoke it. The source sends data packets, and the acknowledgement
is lost. The source times out and retransmits, and sends enough new data to fill its transmit
window. The acknowledgement is again lost. The source times out again, sending the first
unacknowledged packet in the transmit window. It finally receives a response, acknowledging
receipt of all data. What should the source log record say? It cannot include all of the data

48 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

D (ts ,0)11
ts1time =

time = ts2

ts3time =

ts4time =

D (ts ,0)1 3

D (ts ,0)2 4

3 5D (ts ,0)
time = ts5

time = ts6

tc1time =
11A (tc ,ts)1

ts7time =

time = tc3

time = ts8

elapsed = -ts
78 ts

1
bytes = data(D)

time = tc2
A (tc ,ts)2 52

A (tc ,ts)733

2D (ts ,0)2

D (ts ,0)4 6

1D (ts ,0)7

ServerClient

timeout

timeout

Figure 3.11: SFTP Records and Retransmission

This figure shows how observations for SFTP log records are collected if retransmissions occur.
In this example, acknowledgements are requested every other packet, and the transmit window
is four packets. Packets marked for acknowledgement are shown in bold. The source writes a
log record when A3 arrives. The byte count reflects only those packets in the transmit window
sent no earlier than echoed timestamp ts7, namely D1. For A2, recall from Section 3.3.2 that
the sink echoes the timestamp for the leftmost packet in its receive window. Since D1 and D2

have already been received, it the sink echoes ts5 from packet D3.

3.4. EXPORTING NETWORK INFORMATION 49

acknowledged, because most of it was sent before ts7. Fortunately, one can determine which
packets are to be included by comparing the timestamp echoed on the acknowledgement (ts)
to the timestamps on the packets in the transmit window. Packets with earlier timestamps are
excluded from the log record. Should an earlier acknowledgement arrive after much delay,
such packets may be logged at that point.

A similar situation can occur if packets are delayed. For example, suppose in Figure 3.10
that packet D1 arrives at the sink after D2. When D4 marked for acknowledgement arrives,
what should the sink log record say? It cannot include packet D1, because the packet was not
sent in response to A1; the sink cannot prove that it was sent between tc1 and tc2.

The conditions above guarantee data is logged at most once, and only during an interval in
which it was sent and received. If packets are lost or delayed, condition 4 implies that data may
not be logged at all. For example, in Figure 3.11, the data on packets D2 �D4 is not included
in the source log record. Unfortunately, in the absence of an earlier acknowledgement, not
enough is known about the timing of earlier packets to log accurate elapsed times for them,
even in separate records. The issue is one of retransmission ambiguity. Consider packet D2. If
its original send time is used, the elapsed time may be an overestimate because the packet may
have been lost. If the most recent send time is used (i.e., the packet timestamp), the elapsed
time may be an underestimate because the acknowledgement may reflect receipt of an earlier
transmission. SFTP does not log records for the earlier packets, and thus may undercount the
amount of data transferred.

3.4.3 Application Uses

Venus uses both liveness information and transmission logs. Liveness information is used to
suppress server probes, which are RPCs that Venus periodically sends to servers to detect state
changes6. If Venus is connected to a server over a heavily loaded weak link, a probe may fail,
causing Venus to declare the server down. This behavior can cause communication on other
connections to the same server (e.g., a file transfer) to fail unnecessarily. To avoid this situation,
Venus uses liveness information in lieu of probes. If a server was heard from within a probe
interval, Venus pretends it probed the server successfully at that time.

Venus uses the SFTP transmission logs to calculate bandwidth estimates for each server,
using a weighted average as in Equation 3.2. Venus polls RPC2 periodically to harvest new
measurements and update its estimates, and uses a simple threshold to determine if it is weakly
connected with respect to a server. While weakly connected, bandwidth estimates are used to
influence cache miss handling (Chapter 6) and trickle reintegration (Chapter 5).

Bandwidth estimates can become stale, because they are only collected during file transfer.
While weakly connected, file transfers can be less frequent for a variety of reasons. For

6Venus probes up servers every 12 minutes, and down servers every 4 minutes.

50 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

example, CML optimizations reduce the amount of data sent to the server during reintegration,
compared to the amount for the same updates performed while strongly connected. Users
can reduce the amount of data received from the servers by deferring demand fetches, and
by controlling the amount of data fetched during hoard walks. If Venus relies solely on file
transfer for its estimates, it may not detect improvements in network performance promptly
while weakly connected.

There are two strategies for dealing with stale estimates: generate test traffic, or find another
source of traffic to monitor. The former approach involves declaring an estimate suspect after
a certain period, and going forth in search of new information. Venus uses the former approach
in an indirect way. If an estimate is not updated within a certain period, Venus optimistically
declares the connection strong. If the connection is still weak, Venus will discover that fact
on the next file transfer. The staleness threshold should be large enough to prevent gratuitous
transitions between strong and weak connectivity, and to allow background processes that
might transfer data (e.g., hoarding and trickle reintegration) to occur. The threshold could also
be made dependent on worker idle time within Venus to prevent test transitions while a user is
actually working.

The second approach involves finding a source of fresh information without generating any
additional traffic. While weakly connected, Venus still sends server probes. Thus the RPC
transmission logs are refreshed at least once every probe interval. It remains to be seen if the
measurements in the RPC transmission logs are sensitive enough to reliably detect crossings
of the weakly connected threshold.

Venus also deposits static estimates into the transmission logs in response to application-
supplied bandwidth hints. For example, some Coda users run a configuration script on their
notebook computers to change the primary network interface, such as from a wireless LAN
interface at the office to a SLIP interface when dialing in from home. Drastic changes in
network performance are virtually guaranteed when these interface changes occur. The net-
work configuration script supplies Venus with the nominal bandwidth associated with the new
interface. Venus then clears the transmission logs associated with each server, and writes into
each a static log record containing the nominal bandwidth. Bandwidth hints may be sent to
Venus from the command line using cfs, or from a program through the pioctl interface.

An artifact of the user-level library implementation of RPC2 is that monitoring is distributed
among applications. There is no facility for sharing measurements between applications, and
each application must discover network performance characteristics independently. Since
Venus is long-lived and is often the primary source of network traffic, these are not serious
drawbacks.

3.5. EFFECTS OF SERVER REPLICATION 51

3.5 Effects of Server Replication

Venus normally makes requests on replicated objects, which requires that it communicate with
a group of servers (the AVSG) instead of a single server. Most of the work for replication
is performed at the Coda client. Venus must coordinate execution of RPCs to the AVSG and
determine connectivity with respect to the AVSG as a whole.

3.5.1 MultiRPC

Venus uses the MultiRPC extension to RPC2 [117] to make requests to groups of servers
in parallel. This extension is layered entirely on the client side implementation of RPC2.
Individual request packets are sent to each server sequentially on separate RPC connections.
Servers respond as they would normally; the request packets are indistinguishable from those
sent by a single server RPC.

MultiRPC transmissions on different connections can interfere with each other if connec-
tivity is weak and packets are large, or if multiple file transfers are in progress. Multiple
simultaneous transfers occur not only as a result of independent requests, but more commonly
as a result of store and reintegration operations to an AVSG. The implementation makes no
special provision for this interference; competing connections time out and adjust their re-
transmission intervals as necessary. However, this approach may not be sufficient in view of
simulation studies of multiple TCP connections over bottleneck links [120, 131]. These studies
predict phenomena such as clustering of packets by connection, and “ack compression”, which
thwarts the ability of a sliding window protocol to regulate its send rate.

An obvious way to alleviate interference between connections during a MultiRPC is to
use multicast, and an early version of Coda [114] used a prototype implementation of IP
multicast [31] over a single Ethernet segment. Multicast addresses were associated with VSGs.
Venus supplied the unicast connections and multicast information for each RPC. MultiRPC
multicasted the initial transmission, and then unicasted retransmissions as necessary. Reviving
this support in an internetwork setting would involve changes to device drivers and an update
to the existing IP implementation. The RPC2 RTT collection and transmission log code
would also have to be revisited. Since packet loss vitiates the effectiveness of multicast in
reducing interference, the unicast retransmission strategy may also require modification. In
addition, gateways would have to be tested to ensure multicast packets are handled correctly,
and multicast routing would have to be performed on the appropriate networks. Finally, Coda’s
reintegration mechanism would require modification to take advantage of multicast support;
currently new file data is fetched by each server through a server-to-client RPC on a separate
connection, rather than sent from client to servers. Instead, Coda uses a combination of the
reintegration and resolution mechanisms to minimize the amount of data sent over the weak

52 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

connection while propagating updates to all members of the AVSG. This issue is discussed
further in Chapter 5.

3.5.2 Connectivity to an AVSG

For replicated volumes, Venus must determine the connectivity to the AVSG rather than a
single server. The bandwidth estimates for AVSG members are not necessarily equal, and one
cannot assume there is a single bottleneck link between the client and the AVSG7. If bandwidth
estimates show some members are weakly connected and others are strongly connected, what
is the connectivity to the AVSG?

Venus considers an AVSG weakly connected if any of its members are weakly connected.
The reason for this is that update performance is determined by the slowest server. Once the
volume is weakly connected, updates are logged and propagated to server asynchronously. This
strategy is somewhat pessimistic for fetches, because data is transferred from only one server.
However, one can arrange to fetch data from the AVSG member with the best estimate.

3.6 Quality of Service

An underlying assumption of Coda’s communications layer is that the network is completely
unhelpful – it neither makes guarantees nor provides feedback regarding the quality of service
(QoS) it offers; it simply delivers data in a best-effort manner. The communications layer
described in this chapter essentially derives QoS information empirically. Recent work towards
supporting real-time distributed applications, such as video players, allows applications to
request a certain QoS from the network [15, 19, 38, 118, 130] or the operating system [23,
77, 90]. If the system accepts the request, it may make guarantees or offer feedback on the
quality of service. For example, it may promise to notify the application if the quality of service
changes significantly.

How would QoS support change the existing communications layer? If such support were
available, the communications layer could take advantage of it in a number of ways. For
example, SFTP could adjust its retransmission strategy based on the packet loss rate. RPC2
could reduce the frequency of round trip time measurements depending on the presence and
strength of a latency guarantee. However, the mechanisms for end-to-end measurement should
remain for two reasons.

7Initial experiments with bandwidthestimates revealed performance differences correlated with which Ethernet
segment a Coda server was attached. Two VSGs of three servers each were split over a private facilities network
and a busy public network. The bandwidth estimates for servers on the public network were, on average, less than
half the estimates for servers on the private network.

3.7. CHAPTER SUMMARY 53

First, they allow broadest possible use of the system. Not all systems offer QoS support,
and for those that do, there is no standard way to specify QoS. Parameters vary – common
ones are bandwidth, latency, jitter, and loss rate. Parameter values also vary – for example,
the bandwidth specification may be a peak value, an average value, or a range of acceptable
values. Having specified QoS, there are no standard service guarantees. The system may offer
a deterministic (hard) guarantee, a statistical (probabilistic) guarantee, or no guarantee at all.
The entity that offers the guarantee may also vary. Most research has focused on guarantees
provided by the network, but there is also work on guarantees provided by the operating system.

Second, higher system layers could use end-to-end measurements to verify QoS guarantees
or feedback provided by lower layers. Discrepancies may reveal bugs in QoS support or
inefficiencies in intervening system layers. If there is a discrepancy, end-to-end measurements
are a more accurate reflection of the QoS the application actually receives.

3.7 Chapter Summary

This chapter describes how the communication layer gathers information on network perfor-
mance and exports it to applications, and how one application in particular, Venus, uses the
information to adapt to network performance. The RPC and bulk transfer protocols employ
a passive monitoring strategy that gathers measurements without expanding existing packet
formats or generating additional network traffic. The protocols use adaptive retransmission
algorithms based on round trip time estimation. A comparison of throughput with TCP is
provided in Section 7.3. Measurements of network performance are exported to applications
in a minimalistic and flexible way using transmission logs, which can incorporate both static
and dynamic information. Applications use the measurements as they see fit in defining their
criteria for weak connectivity. In addition to Venus, transmission logs have been used supply
information on network performance to other adaptive applications, such a video player [90].

54 CHAPTER 3. COMMUNICATION LAYER ADAPTATION

Chapter 4

Rapid Cache Validation

A distributed file system using weak connections must function in spite of limited bandwidth
and intermittent connectivity. The usability of the system in such an environment depends
critically on its ability to resynchronize state rapidly upon reconnection. For a distributed file
system, the state of interest is the client file cache.

Callback-based cache coherence is invaluable for preserving scalability while maintaining a
high degree of consistency. This technique is based on the implicit assumption that the network
is fast and reliable. Unfortunately, this assumption is often violated in weakly-connected
environments. When a client with callbacks encounters a network failure, it must consider its
cached files suspect because it can no longer depend on the server to notify it of updates. Upon
repair of the failure, the client must validate cached files before use. Consequently, as failures
become more frequent, the effectiveness of a callback-based scheme in reducing validation
traffic decreases. In the worst case, client behavior may degenerate to contacting the server on
every reference. This problem is exacerbated in systems that use anticipatory caching strategies
such as hoarding to prepare for failures. In these systems, validation traffic is proportional not
just to the file working set, but to the larger resident set. The more diligent the preparation for
failures, the larger the resident set. The impact of this problem increases as network bandwidth
becomes precious.

The approach used to solving this problem is based on the observation that the vast majority
of cached objects are still valid upon reconnection. In other words, the rate of remote updates
to file system data cached at a client is lower than the rate of connectivity change, particularly
in intermittent environments. The solution therefore increases the granularity at which cache
coherence is maintained. Clients summarize the contents of their caches for the purpose
of validation. This technique dramatically reduces reconnection latency, allowing clients to
recover from failures more quickly.

This chapter presents the details of rapid cache validation in four parts. The first section
discusses key design issues, such as the granularity at which coherence is maintained. Next

55

56 CHAPTER 4. RAPID CACHE VALIDATION

the cache coherence protocol is described. The third section discusses implementation details.
The last section discusses correctness of the protocol.

4.1 Design

4.1.1 Choice of Granularity

Increasing the granularity at which cache coherence is maintained allows clients to quickly
validate their caches after failures. But at which granularities should cache coherence be
maintained? Taken to an extreme, this idea would require maintaining a version stamp and
callback on the entire file system. If the version stamp remains unchanged after a failure, the
client can be confident that no files have been updated on the server. A callback on the entire
file system is a very strong statement – it means every file cached at the client is valid. However
a callback break on the file system conveys little information – anything in the file system could
have changed, whether cached at the client or not. A practical implementation of this idea
requires a choice of granularity that balances speed of validation with precision of invalidation.

Coherence on a file-by-file basis requires the most communication for validation, because
each file must be checked individually. Invalidation requires the least communication, because
the only updated file is identified. This scheme is ideal on a fast, reliable network such as a
LAN. Reliability implies few connectivity changes, which renders validation less frequent than
invalidation. When validation is necessary, the high bandwidth of a LAN makes it unlikely
to be the bottleneck. At the other extreme is coherence at the level of the entire file system.
Validation requires the least communication, because the state can be checked with a single
version number. But since invalidation occurs when any file in the system is updated, files
unaffected by the update must be re-checked. Because of its lack of precision, invalidation
in this scheme requires the most communication. The goal is to minimize communication by
choosing a granularity appropriate for the validation and invalidation frequency.

The granularity chosen should partition the client’s cache into a moderate number of groups.
If there are too few groups, client performance will approach that of file-system-level coherence.
Similarly, too many groups will result in performance close to that of file-level coherence.
Each group should contain objects that are logically related and hence possess similar update
characteristics. Grouping objects in this way maximizes the likelihood of successful validation.

The groups should be represented by concise, unique identifiers known to both client and
server. The creation of this identifier should not require communication between client and
server, or the enumeration of the objects it represents. This implies that a pre-existing parti-
tioning should be used. To support rename without requiring the invalidation of descendants
of the renamed object, the identifier must be invariant across name bindings.

4.2. PROTOCOL DESCRIPTION 57

An obvious approach is to exploit the hierarchical structure of the file name space. However,
the considerations above, particularly with regard to group identifiers, preclude the use of
pathname prefixes as units of coherence.

In addition to the above considerations, the desire for a simple implementation suggested
only one level in addition to files: volumes. Volumes are attractive as units of coherence
because they are typically created for individual users or projects and hence represent groups
of files that are logically related. Volumes are represented by fixed-length identifiers known
to both client and server. The identifiers are invariant across changes in mount points, and are
conveniently embedded in all file identifiers.

4.1.2 Volume Callbacks

The system maintains cache coherence by using volume callbacks (VCBs). VCBs may be
maintained in addition to or instead of file callbacks. The presence of a volume callback means
all files cached from the volume are valid, and may be read with no client-server communication.
In addition, the server will notify the client if any object in the volume is updated. Thus a
volume callback may serve as a substitute for file callbacks.

Early analysis suggested that volume callbacks would be beneficial for collections of files
owned by the primary user of a client, and for collections that change infrequently or change
en masse (e.g., system binaries) [85]. Section 7.4 shows that such collections represent a large
fraction of the files that users cache. Performance may be poorer with other workloads, but
Coda’s original cache coherence guarantees are still preserved.

4.2 Protocol Description

Coda summarizes volume state using version stamps, maintained at each server storing the
volume. The version stamp is incremented when any file in the volume is updated. A client
caches the version stamp, establishing a callback for the volume. The callback is actually on
the version stamp. It means the client has cached files corresponding to the version of the
volume designated by the value of the stamp.

Of course, the client must ensure that version stamps are consistent with the data they
represent, and it must handle updates from other clients, which manifest themselves as callback
breaks. The remainder of this section discusses these issues.

58 CHAPTER 4. RAPID CACHE VALIDATION

4.2.1 Obtaining Callbacks

To ensure that the files cached at the client correspond to the version stamp it receives, the
client must validate all cached files from the volume before obtaining a volume version stamp.
For volume callbacks to be effective, there must be more than one file cached from the volume.
The process of obtaining a volume version stamp is illustrated in Figure 4.1.

If a failure occurs, the client must consider its cached files and volume version stamp suspect
because the server may not have been able to notify it of updates. In Coda, this occurs when
the AVSG grows. Upon reconnection, the client presents its version stamp to the server. If the
stamps match, all of the client’s cached data from the volume is valid, and the server grants a
callback for the volume. The volume callback is a substitute for file callbacks on all the files
in that volume. Figure 4.2 illustrates a successful validation. If the validation fails the client
must rely on file callbacks, if present, or obtain them on demand.

If the client holds a volume callback and fetches a new file, the server establishes a file
callback for the new file. This is not necessary for correctness, but it is useful for performance.
Although one could imagine not establishing the file callback to conserve server memory,
granting the file callback in this case requires no additional network communication, and gives
the client something to fall back on should the volume callback be broken.

4.2.2 Handling Callback Breaks

When a file is updated by a remote client, the server breaks callbacks to all other clients holding
a callback for that file or its volume. An example is shown in Figure 4.3. If a client holds
callbacks on both the file and the volume, the server breaks the callback on the file. The client
interprets this as an implicit callback break on the volume, and discards its version stamp. Note
that if a client holds a volume callback, it will receive a callback break even if the updated
file is not in its cache. This is false sharing, and if frequent, may indicate that the granularity
of cache coherence is too large for that volume. The client should not blindly reestablish the
callback when it is broken, because updates exhibit temporal locality [39, 95]. Not only would
this waste bandwidth, but it would also harm scalability. The client’s policy should take this
into account when determining whether the volume callback should be reestablished.

Note that it is not sufficient to merely send the file identifier in the volume callback break
message and allow the client to re-establish the VCB after discarding the file (if cached), because
other objects in the volume may change between the time the volume callback is broken and
the time the client attempts to reestablish it. Alternatively, the server could continue to notify
the client of updates. However, this approach suffers from the same deficiency as blindly
reestablishing callbacks because of the temporal locality of updates.

The presence of both volume and file callbacks means clients must decide what kind of
callback to obtain when one is broken. Suppose a client validates a version stamp for a volume,

4.2. PROTOCOL DESCRIPTION 59

ServerClient

File Cache

f1 f2
V

Callbacks

C f1

(a)

ServerClient

File Cache

f1 f2
V

Callbacks

C f1

C f2

s

validate f2

valid + callback

(b)

ServerClient

File Cache

f1 f2
V

Callbacks

C f1

C f2

get stamp

s stamp (s) + callback C V

(c)

Figure 4.1: Obtaining a Volume Callback

This figure illustrates how a client obtains a volume callback. In (a) the client has cached files
f1 and f2 belonging to volume V. The client holds a callback on f1, as shown by the shading.
In (b) the client validates the remaining cached file from V, obtaining a callback on f2. At this
point the client may request a version stamp for V, as shown in (c).

60 CHAPTER 4. RAPID CACHE VALIDATION

ServerClient

File Cache

f1 f2
V

Callbacks

s

(a)

ServerClient

File Cache

f1 f2
V

Callbacks

s valid + callback

validate stamp

C V

(b)

Figure 4.2: Validating by Volume

This figure illustrates volume validation. In (a) the client and server have both detected the
partition separating them. In (b) the failure has been repaired, and the client presents its stamp
for volume V. It is granted a callback, recorded at the server, and may read f1 and f2 without
additional communication. Note that the server does not know which files from V the client has
cached.

4.3. IMPLEMENTATION DETAILS 61

and it receives a volume callback. At this point it has no file callbacks. If the volume callback
is broken, the client must validate its cached files from that volume before it can reestablish
the volume callback. In terms of network usage, this is equivalent to recovery from a failure
without volume callbacks. In effect, the client has delayed validation of individual files.

In the situation above one might imagine obtaining file callbacks in the background in case
the volume callback is broken. This eager strategy assumes a remote update will occur before
the next failure. However, this defeats the purpose of obtaining a volume callback. Instead, we
employ a lazy strategy, obtaining file callbacks only if the volume callback is actually broken.
If no remote updates occur between failures, we have saved the network bandwidth and server
memory that would have been required to validate and obtain file callbacks.

4.3 Implementation Details

The implementation of large granularity cache coherence was layered on the existing coherence
mechanism. Code changes were required in the Vice interface, the server, and Venus. We
discuss these changes in the following subsections.

Server code was required to support the new Vice RPCs, and volume callbacks themselves.
Approximately 400 lines of code were added to the server, which consists of approximately
14,500 lines of code excluding headers and libraries. Most of the changes involved supporting
the new RPCs (200 lines) and debugging and printing statistics (150 lines). The remainder of
the changes were for gathering statistics.

Most of the logic for supporting volume callbacks is contained within Venus. In addition
to using the new RPCs, Venus must cope with replication, and decide when using volume
callbacks is appropriate. The changes represented an addition of 700 lines to about 36,000 lines
of code excluding headers and libraries.

4.3.1 Server Modifications

Volume version stamps were already present as part of volume version vectors, maintained at
the servers. Like a file version vector, a volume version vector is a summary of the update
history for the volume as a whole. The ith slot of a volume version vector on server i in a VSG
is the version stamp for the volume.

To minimize changes to code and data structures, volumes callbacks are represented by the
unused fid (hVolumeIdi.0.0). The callback break routine breaks callbacks not only for a file,
but also for the volume that contains it.

There are two RPCs in Vice interface that manipulate volume version stamps, shown in
Figure 4.4. The first call is ViceGetVolVS, which takes a volume identifier, and returns

62 CHAPTER 4. RAPID CACHE VALIDATION

ServerClient

File Cache

f1 f2
V

Callbacks

s

C V

R f1

R: update f1

(a)

ServerClient

File Cache

f1 f2
V

Callbacks

R f1

broken

break callback on V

(b)

Figure 4.3: Breaking a Volume Callback

This figure illustrates how a server breaks a volume callback. In (a) remote client R holding a
callback on f1 updates the file. The server breaks the callback on (b) for the client holding a
callback on volume V.

4.3. IMPLEMENTATION DETAILS 63

ViceGetVolVS(IN VolumeId Vid,
OUT RPC2_Integer VS,
OUT CallBackStatus CBStatus);

ViceValidateVols(IN ViceVolumeIdStruct Vids[],
IN RPC2_CountedBS VS,
OUT RPC2_CountedBS VFlagBS);

Figure 4.4: Interface for Volume Version Stamps

This figure shows the Vice RPCs for manipulating volume version stamps. The
ViceGetVolVS call returns a volume version stamp and optionally a volume callback. The
ViceValidateVols validates volume version stamps, and sets a volume callback on those
that are valid.

a version stamp and a flag indicating whether or not a callback has been established for the
volume. The second call, ViceValidateVols, takes a list of volume identifiers and version
stamps and returns a code for each stamp indicating if it is valid, and if so, whether a callback
has been established for the volume. The structure RPC2 CountedBS consists of a length
field and a sequence of bytes. In addition to these calls, there are new parameters to existing
Vice update calls (mkdir, rename, etc.). These parameters are discussed in Section 4.3.5.

4.3.2 VCB Acquisition Policy

As mentioned in Section 4.2, Venus should have a policy to determine when to obtain a volume
callback. The optimal policy would obtain a volume callback only if a failure was going to
occur and be repaired before the next remote update. Otherwise, either the volume callback
would be broken, or the next validation would fail.

One could invent a variety of policies to approximate the optimal one. Venus uses a simple
policy in which it obtains volume callbacks only during hoard walks. This policy is practical
for several reasons.

1. The purpose of obtaining a volume version stamp is to prepare for failure. This is
synonymous with the purpose of hoarding.

2. A hoard walk validates the cache. Thus the additional overhead of obtaining a version
stamp for each volume is low.

64 CHAPTER 4. RAPID CACHE VALIDATION

3. This strategy maintains scalability. If a volume callback is broken, the client will not
request another one until the next hoard walk.

4. Since hoard walks are periodic, the window of vulnerability to failures is bounded. For
a client to lose the opportunity to validate files by volume, a remote update would have
to be followed by a failure within one hoard walk interval (typically ten minutes). In this
case, the client is no worse off than it was before the use of volume callbacks.

This policy also copes nicely with voluntary disconnections, when a user deliberately
removes a notebook computer from the network. In our environment, many users have both
desktop and notebook computers. While at work, they work from the desktop computers,
leaving their notebooks connected nearby. Some users modify files hoarded on their notebooks
from their desktop. Before disconnecting, they run a hoard walk on the notebook to fetch
the files they just changed from the desktop. While connected, the notebook observes the
remote updates to volumes that are referenced in its hoard database. These volumes are prime
candidates for volume callbacks. This policy takes advantage of explicit hoard walks as hints
of imminent disconnection. A policy that becomes more conservative about obtaining volume
callbacks when remote updates occur would be unlikely to obtain them in this case.

4.3.3 Access Rights

Directories in Coda have access lists associated with them that specify the operations that a user
or group of users may perform. Venus caches access information to perform access checking
locally. It does not cache the access lists, because they may be large and specify users or
groups unknown to the client. Instead, Venus caches access rights, a condensed version of an
access list for a particular user. Access rights for an object are returned in the Vice status block,
shown in Figure 4.5, which is a result of most Vice calls. The access cache for a directory
consists of a fixed number of entries containing a user identifier and that user’s rights on the
directory. Entries are considered valid when they are installed from the Vice status block. They
are considered invalid (or suspect) if the object is invalidated, the user’s authentication tokens
expire, or if the AVSG grows.

When files are validated in groups, access information is not returned for the individual
files. To avoid sending messages to the server to check access information, Venus must use
the access cache more aggressively than it did in the past. If a volume is deemed valid, clearly
the access rights of a file within it have not changed. Venus now considers entries in the rights
cache for a file valid if the file or volume is valid, and the entry corresponds to a user who is
authenticated.

4.3. IMPLEMENTATION DETAILS 65

{
RPC2_Unsigned InterfaceVersion;
ViceDataType VnodeType;
RPC2_Integer LinkCount;
RPC2_Unsigned Length;
FileVersion DataVersion;
ViceVersionVector VV;
Date_t Date;
UserId Author;
UserId Owner;
CallBackStatus CallBack;
Rights MyAccess;
Rights AnyAccess;
RPC2_Unsigned Mode;
VnodeId vparent;
Unique_t uparent;

} ViceStatus;

Figure 4.5: Vice Status Block

This figure shows the Vice status block, which is returned for the objects of most Vice calls.
It includes version information for the object, whether or not the server has extended a call-
back promise for it, and the access rights of the requesting user and the anonymous user
System:Anyuser.

4.3.4 Effects of Replication

Coda’s support of replicated volumes affects the client’s handling of volume version state in
two ways. First, Venus communicates with the AVSG as a group, sending the same copy of
each request to each member of the group. This is performed by the underlying communication
protocol, which was designed to support remote procedure call to a set of machines in parallel.
Because of this, a validation request must contain the stamps for all the servers in the VSG.
Each server simply checks the one corresponding to it.

Second, Venus must collate multiple responses to its requests. When requesting version
stamps, it must store the stamp for each server that responds. When validating version stamps,
all servers in the AVSG must agree that the stamps are valid before Venus can declare them
valid. Similarly, all servers in the AVSG must agree that a callback has been established before
Venus can assume it has a callback on the volume.

66 CHAPTER 4. RAPID CACHE VALIDATION

4.3.5 VCB Maintenance and Updates

When an object is updated, the server increments the version stamps of the object as well as
its containing volume. The client receives a status block, shown in Figure 4.5, containing the
object’s new version information and attributes. Similarly, the client must be able to observe
the effects of its updates on the volume version stamp, without receiving callback breaks or
sending additional messages.

There are two approaches for updating the client’s version stamp when it performs an update
– having the client compute the new stamp, or having the server compute and return it. The
advantage of having the client compute the new stamp is that no additional changes to the Vice
interface are required. Unfortunately, since the server must maintain version stamps anyway,
this approach duplicates a good deal of code, and is more difficult to test and maintain.

Instead, the server computes and returns the new version stamp. Each Vice update call has
three additional parameters: the old version stamps, the new version stamp, and the callback
status. When a client performs an update, it sends its copy of the volume version stamp to the
server along with the other parameters for the operation. If the client’s stamp is current, the
server returns the new stamp and a volume callback. If the client’s stamp is stale, the server
performs the update but returns a zero stamp and no volume callback. If the client does not
have a stamp, or does not wish to obtain a volume callback, it simply sends a zero stamp. This
value is guaranteed never to match at the server.

This process is complicated by concurrency control at the server. Objects involved in an
update are locked for the duration of the operation. For performance reasons, the server cannot
lock a volume for the entire duration of an update. Therefore, it is possible for updates to
different objects in a volume to be interleaved. To detect this concurrency, the server updates
the client’s version stamp along with its own, and checks for a match at the end of the call.

There is a race condition in which the reply containing the callback set for an object is
delayed behind a callback break for the same object. This is a general problem and there is
a standard technique used to detect the race. Venus records the number of callbacks broken
before making an RPC that could return a callback for any object. After the RPC it checks if
any callbacks were broken. If so, it conservatively assumes that the broken callback was for an
object of the RPC, and it does not set the callback status of any objects of the RPC.

4.4 Correctness

The introduction of multiple granularities rendered the Coda cache coherence protocol suffi-
ciently complex that ensuring correctness became more difficult. This section describes the
approach used to ensure that the protocol was correct, and discusses the flaws in the original
design revealed by the analysis. Since the analysis itself is lengthy, it appears in Appendix A.

4.4. CORRECTNESS 67

4.4.1 General Approach

The formalism used is a logic based on the logic of authentication developed by Burrows, Abadi
and Needham [17, 18] to reason about the correctness of authentication protocols. This logic
(henceforth referred to as the “BAN logic”) focused on describing the beliefs of participants in
an authentication protocol, and the changes in those beliefs as they communicate. Using this
logic, the developers identified errors and inefficiencies in a number of published protocols,
one of which had been proposed as an international standard.

The notion of “belief” can also be used to describe cache coherence protocols. Informally
stated, the correctness criterion for a cache coherence protocol is: If a client believes that a
cached file is valid then the server that is the authority on that file had better believe that the
file is valid. This insight suggested that the BAN logic could be applied to reason about the
behavior of clients and servers in a distributed system, and their beliefs about cached data.

Reasoning about cache coherence is in some ways simpler, but in other ways more difficult,
than reasoning about authentication. For example, malicious intent and replay attacks are
not at issue because authentication and duplicate suppression are performed by the underlying
communication protocol. On the other hand, failures and transmission delays complicate the
analysis. These two key characteristics of distributed systems preclude direct use of work in
verifying cache coherence for multiprocessors [21, 76].

The strategy for proving correctness consists of first defining the state space and state
transitions, then identifying all reachable states, and finally verifying that all possible runs
of the protocol maintain cache coherence. For details the interested reader is referred to
Appendix A.

4.4.2 Benefits of Formal Analysis

Formal analysis revealed that the initial design of the large granularity protocol was under-
specified. Originally there were thought to be ten possible classes of runs of the protocol; the
analysis shows that there were fifteen.

Several classes of runs that were missed involved a looping behavior that can occur if a
client holds both file and volume callbacks. If the volume callback is broken, the run does
not end because the file callback is still present. The file may still be used without contacting
the server. Unfortunately, the volume callback may be re-established and broken ad infinitum
until the file callback is lost or broken. In practice, this loop is avoidable through the use of a
reasonable policy module on the client, which decides when to get a volume callback. While
the possibility of this loop was evident in the initial design, its pervasiveness was not. Looping
can occur between any states in which a file callback is held, which covers most runs.

68 CHAPTER 4. RAPID CACHE VALIDATION

The rest of the missed runs involved ordering: if both file and volume state are present at
the beginning of the run, they may be validated in either order. It is legitimate for a file to be
validated first if conditions do not favor establishing a volume callback upon connection, for
example, because of a high rate of remote updates in the volume. Different orders may result in
different runs (e.g., if the file is valid but the volume version stamp is not). The implementation
was structured such that volumes are always validated first if a volume version stamp is present.

Formal analysis also helped in generating test cases, and early in testing we uncovered a
bug in the implementation that harmed the efficiency of the protocol execution, but not the
correctness. In the implementation, the client’s volume state consists of two fields: the version
number, and the callback status. When a volume callback was broken, the client cleared only
the callback status field. This is correct, because the client checks the callback status field to
determine if there is a callback. However, because the volume version number was still present,
the client attempted to validate it with the server on reconnection. The validation was a waste
because it was doomed to fail.

4.5 Chapter Summary

For intermittent connectivity to be useful, a system must be able to recover from failures
quickly. This chapter described a mechanism that allows file system clients to synchronize
their caches rapidly upon reconnection. It does so by introducing an additional level at which
cache coherence is maintained, namely the volume. Clients cache and maintain volume version
stamps, and present them to servers upon reconnection. If the stamps are current, the client’s
cached files from that volume are valid, and no additional communication is necessary to access
them. Otherwise, the client discards the stamps and reverts to file-based cache coherence.
Section 7.4 will show that Coda is able to take advantage of rapid cache validation in the vast
majority of cases, and that this mechanism dramatically improves the agility of the system in
weakly connected environments.

Chapter 5

Trickle Reintegration

Updates at a weakly connected client are performed locally and logged in stable storage,
and then propagated to servers asynchronously. This asynchronous propagation is called
trickle reintegration. As its name implies, trickle reintegration occurs through a series of
reintegration operations, which merge the client’s updates with server state. In addition to
reducing update latency, trickle reintegration alleviates several limitations of disconnected
operation. Updates become visible to other clients sooner, allowing sharing and reducing the
window of vulnerability to conflicts. The probability of data loss through failure or theft of a
mobile client is reduced, because the data is available at servers, and the server copies are both
secure and backed up. The challenge of trickle reintegration is to provide these benefits while
remaining unobtrusive – the impact of trickle reintegration on foreground activity should be
minimal.

This chapter presents a detailed description of trickle reintegration in four parts. The first
part compares trickle reintegration to write-back caching. The second part discusses design
considerations, and provides an overview of the algorithm. The last two parts discuss design
and implementation details, and selection of parameter values.

5.1 Relationship to Write-Back Caching

Trickle reintegration is similar in spirit to write-back caching, as used in distributed file systems
such as Sprite [89] and Echo [74]. Both techniques improve update latency by deferring the
propagation of updates to servers. They also conserve network bandwidth and server load by
taking advantage of updates that cancel or overwrite each other. However, there are several
important differences.

First, write-back caching preserves strict Unix write-sharing semantics, since it is typically
intended for use in strongly-connected environments. In contrast, optimistic replication allows

69

70 CHAPTER 5. TRICKLE REINTEGRATION

trickle reintegration to trade off consistency for performance. In this way, it avoids forcing
strongly connected clients to wait for updates to propagate from weakly connected clients.

Second, the primary focus of write-back caching is to reduce file system latency. Reduction
of network traffic volume is only an incidental concern. But in weakly connected environments,
network bandwidth is precious. Hence reduction of traffic volume is a dominant concern of
trickle reintegration.

Third, write-back caching schemes maintain their caches in volatile memory. They suffer
from the possibility of data loss due to inopportune failures such as software crashes or the
power cycle of the client (an all too frequent occurrence for users of mobile computers). Their
need to bound the damage due to failures typically limits the maximum delay before update
propagation to some tens of seconds or a few minutes. In contrast, the local persistence of
updates is assured on Coda clients. Trickle reintegration can therefore defer update propagation
for many minutes or even hours, bounded only by concerns of theft, loss or disk damage.

5.2 Architecture

The goal of trickle reintegration is threefold. First, it should propagate updates with reasonable
promptness, for the reasons cited at the beginning of this chapter. Propagation is constrained
by the presence and strength of a network connection, and by other activity on the client. These
constraints imply that propagation may be delayed indefinitely. To guard against data loss
caused by failures, such as software crashes or battery outages, Venus logs updates in stable
storage as in disconnected operation. Once an update is logged, it may be propagated to servers
in a best effort manner.

Second, trickle reintegration should be unobtrusive. Propagating updates over a weak
connection can be a lengthy process. Therefore, trickle reintegration, unlike reintegration, is
not a transient event; it is an ongoing concern. Foreground activity, in particular, read and
update requests, must not be blocked during reintegration.

Finally, Venus should conserve bandwidth by minimizing the amount of data it sends to
the servers. Trace-driven simulations of Coda indicated that CML optimizations, described
in Section 2.2.2.2, were the key to reducing the volume of reintegration data [115], and
measurements of Coda in actual use confirm this prediction [91]. Reducing the amount of
data reintegrated has other benefits such as reducing server load and reducing interference with
foreground activity, and it is particularly important if there is non-zero cost associated with the
network. For a weakly connected client to take advantage of log optimizations, it must delay
update propagation. This goal must be balanced with the earlier goal of propagating updates
promptly.

5.2. ARCHITECTURE 71

Hoarding

Write

Disconnected
Emulating

D
is

co
nn

ec
tio

n

Disconnection

Connection

Strong connection

W
eak connection

Figure 5.1: Venus State Transition Diagram

This figure shows Venus volume states and the main transitions between them. To support weak
connectivity, the reintegrating state of Figure 2.1 is replaced with the “write-disconnected”
state. In the write-disconnected state, updates are logged but cache misses may be serviced.
Reintegration is permitted only in this state. A transition from emulating to write-disconnected
occurs if the CML is non-empty upon reconnection, or if the connection is weak.

The remainder of this section provides an overview of trickle reintegration. First it dis-
cusses the structural modifications necessary to make trickle reintegration unobtrusive. Then it
describes how Venus decides when to propagate updates, and how it preserves the effectiveness
of log optimizations. Finally, it presents an overview of the algorithm in the common case. This
description is necessarily oversimplified; implementation details are deferred to Section 5.3.

5.2.1 Structural Modifications

Supporting trickle reintegration required major modifications to the structure of Venus. Because
reintegration over a weak connection can be an ongoing process, the original transient reinte-
grating state of Figure 2.1 has been replaced by a stable write disconnected state. Figure 5.1

72 CHAPTER 5. TRICKLE REINTEGRATION

shows the volume states of Venus and the main transitions between them.

As in the original state model, Venus is in the hoarding state when strongly connected,
and in the emulating state when disconnected. When weakly connected, Venus is in the write
disconnected state. Venus’s behavior in this state is a blend of connected and disconnected
modes. As in connected mode, Venus services cache misses (although some misses may require
user intervention), and maintains cache coherence using callbacks. As in disconnected mode,
Venus performs updates locally and logs them in the CML, and then propagates them to servers
asynchronously using trickle reintegration.

Since connectivity is a per-volume property, it is possible for a client to be in different states
with respect to different volumes at a given moment. For example, a mobile client may be
weakly connected with respect to most volumes, but may be disconnected with respect to a few
because their server is down.

A user can force a full reintegration at any time that she is in the write disconnected state.
This might be valuable, for example, if she wishes to terminate a long distance phone call or
realizes that she is about to move out of range of wireless communication. It is also valuable
if she wishes to ensure that recent updates have been propagated to a server before notifying a
collaborator via telephone, e-mail, or other out-of-band mechanism.

To avoid penalizing strongly-connected clients, a weakly-connected client cannot prevent
them from reading or updating objects awaiting reintegration. Read requests by strongly
connected clients are satisfied with data present at the server, because there is no guarantee that
the weakly connected updates will propagate in a timely manner (e.g., the weakly connected
client may become disconnected) or at all (e.g., the updates may fail when performed at the
server). Updates by strongly connected clients result in callback breaks at the weakly connected
client. A callback break does not necessarily mean there is a write-write conflict that would
prevent reintegration from succeeding; for example, the clients may have added different names
to the same directory. Therefore, the client ignores the callback and proceeds as usual. If there
is a conflict, it is detected at reintegration time, and may be resolvable automatically (e.g., with
an application-specific resolver). Failing that, Venus makes the conflict visible to the user just
as if it had occured after a disconnected session. The user may then apply the existing Coda
mechanisms for resolving conflicts [66].

5.2.2 Preserving the Effectiveness of Log Optimizations

Trickle reintegration reduces the effectiveness of optimizations over the CML because records
are propagated to the server earlier than when disconnected. Thus they have less opportunity to
be eliminated at the client. A good design must balance two factors. On the one hand, records
should spend enough time in the CML for optimizations to be effective. On the other hand,
updates should be propagated to servers with reasonable promptness. At very low bandwidths,

5.2. ARCHITECTURE 73

the first concern is dominant since reduction of data volume is paramount. As bandwidth
increases, the concerns become comparable in importance. When strongly connected, prompt
propagation is the dominant concern.

How can a client maximize log optimizations? The optimal strategy is to reintegrate only
those log records that will not be cancelled. The strategy used to approximate this ideal
should have the following properties. First, it should avoid reintegrating “hot spots” in the
log. Intuitively, hot spots are updates in the log that are cancelled quickly. If updates are good
candidates for optimization, Venus should not attempt to reintegrate them; it should allow time
for optimizations to occur. Second, it should allow “cool” prefixes of the log to propagate to
the servers. Since the CML is maintained in temporal order, the oldest records are at the head.
To ensure that updates arrive at the server with reasonable promptness, the head of the log
should not be blocked indefinitely when opportunities for reintegration arise. Intuitively, if an
update resides in the CML “long enough”, it is probably worth reintegrating. Last, determining
whether to reintegrate a record should be efficient.

Coda uses a simple strategy based on aging. The age of a CML record is the length of time
it has spent in the log. A record is not eligible for reintegration until it has spent a minimal
amount of time in the CML. This amount of time is called the aging window, A. Aging avoids
hot spots if the aging window is large enough. Cancellations remove older records, with newer
records, if any, appended to the tail of the log. Aging also allows inactive log prefixes to
propagate to the servers, even if other objects in the volume are active. Calculation of the age
is very simple and efficient; each CML record contains its creation time.

The aging window establishes a limit on the effectiveness of log optimizations. The current
implementation uses a fixed A, the selection of which is described in Section 5.4. It would be
a simple extension to Coda to make the aging window adaptive to connection strength. At low
bandwidths, a large aging window allows Venus to minimize data volume by taking advantage
of log optimizations. As bandwidth increases, the benefits of propagating updates to the server
outweigh the benefits of reducing the amount reintegrated. When strongly connected, there is
no need to reduce data volume, and updates are propagated synchronously.

5.2.3 Overview of the Algorithm

Trickle reintegration is performed on volumes in the write-disconnected state. It proceeds in the
three stages described for reintegration in Section 2.2.2.3: the prelude, interlude, and postlude.
The prelude refers to the preparations Venus makes for sending a reintegration request to the
server. The interlude refers to server processing of the reintegration request. The postlude
is the client processing of server results and clean-up activities, including commit or abort of
the CML records involved. Some of the steps enumerated below were discussed previously in
Section 2.2.2.3; such steps are reviewed only briefly.

74 CHAPTER 5. TRICKLE REINTEGRATION

5.2.3.1 Prelude

Venus begins the prelude for a volume by checking if it is eligible for reintegration. This check
may be triggered by a thread referencing an object in the volume, such as a worker LWP or the
hoard daemon, or the volume daemon, which runs every five seconds. The triggering thread
performs the following checks to determine the volume’s eligibility:

� volume state check – the volume must be write disconnected. By definition, this means
the AVSG is non-empty.

� CML check – the volume’s CML must be non-empty.
� authentication check – the volume must have authentication tokens for the CML owner.

The server requires tokens to perform updates. If tokens are not present, Venus notifies
the user that a reintegration is awaiting tokens.

� reintegration check – the volume must not already be undergoing reintegration.

If the volume meets these conditions, the triggering thread scans the CML to determine if there
are records exceeding the aging window. If it finds ripe records, it dispatches a reintegrator
thread to do the actual work, and then moves on to its next task. If any of the checks fail, the
triggering thread exits the prelude and moves on to its next task.

The reintegrator performs the rest of the reintegration. It begins by completing the prelude,
the remainder of which consists of the following steps:

� prevent interference. Venus allows most read and update activity in the volume to
proceed during trickle reintegration. However, there are several tasks which may interfere
with reintegration, or which require exclusive control of the volume to execute. These
tasks are blocked until trickle reintegration completes:

– application-specific resolvers (ASRs), which require control over when their updates
are propagated. ASRs use the write-disconnected state and update logging in place
of transactional support. Blocking them prevents the reintegrator from reintegrating
their updates inappropriately.

– the checkpoint daemon, which periodically writes a backup of the CML and associ-
ated data to local disk. Blocking this daemon is necessary because the reintegrator
may modify the CML.

– resolution, which requires exclusive control of the volume.

� cancel store records for files open for write. If the file has been modified, the data
in the container file may no longer match the description in the store record.

5.2. ARCHITECTURE 75

� determine which records to reintegrate. The reintegrator scans the log for records that
exceed the aging window. Since the CML is maintained in temporal order, the aging
window partitions log records into two groups: a prefix containing records older than A
and a suffix containing records younger than A. If the client is weakly connected, the
reintegrator selects a subset of the prefix, the size of which depends on the size of the
records and data involved and the bandwidth of the network. The selection of this subset
will be discussed in Section 5.3.2. The reintegrator then erects a logical divider called the
reintegration barrier in the CML as shown in Figure 5.2. During reintegration, which
may take a substantial amount of time on a slow network, the portion of the CML to
the left of the reintegration barrier is frozen. Only records to the right are examined for
optimization.

� replace temporary fids. While write-disconnected, Venus may run out of permanent
fids for newly created objects. If so, it assigns temporary fids to those objects, rather
than incur the delay of an RPC to the server to obtain permanent fids during the servicing
of a request. If any of the selected records contain temporary fids, Venus now obtains
permanent fids from the server via a ViceAllocFid RPC, and replaces the temporary
ones.

� lock objects of store records. Because Venus may service updates during reintegra-
tion, the reintegrator must lock the objects associated with store records to ensure their
data is consistent for backfetching. Locking is described in more detail in Section 5.3.1.

� pack log records. The reintegrator allocates an in-memory buffer and marshals the log
records into it.

� select the servers for reintegration. If the client is weakly-connected, the reintegrator
chooses a single server with which to reintegrate. Otherwise, it reintegrates with all
AVSG members. This selection is discussed in more detail in Section 5.3.5.

The reintegrator completes the prelude by sending a ViceReintegrate RPC to the
server. The RPC interface is shown in Figure 5.3.

5.2.3.2 Interlude

The interlude is the processing of the ViceReintegrate RPC at the server. The RPC2
socket listener receives the request and dispatches a Vice worker LWP to process it. The
processing consists of the following main steps:

� retrieve the CML. The CML does not arrive as an argument of the RPC request; rather,
the Vice worker transfers it in bulk through an RPC2 side-effect into an in-memory buffer.

76 CHAPTER 5. TRICKLE REINTEGRATION

Older than A

• • • • • • • •

Time

Reintegration
Barrier

Log
Head

Log
Tail

Figure 5.2: CML During Trickle Reintegration

This figure shows a typical CML state while weakly connected. A is the aging window. Venus
is reintegrating the shaded records, which are protected from update activity by the reintegration
barrier.

ViceReintegrate(IN VolumeId Vid,
IN RPC2_Integer LogSize,
OUT RPC2_Integer Index,
OUT ViceFid StaleDirs[],
IN RPC2_CountedBS OldVS,
OUT RPC2_Integer NewVS,
OUT CallBackStatus VCBStatus,
IN RPC2_CountedBS PiggyCOP2,
IN OUT SE_Descriptor BD);

Figure 5.3: Reintegration RPC

This figure shows the reintegration RPC interface. The Vid parameter identifies the volume
for which reintegration is requested. The CML length is given in LogSize. If a failure
occurs, the Index parameter identifies the position of the failed record in the log. If any of
the directories in the CML are stale, the server returns their identifiers in StaleDirs[]. The
parameters OldVS, NewVS, and VCBStatus have to do with volume callback maintenance,
and the PiggyCOP2 parameter is used by the update protocol.

5.2. ARCHITECTURE 77

� unmarshall CML records. The worker unpacks the CML records from the buffer into
a sequence of log records.

� lock objects. The worker scans the CML to obtain the fids of all of the objects involved,
then looks up and write locks the vnodes corresponding to those fids. Deadlock with
other workers is avoided by locking vnodes in fid order.

� check semantics. The worker performs the semantic checks described in Section B.2.1.2:
concurrency control, integrity checks, and protection checks. The concurrency control
check for reintegration is certification, as described in Section 2.2.2.3.

� perform operation. If the semantic checks succeed, the worker performs the updates
tentatively and breaks callbacks to connected clients.

� backfetch data. The worker retrieves new data associated with store records by
making RPCs over the server-to-client callback connection, using the CallBackFetch
RPC. Venus dispatches a callback handler thread to services these requests.

� put objects. If all is well, the worker atomically commits the changes to recoverable
storage. Otherwise, it discards the changes. In either case, it releases the vnodes. An
error in performing any part of the interlude, for any record, is sufficient cause for the
server to reject the entire reintegration.

Finally, the worker sends the RPC reply to the client.

At the client, Venus services user read and update requests for objects in the volume during
the interlude, including those being reintegrated. For updates, Venus performs them locally
and appends records to the CML as usual. An update request may contend with an ongoing
reintegration in two ways. First, a newly appended record may enable optimization of other
CML records. If the records eligible for cancellation are not beyond the reintegration barrier,
Venus performs the optimization. Otherwise, if they are frozen, Venus marks them “pending
cancellation”. Second, the update may involve an object whose data is to be backfetched. This
is called file contention, because the update and reintegration both require the object’s cache
container file. File contention is discussed in more detail in Section 5.3.1.2.

5.2.3.3 Postlude

The postlude begins when RPC2 awakens the reintegrator with either the reply from the server,
or an error. The reintegrator performs the following steps to complete the postlude:

� unlock objects of store records. The reintegrator releases the locks on the objects
that it obtained during the prelude.

78 CHAPTER 5. TRICKLE REINTEGRATION

� process result. If reintegration succeeded, the reintegrator atomically commits the
records in the prefix. Commitment includes updating object state such as version vectors
and data versions, and clearing the dirty bit for objects that are no longer represented in
the CML. The reintegrator then removes the reintegration barrier and all the records to
its left. If the server indicated that any of the directories involved in the reintegration are
stale (the StaleDirs out-parameter), the reintegrator invalidates them. The need for
this parameter is discussed in Section 5.3.3. Finally, the reintegrator clears any pending
CML cancellations, as the records on which they depend have been committed at the
AVSG.

If reintegration failed, the reintegrator’s actions depend on the type of failure that oc-
curred.

– semantic failure – this is a failure in which the server rejects an update, for example,
because of a write-write conflict. If the server cannot replay an update, it returns
the index of the offending record. Since there is a reply from each AVSG member,
the reintegrator identifies the offender with the smallest index. It then checkpoints
the CML state to local disk, removes the reintegration barrier, and performs any
pending optimizations. If the offending record remains, the reintegrator marks the
objects involved in conflict. Note that once an object is marked in conflict, the
subtree beneath it is inaccessible until the conflict is repaired. The local state is
available through repair tools. CML records associated with this local state remain
in the log, but they are tagged to prevent their inclusion in future reintegration
attempts.

– retryable failure – this is a failure in which the server’s response suggests that the
reintegration may succeed if tried again later. For example, the server may be
temporarily busy. The reintegrator cancels records marked pending as in semantic
failures, waits a predefined period of time, and then retries the reintegration. There
is a fixed number of retries permissible, after which the failure is treated as a
semantic failure.

– timeout failure – this is a failure in which no response was received from the
server. Venus cannot make any assumptions about whether or not the reintegration
succeeded at the server, so it leaves the log state as is until it contacts the server.
This issue is discussed in Section 5.3.4.

� invoke resolution. If Venus reintegrated with a subset of the AVSG, the reintegrator
invokes resolution on the reintegrated objects to propagate the updates to the remainder
of the AVSG. This issue is discussed further in Section 5.3.5.

� resume waiting threads. Any threads blocked by reintegration are resumed at this point.

Reintegration completes with the retirement of the reintegrator thread.

5.3. DETAILED DESIGN 79

Lock to be set
Lock set Read Write
None ok ok
Read ok wait
Write wait wait

Table 5.4: Compatibility Matrix for Object Locks

Locking of file system objects follows a single writer/many readers model.

5.3 Detailed Design

5.3.1 Concurrency Control

The original implementation of reintegration used volume-level synchronization, with the
reintegrator thread obtaining exclusive control of the volume for the duration of the operation.
Other requests for data in the volume, cached or not, were blocked until reintegration completed.
The advantage of this scheme is simplicity – there is no need to lock individual objects because
no other thread is allowed to execute requests in the volume. Deadlock is not an issue, for
the same reason. The implicit assumption of this approach is that reintegration latency is
low. If this assumption holds, the lack of concurrency within the volume is not a serious
disadvantage. However, this assumption does not hold in weakly connected environments. On
a weak connection, reintegration latency arises from two sources: transmission of the log, and
transmission of new file data. The former can be controlled by making the amount of the CML
being reintegrated arbitrarily small. The latter cannot be controlled because a single store
record could involve storing a large file.

It is desirable to allow concurrent activity within a volume during a potentially long-lived
reintegration. Specifically, Venus should be able to service read requests to objects in the
volume, whether or not they are participating in the reintegration. A read of a reintegrating
object is no different from a read of the object while disconnected. Venus should also service
update requests to objects in the volume. Exclusive volume locking precludes both of these
activities. The remainder of this section describes how reintegration retains a reasonably
simple, deadlock-free implementation, while allowing more concurrency within the volume.

80 CHAPTER 5. TRICKLE REINTEGRATION

5.3.1.1 Object-Level Concurrency Control

Venus services reads and updates to objects in a volume undergoing trickle reintegration by
using object-level concurrency control. The reintegrator locks objects in the prelude and the
postlude. In the prelude, it read-locks the objects of store records. Locking is necessary
to ensure that the version of the data backfetched by the server is consistent with the store
record. Read-locking prevents the objects from being updated or removed, as shown in the
object lock compatibility matrix in Figure 5.4.

In the postlude, if reintegration suffers a semantic failure, the reintegrator must abort the
offending records and quarantine the objects that were involved. The reintegrator must write-
lock objects for abort to ensure that no other threads are reading or updating them. The
reintegrator does not lock objects during commit, even though the object’s version vectors are
updated, because it is the only reader and writer of these fields until the objects are cleaned.

During reintegration, Venus services read requests as usual, relying on cached state if
available (even if it is reintegrating), or fetching objects from servers if necessary. Venus
performs update requests locally and logs them in the CML. An update may require write
access to a file whose data is being backfetched (i.e., the file is read-locked). This phenomenon
is called file contention, and is described below.

5.3.1.2 File Contention

Both volume and object-level concurrency control suffer from blocked updates to varying
degrees. Object-level locking blocks repeated updates to the same file. Unfortunately, locality
of reference suggests that even this case will happen frequently. (Indeed, this is why log
optimizations are so effective.) File contention usually indicates the aging window is too small,
and it is most severe at the lowest bandwidths. To avoid holding resources while waiting for
the network, Venus creates a shadow copy of the cache container file associated with an fsobj
when it detects contention. Shadowing thus involves no overhead in the absence of contention.
As shown in Figure 5.5, the shadow includes a copy of the CacheFile structure used to
describe the container file. This structure consists of the container file name, its inode number,
and its length.

When a thread tries to write lock an fsobj, Venus determines if the object is already
locked for backfetch. If so, the container file associated with the fsobj is moved to the
shadow copy, and a new CacheFile structure is allocated to describe the shadow. The data
from the shadow container file is then copied back to the main container file. The container file
is moved to the shadow rather than copied to preserve any backfetches already in progress, and
to ensure that they complete out of the shadow. If the backfetch has not yet begun, the backfetch
code opens and fetches from the shadow if one exists. Once the shadow is constructed, the
object is unlocked, and the thread blocked on the write lock obtains the lock and proceeds.

5.3. DETAILED DESIGN 81

CacheFile structure
for shadow container

CacheFile structure
for container file venus.cache

V-10V10

"V10"

"V-10"

fsobj

Figure 5.5: Shadowing Cache Files

This figure shows an fsobj with a shadow cache file. The shadow is created during reinte-
gration if an update occurs to a file while Venus is reintegrating a store record for that file.
The fsobj includes a CacheFile structure describing cache container file V10. A new
CacheFile structure is allocated to describe shadow container V-10. When reintegration
completes, Venus removes the shadow container and associated CacheFile structure.

Any updates it performs are added to the CML. When reintegration completes, the reintegrator
thread removes the shadow. Because reintegration does not survive crashes or shutdowns, there
is no need for the shadow file to be recoverable. At startup, Venus removes any shadow cache
files left over from its previous incarnation.

The amount of space consumed by shadow files is a concern for a resource-poor mobile.
Only the objects of store records, namely files, may have shadow copies. Because only one
reintegration is permitted in a volume at a time, a file may have at most one shadow.

82 CHAPTER 5. TRICKLE REINTEGRATION

5.3.1.3 Deadlock Prevention

It is important to ensure that the reintegrator’s use of object locks is deadlock-free. The
necessary conditions for deadlock are [96]:

1. Mutual exclusion – at least one resource must be held in a non-sharable mode.

2. Hold and wait – there must exist a thread that is holding at least one resource and waiting
to acquire others.

3. No preemption – once a thread holds a resource, only it may release the resource.

4. Circular wait – the deadlock itself is a set of processes holding resources in a pattern that
forms a cycle in the wait-for graph.

In Venus, locks are non-preemptive, and write locks are non-sharable. To prevent deadlocks,
either the “hold and wait” or the “circular wait” conditions must be prevented.1

During the prelude, the reintegrator read-locks the objects of store records. These objects
are files (i.e., leaf nodes in the file system hierarchy). For a deadlock involving the reintegrator
to occur, there must be another thread that locks more than one leaf node (hold and wait), uses
write locks (mutual exclusion), and locks in no particular order (allows circular wait). There is
only one operation other than reintegration that write locks more than one leaf node – rename.
Requiring both rename and reintegration to lock leaf nodes in fid order removes the circular
wait, thereby preventing deadlock.

During the postlude of an aborted reintegration, the reintegrator write-locks all objects
involved. Unfortunately, these objects are not necessarily leaf nodes. Objects are aborted in
order of their occurrence in the CML, which is not necessarily in fid order. Thus there exists
the potential for deadlock during CML abort. To prevent deadlock, Venus removes the “hold
and wait” condition by having the reintegrator thread first release its locks on the backfetched
objects before abort, and then reacquire them as it aborts each record.2 If a record involves
more than one object, the reintegrator locks, aborts, and unlocks each object one at a time.
Because it does not hold and wait, it cannot be part of a deadlock.

1The original implementation’s use of an exclusive volume lock prevents deadlocks by removing the “hold
and wait” condition, because the volume lock is the only lock that need be held. Despite this, the reintegrator
thread still write locks objects during CML abort. If locks were held across requests, the reintegrator thread could
deadlock.

2The objects do not vanish, even if subsequent updates delete them, as long as they are represented in the
CML. Once the reintegrator releases the lock on an object, it is possible for another thread to service a request
involving the object before the reintegrator reacquires the lock. Such a request is doomed, in a sense, because it
involves state that is about to be aborted. This example is an instance of a more general problem in which the
request arrives any time before the failed reintegration begins.

5.3. DETAILED DESIGN 83

5.3.2 Reducing the Impact of Reintegration

Given a prefix of the CML older thanA, how much of it should Venus reintegrate at once? There
is a tradeoff associated with the amount of the log, or chunk size, that Venus sends to the server
for a single reintegration. A small chunk size maximizes the likelihood of success, because
there is less time for failures to strike, and there are fewer records to pass through semantic
checks at the server. A small chunk size also minimizes the likelihood that reintegration will
interfere with other tasks requiring the network, such as a demand fetch. On the other hand, a
large chunk size allows Venus to amortize the fixed costs of reintegration, such as RPC latency
and transaction commitment. Clearly, as network bandwidth increases, the effect of chunk size
on reintegration latency decreases. The chunk size should therefore be adaptive to network
bandwidth.

The goal is to reintegrate the largest amount of data that is likely to succeed, without
interfering with other tasks requiring the network. Venus places a time limit on reintegration,
and calculates the chunk size C based on this limit and an estimate of the current bandwidth.3

The default time limit is 30 seconds, which corresponds to a C of 36 KB at 9.6 Kb/s, 240 KB
at 64 Kb/s, and 7.7 MB at 2 Mb/s. Venus then selects the maximal prefix of the CML that is
older than A and whose sizes sum to C or less. This prefix is the chunk for reintegration. The
reintegration barrier is placed after it, and reintegration proceeds as described in Section 5.2.3.
This procedure is repeated a chunk at a time, deferring between chunks to high priority network
use, until all records older than A have been reintegrated.

Because most log records are small, Venus is usually able to find a prefix of the log that fits
within the reintegration limit. There is one exception, the store record, which is accompanied
by new file data. If the amount of data is large, reintegration of the store record alone may
exceed the reintegration limit. In this case, Venus should be able to make forward progress
without monopolizing the link, and in spite of intermittence. Venus transfers the file as a
series of fragments, each of which fit within C. The state of the transfer is preserved across
connections; if a failure occurs, the transfer continues from the last successfully transferred
fragment. The atomicity of reintegration is preserved, because the server does not reintegrate
the store record until all of its data has arrived at the server. Note that this is the reverse of the
procedure at strong connectivity, where the server verifies the logical soundness of the updates
before fetching file data. The change in order reflects a change in the more likely cause of
reintegration failure in the two scenarios; while weakly connected, a failure during file transfer
is much more likely than a semantic failure.

This mechanism is simply a form of fragmentation and reassembly. While fragmentation
and reassembly services are provided at lower system layers, the duration of reintegration over

3If a measure of the reliability of server connections is maintained, such as a distributionof connection lengths,
the time threshold could also be made sensitive to intermittence.

84 CHAPTER 5. TRICKLE REINTEGRATION

a weak connection is long enough to warrant higher level control. Consistent with the end-
to-end argument [107], Venus provides a high-level version of fragmentation and reassembly
because only it has the information necessary to determine the appropriate chunk size. Using
this mechanism, Venus can recover from failures without resending the entire file, allowing it
to make incremental progress in spite of intermittence.

5.3.2.1 Reintegrating Fragments

When Venus transfers a fragment, the data is stored in a shadow inode for the file at the server.
In this way the partially transferred data is not exposed to requests from other clients, and
requests from other clients are not blocked at the server while Venus transfers the new data.
Venus references the shadow inode for a file using a handle. The handle is a 3-tuple consisting
of the server birth time, and the shadow inode’s device and inode number. The handle is
independent of a specific connection, because the duration of a file transfer over a weak link
may exceed the lifetime of a single connection. Indeed, it may even exceed the lifetime of
Venus. For this reason, Venus keeps handles in the store record, which is persistent.

Because Venus may disconnect for arbitrarily long periods, or may cancel a store record
before it finishes transferring the data, the server must be able to garbage collect shadow inodes
periodically. The salvager, a server thread which runs at startup, automatically garbage collects
such inodes. To detect if a request involves a shadow inode that has been garbage collected,
the server checks the birth time of the handle. This scheme could be generalized for garbage
collection at other times by using an epoch number in place of the server birth time.

There are four calls in the Vice interface pertaining to reintegration of files by fragment,
shown in Figure 5.6. Venus requests creation of a shadow inode at the server using the
ViceOpenReintHandle call. The server returns a handle for a shadow inode associated
with the specified fid. Venus retains the handles returned by the VSG in the store CML
record, and uses them in the remaining three calls. Venus sends fragments of a file using the
ViceSendReintFragment call. Venus transfers a fragment by specifying the offset within
the file and the number of bytes to be transferred in the SFTP descriptor. Just as in a backfetch,
Venus transfers the fragment from a shadow container file if one exists. Should a failure occur,
Venus may check the status of a shadow inode using the ViceQueryReintHandle call,
which validates the handle and returns the current length of the file at the server.4 When Venus
has transferred all of the data to the server, the ViceCloseReintHandle call reintegrates
the store record using the data in the shadow inode. Except for the absence of a backfetch,
the server performs the same reintegration interlude described in Section 2.2.2.3.

If multiple clients attempt to transfer fragments for the same file, the server will create
shadow inodes for each client, and the handles it returns will differ by inode number. The host

4The query and send calls could be combined, but a separate query mechanism allows for more sophisticated
queries and negotiation.

5.3. DETAILED DESIGN 85

that completes its data transfers and reintegrates first will succeed. Subsequent reintegrations
by the other hosts will fail.

5.3.2.2 Selective Reintegration

By default, the CML is reintegrated in temporal order. One possible refinement would allow a
user to reintegrate updates pertaining to specific objects. To implement this refinement, Venus
must track the dependencies between records, and first reintegrate the antecedents of the updates
of interest. For example, updates to foo.tex depend on the creation of its parent directory.
Dependencies are captured by a precedence graph [29] computed for the CML. A precedence
graph is a directed graph consisting of nodes representing transactions, and arcs representing
dependencies between those transactions. The direction of the arc indicates the order between
the transactions. In the context of Coda, the transactions are CML records, and the dependencies
refer to write dependencies.5 Precedence graph construction is not necessary at present because
the temporal ordering of the CML guarantees that antecedents are reintegrated first.

5.3.3 Remote Updates and Volume Callbacks

There is an interaction between volume callbacks, discussed in Chapter 4, and reintegration of
updates to directories that have been updated remotely. If an object is dirty, Venus considers
it valid whether or not it holds a callback, and services requests for the object from the cache.
Venus may obtain a callback on a volume for which it has dirty cached objects, and maintain
the volume callback through reintegration. Because directories are certified by value, it is
possible for Venus to cache stale directory state through a successful reintegration. Recall from
Section 4.1.2 that a volume callback may serve as a substitute for a file (directory) callback.
Therefore, to maintain cache coherence, Venus must not retain both the stale directory state and
the volume callback.

This interaction does not occur frequently. To trigger it, a client must update a directory
while disconnected or weakly connected. Then, before reintegrating, a second client must
update the directory at the server, and the first client must obtain a volume callback on the
directory’s volume. Finally, the first client must reintegrate successfully, and maintain its
volume callback.

A good solution to this problem requires computation and message traffic proportional only
to the number of stale directories. That number is small, and often zero. Clearly, discarding the
volume callback after reintegration is not desirable. Nor is the class of solutions requiring work
on every remote update (callback break), because not all remote updates correspond to dirty

5The CML does not contain enough information to capture read dependencies, such as in an operation cat
foo > bar.

86 CHAPTER 5. TRICKLE REINTEGRATION

ViceOpenReintHandle (IN ViceFid Fid,
OUT ViceReintHandle RHandle);

ViceQueryReintHandle (IN VolumeId Vid,
IN ViceReintHandle RHandle[],
OUT RPC2_Unsigned Length);

ViceSendReintFragment (IN VolumeId Vid,
IN ViceReintHandle RHandle[],
IN RPC2_Unsigned Length,
IN OUT SE_Descriptor BD);

ViceCloseReintHandle (IN VolumeId Vid,
IN RPC2_Integer LogSize,
IN ViceReintHandle RHandle[],
IN RPC2_CountedBS OldVS,
OUT RPC2_Integer NewVS,
OUT CallBackStatus VCBStatus,
IN RPC2_CountedBS PiggyCOP2,
IN OUT SE_Descriptor BD);

Figure 5.6: Interface for Reintegration by Fragment

This figure shows the interface for reintegration of files by fragment. The
ViceOpenReintHandle call creates and returns a handle for a shadow inode at the server,
and the ViceSendReintFragment call deposits file data into the shadow inode. If a failure
occurs before the fragment is transferred completely, Venus may check the status of a handle
with the ViceQueryReintHandle call. Finally, reintegration with file data present at the
server is accomplished with ViceCloseReintHandle. Arrays of RHandles are specified
for the latter three calls because Venus must send each server its handle.

5.3. DETAILED DESIGN 87

objects, and these solutions would introduce more distributed state into the system which would
have to be maintained. Solutions that involve validating dirty directories after reintegration are
also not ideal, because it is likely that most of the directories will not be stale.

Since the server performs version checks on each object involved in a reintegration, it is
a simple matter for it to indicate which, if any, of the directories involved in the reintegration
are stale. The server returns, as a result of the ViceReintegrate RPC, a list of fids that
correspond to stale directories in the client’s cache. Venus marks those directories invalid, and
purges them once all references to them are cleared.6 If Venus maintains a volume callback
through the reintegration, it is assured that no clean directory state will become stale. Even if
Venus does not have a volume callback, it is still saved from performing doomed validations of
stale objects. The computation and message traffic expended by this solution is minimal, and
proportional to the number of stale directories involved in the reintegration.

5.3.4 Ensuring Atomicity

The original implementation of reintegration was flawed with respect to one class of failures,
namely, when a reintegration completes at the server successfully but the RPC response to the
client is lost in spite of retransmissions. This failure can occur if a network partition separates
the client and server during the interlude. When this failure occurs, reintegration succeeds at
the server but fails at the client. Venus declares the server down and preserves the log state
so that the operation may be retried when the failure is repaired. Unfortunately, the retry is
doomed, because the operations have already completed at the server.

This problem is rare on LANs because of their high reliability – even if the RPC response
is lost, it is likely that the RPC layer at the client will retry the request and provoke another
response. However, in an intermittent environment, this problem occurs frequently enough that
it must be addressed. The problem first arose on clients connected via SLIP. Although SLIP
connections are slow, one would expect them to be reasonably reliable. However, the SLIP
gateway Coda clients used had a bug that caused it to freeze for periods exceeding the system
timeout interval, thus producing intermittent behavior.

A standard solution to this sort of problem is to employ a distributed two-phase commit
protocol [28] in which the client is the coordinator, and the servers are subordinates. Each server
indicates whether or not the operation succeeded. The client collects the server responses, and
if all is well, it sends a “commit” message to each server. Otherwise, it sends an “abort”
message. Each server then commits or aborts the reintegration as instructed, and acknowledges
the client. Reintegration completes at the client when it receives acknowledgements from all
servers. Note that the server must be prepared to “go either way” with the request from the

6There may be other CML records, not yet reintegrated, that also refer to these directories. In the meantime,
Venus may continue to service requests on these directories, including updates, from the cached copy.

88 CHAPTER 5. TRICKLE REINTEGRATION

time it indicates the outcome to the client to the time it receives the final outcome from the
client. In particular, all resources needed to complete the reintegration must be held until the
outcome is known. If the client crashes during this interval, the server is blocked, holding locks
on the objects involved in the reintegration. Because clients may disconnect for arbitrarily long
periods, this vulnerability to failures makes distributed two-phase commit unattractive.

Instead, if the client times out, it presumes that the reintegration failed at the server (the
more likely outcome), but detects if it succeeded. Servers retain the identity of the last record
reintegrated in each volume from each client. The identifier is the store ID embedded in each
log record. The store ID is a hhost ID, uniquifieri pair. The uniquifier is initialized with the
system time and incremented on each use. Thus the store ID is strictly increasing over time and
unique across client restarts. When the server receives a CML, it compares the store ID of the
first record with its last store ID for the client, if any. If its uniquifier is greater than that of the
first log record, it returns an error to the client along with its store ID. The client then commits
all log records up to and including the one with the matching store ID and retries the operation
with the remaining CML.

To ensure atomicity, the server must commit the identifiers to recoverable storage. However,
the administrative tasks required to change the format of a server’s recoverable storage are
considerable. For this reason, the server maintains the identifiers in volatile memory. Hence,
it is still possible for reintegration to fail non-atomically if the server crashes after completing
reintegration, and the client does not receive a reply. This failure mode is no more frequent
than server crashes, and therefore no more frequent than its original occurrence rate in a LAN
environment.

After most failures, Venus applies log optimizations over the prefix of the log that was being
reintegrated. The advantage of optimizing after failures is two-fold: subsequent reintegrations
involve less data, and the offending record may be cancelled. However, care must be taken
in applying log optimizations when the client times out, because one cannot be certain that
reintegration failed at the server. If reintegration succeeded, the results of records that the client
would cancel may be visible to other clients. For example, suppose Venus has a CML containing
records create foo, remove foo, create foo, and it times out while attempting to
reintegrate the firstcreate record. If the reintegration succeeded at the server, foo is globally
visible. Venus must send the remove record to the server, otherwise the subsequent create
will fail. Therefore Venus applies optimizations over the log prefix for reintegration failures
only if it receives a response from the server. If it receives no response, optimizations for
records in the log prefix remain disabled until their fate is known.

For a replicated volume, the responses for a subset of the AVSG may be lost. In this case,
the Venus times out on the corresponding servers, and reintegrates with the remaining AVSG.
If reintegration succeeds, Venus commits the operations in the log prefix and discards those
records. If the AVSG then grows, the existing resolution mechanisms are applied to the objects
involved in the previous reintegration. If they are successful, the reintegration proceeds. It

5.3. DETAILED DESIGN 89

is possible for the client to find itself in a situation in which the servers do not agree on the
identity of the last reintegrated record. In this case, Venus declares failure and marks the objects
associated with the log head in conflict, as it would for a semantic failure.

5.3.5 Effects of Server Replication

When strongly connected, Venus reintegrates with all AVSG members in parallel. Each server
receives a copy of the CML, and then backfetches the new file data from the client. This strategy
is based on the assumption that clients and servers are connected by a fast network. In such
an environment, it is reasonable to expend bandwidth to maximize availability by reintegrating
with as many AVSG members as possible. However, when bandwidth is scarce, Venus must
minimize the amount of data sent over the weak link, while still maximizing the probability
that all AVSG members receive the updates.

5.3.5.1 Backfetching

An obvious way to avoid sending multiple copies of data over the weak link is to use multicast
beneath RPC2, as described in Chapter 3. Unfortunately, in addition to the issues discussed in
that chapter, the implementation of reintegration is not structured to take advantage of multicast.
Although Venus would no longer send multiple copies of the CML, each AVSG member would
individually backfetch a copy of the new file data. Servers perform backfetches independently
on their server-to-client callback connections; logically these requests are not multicasts. As
the data in Section 5.4 shows, the vast majority of data transferred during reintegration occurs
during backfetch.

Backfetching over a different connection than the reintegration request introduces another
problem for weakly connected clients, namely, that traffic on the different connections can
interfere, even though it occurs on behalf of the same request. The connection on which
Venus makes the reintegration RPC has no knowledge of progress on the callback channel,
and will time out if a response isn’t forthcoming. On a weak connection, the retransmissions
can contribute to congestion, and may cause the reintegration RPC to time out even though
backfetches are proceeding normally.

A solution to both of these problems is to modify RPC2 to allow multiple side effects
per RPC, rather than a single one. The reintegration RPC would then include a side effect
descriptor for the CML, as it does now, and an additional descriptor for each container file
whose contents are to be backfetched. The backfetches would occur in series, over the same
connection as the reintegration request. This strategy would have lower RPC overhead than
the current one, because only one RPC is performed per reintegration instead of an additional
RPC for each backfetch. Backfetch traffic would not interfere with the reintegration request

90 CHAPTER 5. TRICKLE REINTEGRATION

because RPC2 and its side effects share liveness information, as described in Section 3.2.3.
Backfetches would also be amenable to multicasting. The main disadvantage of this scheme is
that if a failure occurs, communicating its identity to the application would be awkward.

5.3.5.2 Resolution

Coda uses a solution independent of multicast, relying instead on the resolution subsystem. It
assumes that the servers are strongly connected to each other – an assumption required by other
parts of Coda. While weakly connected, Venus reintegrates with a single server. If reintegration
succeeds, the reintegrator thread then invokes resolution on all reintegrated objects to propagate
them to the remaining AVSG members. In principle, Venus could reintegrate with a subset of
the AVSG, the size of which is dependent on the strength of the connection.

There are several potential drawbacks to an implementation that depends on resolution.
First, resolution is performed lazily, imposing a delay when the object is next referenced. But
since the reintegrator triggers resolution in the background, most if not all of the delay is hidden
from user requests. Second, servers break callbacks on the objects of resolution, because the
resolution protocol updates at least their version vectors.7 Although Venus must refetch the
status of the objects after resolution, it does not refetch the data unless the object’s data actually
changed. Suppression of data fetches is described next in Section 5.3.5.3. Last, a guiding
principle in the design of Coda is that clients bear the brunt of the work. Resolution is a four-
phase protocol that involves all servers in the AVSG; compared to reintegration, resolution
is a heavyweight operation. Two factors mitigate the increased server load. First, a weak
connection limits the rate at which a client can issue server requests. Second, it is less costly for
a server to fetch data from another strongly-connected server via resolution than to backfetch
it from a weakly-connected client.

There is a refinement to this solution that would decrease the number of resolutions necessary
to propagate updates to all AVSG members. It is a hybrid of the reintegrate-with-all model
used by strongly-connected clients, and the reintegrate-with-one-and-resolve model used by
weakly-connected clients. In the hybrid approach, Venus would send the CML to all servers,
but only one server would backfetch new data. Venus would then invoke resolution only for the
objects of store records. This solution takes advantage of the fact that most of the data for
reintegration is backfetched. It expends a small amount of bandwidth to eliminate resolution
and status refetch for directories, and may be useful for intermediate points in the connectivity
spectrum. The implementation of this solution would require servers that do not backfetch
leave enough state behind to trigger a resolution upon reference from any client, because a
failure may prevent the reintegrating client from invoking resolution. This is not an issue

7The current implementation of resolution requires servers to update their version vectors whether or not they
perform compensating operations. The implementation could be refined in certain cases, such as file resolution,
to suppress the callback break from servers that already possess the most recent copy of the object.

5.3. DETAILED DESIGN 91

in the reintegrate-with-one-and-resolve model, because only one server actually performs the
updates.

5.3.5.3 Suppressing Data Fetches

A callback break does not necessarily mean an object is invalid. It simply means that the
server no longer promises to tell the client if it becomes invalid. A server may break callbacks
arbitrarily, for example, to garbage collect state. The client is free to request another callback.

A server sends callback breaks to clients when it performs an update, regardless of whether
the update changed the status of the object or both status and data. Strongly connected clients
normally invalidate and discard an object upon receiving a callback break. This could result
in unnecessary data fetches if the data was unchanged. While this is not a serious problem for
a strongly connected client, a weakly connected client would be squandering knowledge that
takes time to obtain. Thus a weakly connected client should not discard data gratuitously; it
should retain it until there is strong evidence that the data is actually invalid. This is particularly
important in view of the resolution protocol, which updates at least the status of an object on
every invocation.

There are several ways to suppress unnecessary data fetches in the implementation. Coda
uses the data version field of the Vice status block to detect status-only updates. This field is
used for concurrency control checks of non-replicated objects at the server, as a version vector
is used for replicated objects. It is incremented only during update operations that change the
data. When Venus receives a callback break, it retains the data until it obtains a new status
block for the object. It then determines the currency of its data by checking a separate data
version field. Since data version numbers may differ from server to server, Venus keeps a
vector of data versions, similar to the version vector, and checks the appropriate element for
each server. Validating an object then proceeds as follows. First Venus compares the version
vectors obtained from the server with the cached copy. If the version vectors are equal, the
client has the correct data. If the version vector check fails, and the server’s version vector is
dominant, the updates at the server could have updated only the status, or both status and data.
Venus uses the data version to distinguish the two cases. Data versions require maintenance.
Venus must increment them after all locally performed updates. While disconnected, it must
also decrement them as appropriate when CML records are cancelled.

The main advantage of the client-based solution is that no changes to the server implemen-
tation are required. The disadvantage is that an extra status check is necessary after a callback
break to determine which part of the object changed.8 A cleaner solution, which would require

8An old version of AFS had a “Check and Fetch” RPC that worked as follows. A client supplies the status
block of the file it has. If the status is valid, the server grants a callback. If the status is not valid, the server sends
the new status block, then transfers new data, and then grants a callback. Either way, the client ends with new

92 CHAPTER 5. TRICKLE REINTEGRATION

more work at the server, would be to associate a type with a callback. The server would then
break callbacks on status or status and data as appropriate.

5.4 Selecting an Aging Window

What should the value of A be? The choice of A trades off prompt propagation to servers
against reduction of data volume through log optimizations. To choose a good default value
for A, one must understand when log optimizations tend to occur, and how effective they are
as a function of time.

This section describes a trace-based simulation study to determine a good default aging
window. Although Venus uses a fixed A, its value may be changed from the command line
using the cfs program, or from a program using the pioctl interface. The optimal value
is of course workload dependent, and this study is based on workloads that are common in
academic environments. However, this procedure for selecting a default is applicable to any
workload.

5.4.1 File Reference Traces

The simulation study was based on file reference traces collected using the DFSTrace sys-
tem [86] from workstations in the School of Computer Science at Carnegie Mellon University.
Over two years of detailed traces were collected from 1991 to 1993 from approximately 30
workstations and Coda file servers. The traces were recorded at the level of Unix system
calls, and capture references to any file system a workstation accesses. In our environment,
workstations access the local Unix file system as well as a variety of distributed file systems
including AFS, NFS, and Coda. The content of the trace records for each operation is presented
in Table 5.7.

The traces used for this study were the same as those chosen by Jay Kistler for his evaluation
of client storage requirements for disconnected operation and reintegration latency [62]. These
traces consist of two groups of five traces each, collected for the most part from single user
workstations. The first group, the work-day traces, contained 12-hour periods of user activity.
The second group, the full-week traces, contained 168-hour periods. A summary of the traces
is shown in Table 5.8. Activity in the traces is typical of an academic environment, including
software development, document preparation, and mail and bulletin board reading. References
not pertinent to the study were filtered using the trace postprocessing software. Details regarding
filtering are given in Table 5.9.

status/data and a callback. The disadvantage of check and fetch is lack of performance predictability – a client
cannot be certain how much data will be fetched when it sends the RPC request.

5.4. SELECTING AN AGING WINDOW 93

Record Items recorded (with header)

open flags, mode, file descriptor, index, user ID, old size, size, file type,
fid, directory fid, path

close file descriptor, index, # reads, # writes, # seeks, bytes read, bytes
written, size, fid, file type, open count, flags, caller, mode

stat, lstat fid, file type, path
seek file descriptor, index, # reads, # writes, bytes read, bytes written,

offset
chdir, chroot, readlink fid, path
execve size, fid, owner, path
access, chmod fid, mode, file type, path
creat fid, directory fid, old size, file descriptor, index, mode, path
mkdir fid, directory fid, mode, path
chown owner, group, fid, file type, path
rename from fid, from directory fid, to fid, to directory fid, size, file type,

links, from path, to path
link from fid, from directory fid, to directory fid, file type, from path,

to path
symlink directory fid, fid, target path, link path
rmdir, unlink fid, directory fid, size, file type, # links, path
truncate old size, new size, fid, path
utimes access time, modify time, fid, file type, path
mknod device, fid, directory fid, mode, path
mount fid, read/write flag, path
unmount fid, path
fork child pid, user ID
exit, settimeofday (header only)
read, write file descriptor, index, amount

lookup component fid, parent fid, file type, component path
getsymlink fid, component path, link path
root component fid, target fid, path

dump system call counts
note annotation

Table 5.7: Contents of Trace Records

This table shows the contents of trace records for each operation. Records corresponding to
UNIX system calls are shown in the upper portion of the table. The lookup, root, and
getsymlink records are generated during name resolution. The note record allows users
to embed notes in a trace, for example to indicate a particular point in the execution of an
application.

94 CHAPTER 5. TRICKLE REINTEGRATION

Trace Length Machine Name Machine Type Simulation Start Trace Records

Work Day brahms.coda.cs.cmu.edu IBM RT-PC 25-Mar-91, 11:00 195289

(12 hours) holst.coda.cs.cmu.edu DECstation 3100 22-Feb-91, 09:15 348589

ives.coda.cs.cmu.edu DECstation 3100 05-Mar-91, 08:45 134497

mozart.coda.cs.cmu.edu DECstation 3100 11-Mar-91, 11:45 238626

verdi.coda.cs.cmu.edu DECstation 3100 21-Feb-91, 12:00 294211

Full Week concord.nectar.cs.cmu.edu Sun 4/330 26-Jul-91, 11:41 3948544

(168 hours) holst.coda.cs.cmu.edu DECstation 3100 18-Aug-91, 23:21 3492335

ives.coda.cs.cmu.edu DECstation 3100 03-May-91, 12:15 4129775

messiaen.coda.cs.cmu.edu DECstation 3100 27-Sep-91, 00:15 1613911

purcell.coda.cs.cmu.edu DECstation 3100 21-Aug-91, 14:47 2173191

Table 5.8: Summary of the Work-day and Full-week Traces

These traces were selected from over 1700 collected during February-October 1991. The “Trace
Records” column refers to the number of records in each trace during the simulated period (i.e.,
between simulation-start and simulation-start plus 12 or 168 hours). All of the traces except the
Concord trace are of single-user workstations. Concord was used as a timesharing compute-
engine. Source: Kistler [62], Table 8.1, page 207.

5.4. SELECTING AN AGING WINDOW 95

Attribute Filter Value

opcode open close stat lstat chdir
chroot creat mkdir access chmod
readlink getsymlink chown utimes
truncate rename link symlink
unlink rmdir lookup root

file type regular, directory, link

reference count 1

error 0 (success)

matchfds match closes with corresponding opens

start time simulation start

end time trace length

pids exclude activity by Venus

Table 5.9: Trace Filter Specification

The DFSTrace analysis library allows traces to be filtered by a variety of attributes including
operation, pathname, start time, and end time. This table shows the attributes on which the traces
are filtered. References to device files, and special files such as /dev/null are excluded, as
well as unsuccessful operations. The start time is given by the “Simulation Start” column of
Table 5.8, and the end time is 12 or 168 hours later as appropriate. The reference count specifier
filters out all close records except the final one for a file, as that is when Venus performs activity
such as writing CML records. Activity by Venus itself, such as management of local container
files, is excluded by specifying the process id of Venus in each trace.

96 CHAPTER 5. TRICKLE REINTEGRATION

5.4.2 Venus Simulator

The traces were used as input to a Venus simulator. To derive the timing of log optimizations, the
simulator must model the cache management responsibilities of Venus. Writing and validating
such a simulator is a difficult task at best. To avoid this, Venus was modified to act as its own
simulator. In simulator mode, Venus is driven by requests from a trace instead of the operating
system. All network access, disk access, and communication with the operating system is
stubbed out. Modifications that would normally occur in RVM take place in virtual memory.
All volumes are placed in emulating state; updates are logged. The simulator output includes
the state of the CML at the end of the trace, and data on cancelled CML records.

The traces reference file systems other than Coda. For the purposes of simulation, all objects
referenced in the trace are treated as if they were in the distributed file system. File systems
outside of Coda are mapped into separate Coda volumes. The simulator assumes there are no
cache misses; if an object unknown to Venus is referenced, the simulator implicitly creates it,
but does not generate any explicit file system activity in the simulation.

5.4.3 Results

This section presents several sets of results showing the impact of the aging window on
the effectiveness of log optimizations. The analysis assumes throughout that records are
reintegrated as soon as they become old enough, and that all reintegrations succeed. These
assumptions render the aged CML records immune to further optimization. The section begins
with an analysis of the “base case”, in which results are normalized with respect to a maximum
aging window of four hours. If a weak connection is available, it is likely that a user will make
use of it periodically for the reasons listed at the beginning of this chapter, but in particular to
reduce the probability of data loss. The four hour maximum represents half a typical working
day, and is a reasonable upper bound on the amount of work loss a user might be willing to
tolerate. The goal of this analysis is to find a default aging window that yields 50% effectiveness.
That is, the defaultA should enable the client to optimize half of the CML data that it would if
it were disconnected for the entire four hour period. The analysis that follows shows that 50%
effectiveness can be achieved with a default aging window of 10 minutes.

The remainder of the section presents a sensitivity analysis of two parameters. The first
parameter is the size of the maximum aging window. Instead of measuring the effectiveness
of log optimizations with respect to a four-hour window as in the base case, this part of the
analysis compares the amount of optimization at a given A to that possible over the entire
length of the trace (12 or 168 hours). Since more optimizations are possible over the longer
period, one would expect the value ofA that yields 50% effectiveness to be larger than that for
the base case.

5.4. SELECTING AN AGING WINDOW 97

The second parameter is the set of files assumed to reside in the distributed file system. The
base case includes all file references in the traces, other than those excluded by the filter given
in Table 5.9. In particular, the base case includes references to /tmp, which would normally
reside in the local file system. Previous work on file reference patterns shows that temporary
files tend to be both short-lived and small [39]. Their short lifetimes suggest they would be
likely candidates for optimization, and might therefore skew the base case results towards a
smaller aging window. On the other hand, their small size may render their effect on the amount
of data saved insignificant.

The analysis shows that these perturbations do not change the conclusions of the base case
analysis significantly. In all cases, the default value exceeds the median window for 50%
effectiveness.9 To achieve 50% effectiveness for all ten traces, the aging window would have
to be 11 minutes for the base case. If the maximum window is equal to the full length of the
trace, the 50% mark is reached at 18 minutes; the increase is due to one of the week-long traces.
If temporary files are excluded, and the four-hour maximum is used, the 50% mark is at 14
minutes. Finally, if temporary files are excluded, and the maximum window is the full length
of the trace, the 50% mark is at 48 minutes. The increase is due to three of the week long traces,
whose 50% marks are at 30, 34, and 48 minutes, respectively.

5.4.3.1 Base Case

The base case assumes that updates are reintegrated no later than four hours after they are
performed. Intuitively, this behavior would occur with a write-disconnected client using an
aging window of four hours. For this case, the effectiveness of log optimizations as a function of
the aging window is normalized with respect to a maximum four-hour aging window. Table 5.10
shows the CML sizes for each trace, with and without optimizations, for the base case. The
optimized section shows the amount of data in the CML at the end of the period traced (full day
or work week) using a four-hour aging window. The unoptimized section shows the amount
of data in the CML without optimizations; this amount is produced using an aging window of
0. The table shows widely varying numbers of records per trace in both the unoptimized and
optimized sections. With the exception of the ives trace without optimizations, the majority
of data (87% or more) represented by the CML arises from the container files associated with
store records. Even for the unoptimized ives trace, the data size is 65% of the total amount
reintegrated.

Figures 5.11 and 5.12 show effectiveness of CML optimizations for base case over the day
and week traces, respectively. The graphs show wide variation across traces. An aging window
of 300 seconds yields only a 30% effectiveness on some traces, but over 80% on others. Some

9The distribution of aging windows at 50% effectiveness has a large range and is skewed towards 0 for all
cases. The median is the proper index of central tendency for such data [55].

98
C

H
A

PT
E

R
5.

T
R

IC
K

L
E

R
E

IN
T

E
G

R
A

T
IO

N
Unoptimized Optimized

CML CML Size Data Size Total CML CML Size Data Size Total
Trace Records (MBytes) (MBytes) (MBytes) Records (MBytes) (MBytes) (MBytes)

Day traces

brahms 2424 0.6 19.4 20.0 1424 0.3 4.9 5.2

holst 4120 0.9 10.9 11.8 325 < 0.1 0.9 1.0

ives 846 0.2 2.1 2.3 232 < 0.1 0.7 0.8

mozart 2469 0.6 8.5 9.1 877 0.2 1.3 1.5

verdi 554 0.1 41.0 41.2 112 < 0.1 10.4 10.4

Week traces

concord 35332 7.9 858.5 866.4 3480 0.8 48.7 49.5

holst 36890 8.1 62.4 70.5 2974 0.7 29.6 30.2

ives 175381 40.5 75.0 115.5 11662 2.7 28.1 30.8

messiaen 8523 1.9 199.1 201.0 2351 0.5 48.9 49.4

purcell 8872 2.0 92.8 94.8 3843 0.9 50.2 51.1

Table 5.10: Unoptimized and Optimized CML Sizes, Base Case
This table shows the unoptimized and optimized CML sizes at the end of each file reference
trace for the base case. The “CML Size” columns give the total size of records in the CML. The
“Data Size” columns give the amount of data in the container files of store records; this is the
amount of data backfetched. The “Total” columns show the sums of the corresponding “CML
Size” and “Data Size” figures. The unoptimized and optimized figures bound the amount of
data reintegrated. A client reintegrates the unoptimized amount with an aging window of 0, and
the optimized amount with an aging window of four hours.

5.4. SELECTING AN AGING WINDOW 99

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

brahms
holst
ives
mozart
verdi

Figure 5.11: Effect of Aging on CML Optimizations, Base Case, Day Traces

This figure shows the cumulative distributionof CML data ages at optimization for the day-long
traces.
Note A, the aging window, is shown log scale. The graph is normalized with respect to a
four-hour maximum aging window. Each point on a curve is a ratio of two quantities. The
numerator is the amount of data saved by optimizations for the value of A at that point. The
denominator is the savings whenA is four hours (14400 seconds). The value of the denominator
is the difference between the unoptimized and optimized totals in Table 5.10.
The default aging window and 50% effectiveness lines shown divide the graph into quadrants.
The default aging window is 50% effective if the lower right hand quadrant of the graph is
empty.

100 CHAPTER 5. TRICKLE REINTEGRATION

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

concord
holst
ives
messiaen
purcell

Figure 5.12: Effect of Aging on CML Optimizations, Base Case, Week Traces

This figure shows the cumulative distributionof CML data ages at optimizationfor the week-long
traces. All other conditions are as in Figure 5.11.

5.4. SELECTING AN AGING WINDOW 101

of the distributions have long tails: to reach 80% effectiveness on all traces, the aging window
must be over one hour. For 50% effectiveness, the aging window ranges from 1 – 655 seconds,
with a median of 65 seconds. An aging window of 600 seconds yields over 65% effectiveness
for eight of the ten traces. For the remaining two traces, the mozart day trace and the purcell
week trace, the effectiveness is 45% and 47%, respectively. Since 600 seconds yields nearly
50% effectiveness on all traces for the base case, it was chosen as the default value for A. In
the figures, the default aging window is 50% effective if the lower right hand quadrant of the
graph is empty.

5.4.3.2 Full-Length Aging Window

In this case, the client is considered disconnected for the entire trace, and log optimizations
may occur at any time during that period. Table 5.13 shows the CML sizes at the end of each
trace, with and without optimizations. The unoptimized section is the same as in Table 5.10.
The optimized section shows the amount of data in the CML at the end of the period traced (full
day or work week). The optimized amounts for four of the day traces are virtually identical to
those in Table 5.10. The exception is the verdi trace, whose optimized size is less than half that
obtained with respect to a four hour aging window. The difference is due to the cancellation
of two store records for a Venus binary (then just over 3MB) at approximately six hours of
age. The optimized data amounts for the week traces are all significantly lower than those in
Table 5.10; they vary from 31–82% of the optimized amounts for the base case. This is not
surprising, because a week-long trace provides much more time for optimizations to occur. As
before, the majority of the data in the optimized logs arises from container files associated with
store records.

Figures 5.14 and 5.15 show the effectiveness of CML optimizations with respect to the CML
size at the end of the day and week traces, respectively. Note that the X axes for Figures 5.14
and 5.15 have different scales than the graphs for the base case. For 50% effectiveness, the
aging window ranges between 2 – 1040 seconds, with a median of 199 seconds. The default
aging window yields 51–82% effectiveness for eight of ten traces. The exceptions are the
mozart day trace and the purcell week trace. At 600 seconds the mozart day trace shows 45%
effectiveness; it reaches the 50% mark at 620 seconds. The purcell day trace shows 35%
effectiveness at 600 seconds; it requires 1040 seconds to reach 50% effectiveness. Overall,
the lower right-hand quadrants of Figures 5.14 and 5.15 show that the default window yields
nearly 50% effectiveness on nine of the ten traces.

Compared to the base case, the full length aging window made little difference for four of the
five day traces. The exception was the verdi trace, whose aging window for 50% effectiveness
jumped from 83 to 174 seconds. The latter window is still much smaller than the default. Not
surprisingly, the week traces were affected more by a full-length aging window than the day
traces. The aging window for 50% effectiveness increased significantly for three of the five

102 CHAPTER 5. TRICKLE REINTEGRATION

week traces, holst, messiaen, and purcell. Only the window for purcell is larger than the default
aging window.

5.4.3.3 No /tmp Files

This case assumes that /tmp resides in the local file system, and thus excludes trace references
to it and its descendants. It preserves the maximum four-hour aging window as in the base case.
Table 5.16 shows the CML sizes for each trace with respect to the maximum aging window of
four hours, excluding references to /tmp. The table shows significantly lower unoptimized
log sizes for most traces (compared to Table 5.10). In particular, the concord trace had over 200
MB less data (a decrease of 28%). As before, the vast majority of data is from the container
files associated with store records. This decrease in log sizes illustrates the amount of update
activity to /tmp in the traces. However, the optimized log sizes differed little from the base
case for all but two traces. The verdi day trace had 3.1 MB less data without /tmp files (a
decrease of 30%), and messiaen week trace had 4.0 MB less data (a decrease of 8%). These
observations confirm that much of the activity to /tmp is subject to optimization.

Figures 5.17 and 5.18 show the effectiveness of CML optimizations with respect to a four
hour maximum aging window, excluding /tmp files. For 50% effectiveness, the aging window
ranges from 1–813 seconds, with a median of 215 seconds. The default aging window yields
58–85% effectiveness on seven of ten traces. The remaining three traces, the mozart day trace,
the messiaen week trace, and the purcell week trace were all close to 50%, at 45%, 46%, and
45% respectively.

Compared to the base case, the graphs show considerably lower effectiveness for small
aging windows. For example, at a 30 second aging window, the median effectiveness drops
from a 35% (range 3–77%) in the base case to 14% (range 1–65%) without /tmp files. This
decrease is consistent with short /tmp file lifetimes.

5.4.3.4 Full-Length Aging Window, No /tmp Files

This case excludes references to /tmp its descendants, and considers the client disconnected
for the entire traced period. Table 5.19 shows the unoptimized and optimized log sizes at the
end of each trace, excluding references to /tmp. Because updates to /tmp files are excluded,
the unoptimized log sizes are smaller than in the full-length window case of Section 5.4.3.2.
The optimized log sizes are virtually identical. Because optimizations have the full length of
the trace to occur, the optimized log sizes are smaller for the verdi trace and the week traces
compared to the four-hour aging window case without /tmp files of Section 5.4.3.3.

Figures 5.20 and 5.21 show the effectiveness of CML optimizations excluding references to
/tmp. Note that the X axes for these graphs have different scales than the graphs for the base

5.4.
SE

L
E

C
T

IN
G

A
N

A
G

IN
G

W
IN

D
O

W
103

Unoptimized Optimized

CML CML Size Data Size Total CML CML Size Data Size Total
Trace Records (MBytes) (MBytes) (MBytes) Records (MBytes) (MBytes) (MBytes)

Day traces

brahms 2424 0.6 19.4 20.0 1424 0.3 4.9 5.2

holst 4120 0.9 10.9 11.8 318 < 0.1 0.9 1.0

ives 846 0.2 2.1 2.3 210 < 0.1 0.7 0.8

mozart 2469 0.6 8.5 9.1 873 0.2 1.3 1.5

verdi 554 0.1 41.0 41.2 103 < 0.1 4.1 4.1

Week traces

concord 35332 7.9 858.5 866.4 1851 0.4 16.1 16.5

holst 36890 8.1 62.4 70.2 1661 0.4 17.5 17.9

ives 175381 40.5 75.0 115.5 7204 1.7 23.7 25.4

messiaen 8523 1.9 199.1 201.0 1157 0.3 15.1 15.4

purcell 8872 2.0 92.8 94.8 2671 0.6 35.8 36.4

Table 5.13: Unoptimized and Optimized CML Sizes, Full Trace Length
This table shows the unoptimized and optimized CML sizes at the end of each file reference
trace. The unoptimized CML sizes are the same as in Table 5.10. The “CML Size” columns give
the total size of records in the CML. The “Data Size” columns give the amount of data in the
container files of store records; this is the amount of data backfetched. The “Total” columns
show the sums of the corresponding “CML Size” and “Data Size” figures. The unoptimized and
optimized figures bound the amount of data reintegrated. A client reintegrates the unoptimized
amount with an age of 0, and the optimized amount with an age of 12 hours or 168 hours for
the day-long and week-long traces, respectively.

104 CHAPTER 5. TRICKLE REINTEGRATION

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623 100000

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

brahms
holst
ives
mozart
verdi

Figure 5.14: Effect of Aging on CML Optimizations, Day Traces

This figure shows the cumulative distributionof CML data ages at optimization for the day-long
traces. The maximum age is 43200 seconds (12 hours).
Note A, the aging window, is shown log scale. The effectiveness is the ratio of the amount of
data optimized for the trace at A to the total amount of data optimized for the trace. The total
amount of data optimized is the difference between the unoptimized and optimized totals in
Table 5.13.

5.4. SELECTING AN AGING WINDOW 105

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623 100000 316228 1000000

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

concord
holst
ives
messiaen
purcell

Figure 5.15: Effect of Aging on CML Optimizations, Week Traces

This figure shows the cumulative distribution of CML data ages at optimization for the week-
long traces. The maximum age is 604800 seconds (168 hours). All other conditions are as in
Figure 5.14.

106 CHAPTER 5. TRICKLE REINTEGRATION

case. For 50% effectiveness, the aging window ranges from 2–2851 seconds, with a median of
275 seconds. The default aging window yields at least 50% effectiveness for six of the traces.
Exceptions are the mozart day trace, and the holst, messiaen, and purcell week traces. The
mozart day trace was close, at 45% effectiveness; it reaches the 50% mark at 623 seconds.

Compared to the base case, the median effectiveness is again significantly lower for small
aging windows. At 30 seconds, the median effectiveness drops from 35% (range 3-77%) in the
base case to 11% (range 1-61%). At 600 seconds, there is little difference for the day traces,
but the effectiveness is lower for the three week traces mentioned previously.

5.5 Chapter Summary

This chapter describes trickle reintegration, the mechanism Venus uses to propagate updates
performed at a weakly connected client. Trickle reintegration propagates updates in a best
effort manner, as network availability and bandwidth allows. At the same time, it conserves
network usage by delaying propagation to take advantage of updates that cancel or overwrite
each other. Because update propagation over a weak connection can be a lengthy process, it is
important that trickle reintegration be unobtrusive; that is, it must not interfere with foreground
activity at the client. The evaluation of trickle reintegration, in Section 7.5, will show that it
achieves this goal.

5.5.
C

H
A

PT
E

R
SU

M
M

A
R

Y
107

Unoptimized Optimized

CML CML Size Data Size Total CML CML Size Data Size Total
Trace Records (MBytes) (MBytes) (MBytes) Records (MBytes) (MBytes) (MBytes)

Day traces

brahms 2166 0.5 19.4 19.9 1424 0.3 4.9 5.3

holst 2020 0.5 5.5 5.9 313 < 0.1 0.8 0.9

ives 712 0.2 1.8 2.0 227 < 0.1 0.7 0.8

mozart 2010 0.5 8.4 8.9 875 0.2 1.3 1.5

verdi 350 < 0.1 31.4 31.5 98 < 0.1 7.3 7.3

Week traces

concord 15206 3.4 624.6 628.0 3477 0.8 48.7 49.5

holst 32505 7.1 54.6 61.7 2848 0.6 29.6 30.2

ives 159198 36.8 71.4 108.2 11585 2.7 27.9 30.6

messiaen 5632 1.3 122.2 123.5 2331 0.5 44.9 45.4

purcell 7574 1.7 91.1 92.8 2665 0.9 50.2 51.1

Table 5.16: Unoptimized and Optimized CML Sizes, Excluding /tmp, Four Hour Maximum
This table shows the unoptimized and optimized CML sizes as in Table 5.10, except references
to /tmp are excluded.

108 CHAPTER 5. TRICKLE REINTEGRATION

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

brahms
holst
ives
mozart
verdi

Figure 5.17: Effect of Aging on CML Optimizations, Excluding /tmp, Four-Hour Maximum,
Day Traces

This figure shows the cumulative distribution of CML data ages at optimization, excluding files
in /tmp, for the day-long traces.
The graph is normalized with respect to a four-hour maximum aging window. Each point on a
curve is a ratio of two quantities. The numerator is the amount of data saved by optimizations
for the value of A at that point. The denominator is the savings when A is four hours (14400
seconds). The value of the denominator is the difference between the unoptimized and optimized
totals in Table 5.16.

5.5. CHAPTER SUMMARY 109

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

concord
holst
ives
messiaen
purcell

Figure 5.18: Effect of Aging on CML Optimizations, Excluding /tmp, Four-Hour Maximum,
Week Traces

This figure shows the cumulative distribution of CML data ages at optimization, excluding files
in /tmp, for the week-long traces. All other conditions are as in Figure 5.17.

110
C

H
A

PT
E

R
5.

T
R

IC
K

L
E

R
E

IN
T

E
G

R
A

T
IO

N
Unoptimized Optimized

CML CML Size Data Size Total CML CML Size Data Size Total
Trace Records (MBytes) (MBytes) (MBytes) Records (MBytes) (MBytes) (MBytes)

Day traces

brahms 2166 0.5 19.4 19.9 1424 0.3 4.9 5.3

holst 2020 0.5 5.5 5.9 306 < 0.1 0.8 0.9

ives 712 0.2 1.8 2.0 205 < 0.1 0.7 0.8

mozart 2010 0.5 8.4 8.9 871 0.2 1.3 1.5

verdi 350 < 0.1 31.4 31.5 92 < 0.1 4.1 4.1

Week traces

concord 15206 3.4 624.6 628.0 1848 0.4 16.1 16.5

holst 32505 7.1 54.6 61.7 1549 0.3 17.5 17.9

ives 159198 36.8 71.4 108.2 7193 1.7 23.7 25.4

messiaen 5632 1.3 122.2 123.5 1148 0.3 14.7 15.0

purcell 7574 1.7 91.1 92.8 2668 0.6 35.8 36.4

Table 5.19: Unoptimized and Optimized CML Sizes, Excluding /tmp, Full Trace Length
This table shows the unoptimized and optimized CML sizes as in Table 5.13, except references
to /tmp are excluded.

5.5. CHAPTER SUMMARY 111

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623 100000

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

brahms
holst
ives
mozart
verdi

Figure 5.20: Effect of Aging on CML Optimizations, Excluding /tmp, Day Traces

This figure shows the cumulative distribution of CML data ages at optimization, excluding files
in /tmp, for the day-long traces.
Each point on a curve is a ratio of two quantities. The numerator is the amount of data saved by
optimizations for the value of A at that point. The denominator is the savings at the end of the
trace. The value of the denominator is the difference between the unoptimized and optimized
totals in Table 5.19.

112 CHAPTER 5. TRICKLE REINTEGRATION

Aging Window (seconds)
3 10 32 100 316 1000 3162 10000 31623 100000 316228 1000000

E
ff

ec
ti

ve
n

es
s

(%
)

10

20

30

40

50

60

70

80

90

100

0
1

A = 600

50% Effectiveness

concord
holst
ives
messiaen
purcell

Figure 5.21: Effect of Aging on CML Optimizations, Excluding /tmp, Week Traces

This figure shows the cumulative distribution of CML data ages at optimization, excluding files
in /tmp, for the week-long traces. All other conditions are as in Figure 5.20.

Chapter 6

Handling Cache Misses

As connectivity weakens, the performance penalty of cache misses becomes too large to ignore.
From a user’s perspective, this lack of performance transparency can overshadow the functional
transparency of caching. For example, a cache miss on a 1 MB binary at 10 Mb/sec can usually
be serviced in a second or two. At 9.6 Kb/sec, the same miss causes a delay of nearly 20
minutes! In most cases, a user would rather be told that the file is missing than be forced to
wait a substantial time for it. But there are also situations where a file is so critical that a user
is willing to suffer this delay. The maximum delay a user is willing to tolerate for a particular
file is called his patience threshold for that file.

How can Venus decide whether or not to service a cache miss while weakly connected? As
the penalty for suboptimal decisions increases, so does the value of user advice. Venus uses
a priori advice on a file’s importance as input to a model that determines the user’s patience
threshold for the file. In cases where the servicing of a cache miss is still questionable, Venus
solicits the user for advice through an interactive facility called the advice monitor. User
advice is optional: if the client is unattended, or if a user does not run an advice monitor, Venus
operates from a set of default actions.

This chapter describes mechanisms for handling cache misses while weakly connected.
The user assistance mechanisms are part of a more general framework by Ebling [35]; this
chapter describes how that framework is applied to weak connectivity. The chapter begins by
describing the advice monitor. It then shows how a user can interact with the system to control
the amount of data fetched during cache miss servicing and hoard walks. The final section
delves into the underlying patience model.

113

114 CHAPTER 6. HANDLING CACHE MISSES

6.1 Advice Monitor

The advice monitor is a user-level process that serves as a liaison between the user and
Venus. Through the advice monitor, a user may selectively enable different kinds of advice
or request information about various aspects of the system, and Venus may solicit advice or
notify the user of important events. The advice monitor and Venus communicate using RPC2;
relevant interface calls are listed in Table 6.2. The code for user interaction is implemented
in Tcl/Tk [94] and requires that the user be running the X window system. Figure 6.1 shows
the process structure and flow of information for a typical user interaction. In this example, an
event occurs within Venus that prompts it to ask for advice. The thread making the request is
blocked until the user responds.

The functionality of the advice monitor could be provided as part of Venus. However, there
are several advantages to implementing it as a separate process. First, it minimizes additions
to Venus, which is already both large and complex. Modifications to Venus for user advice are
limited for the most part to hooks. Second, development and testing of the advice monitor can
proceed independent of Venus. The main disadvantage of a separate process implementation
is higher latency for operations involving user advice. This is not a serious drawback, because
interactions are exceptional events, and their latency is likely to be overwhelmed by user think
time.

The advice monitor runs on behalf of a particular user. There are two reasons for this
approach. First, since the advice monitor exposes information on a user’s file references, it
is important to restrict access to such information for security reasons. Second, the advice
monitor pesters the user for advice regarding only the activity for which she is responsible.

Venus
Advice
Monitor Tcl/Tk

1
2

3

Figure 6.1: Advice Monitor Interaction

This figure shows the communication between processes involved in a user advice interaction
on a client. An event occurs within Venus for which it requires advice. It sends an RPC request
to the advice monitor (1), which in turn executes the Tcl/Tk interpreter with a script for the
interaction (2). Once the user responds, the advice monitor replies to the RPC with the result of
the interaction (3).

6.2. USER INTERACTIONS 115

Operation Description

NewAdviceService Called the first time an advice monitor contacts Venus

ConnectionAlive Determine if Venus is reachable

RegisterInterest Selectively enable or disable advice

SetParameters Set Venus parameters dynamically

ImminentDeath Called on advice server shutdown

HoardWalkAdvice Request advice about which objects to fetch during a
hoard walk

WeaklyConnectedMiss Request advice on whether or not to service a cache
miss while weakly connected

LostConnection Clean up connection state from previous advice mon-
itor invocation

Table 6.2: Advice Monitor Interfaces

This table shows the RPC interfaces between Venus and the Advice Monitor pertinent to weakly
connected operation. The top section of the table shows calls made by the Advice Monitor to
Venus, and the bottom section shows calls made by Venus to the Advice Monitor.

Although it is possible for different users to thwart each others efforts at limiting the amount
of data fetched, in practice clients are single-user workstations or notebook computers.

6.2 User Interactions

The user interactions pertinent to weak connectivity come in three forms. Two of them are
prompted by Venus on hoard walks and certain cache misses, and one is initiated by the user to
augment the hoard database with data on recent cache misses.

6.2.1 Handling Cache Misses

The cache miss handling mechanism allows users to selectively suppress the servicing of
demand cache misses while weakly connected. (Cache misses caused by the hoard subsystem
are handled by a separate mechanism, described in Section 6.2.3.) When a cache miss occurs,
Venus estimates the time needed to service it. This estimate is based on the size of the object,

116 CHAPTER 6. HANDLING CACHE MISSES

Figure 6.3: Weakly Connected Miss

The Advice Monitor displays this screen when the estimated fetch time for a file exceeds the
patience threshold. The screen is triggered by receipt of a WeaklyConnectedMissRPC.

obtained from the object’s status information, and the current bandwidth to its VSG. If Venus
does not already have status information about the object cached, it obtains that information
from the VSG. The delay for this is acceptable even on slow networks because status information
is only about 100 bytes long.

The estimated service time is then compared with the patience threshold, whose calculation
is described in Section 6.3. If the service time is below the threshold, Venus transparently
services the miss. If the threshold is exceeded, Venus queries the user through the advice
monitor by displaying the screen shown in Figure 6.3. The user may choose to suppress the
fetch; in that case Venus returns an error to the calling application. If the user does not respond to
the screen within 15 seconds, Venus fetches the file. In this case, the client is likely unattended,
and the file may be needed later. If an advice monitor is not running, Venus automatically
fetches the file. The decision process for handling cache misses is illustrated in Figure 6.4.

6.2.2 Augmenting the HDB

At any time, a user can ask the advice monitor to display all of the unserviced cache misses that
have occured since the previous such request. The advice monitor displays each miss along
with contextual information, as shown in Figure 6.5. The advice monitor records information
on unserviced cache misses internally; it does not need to contact Venus to generate the list of
cache misses. The user can select which, if any, of the missing objects should be added to the
HDB. The advice monitor then sends a request to Venus to add the objects to the HDB, just as
the hoard program does. Venus does not fetch the objects immediately – that is deferred until
a future hoard walk. By default, hoard walks occur in the background once every 10 minutes,
but the user can force a foreground hoard walk at any time.

6.2. USER INTERACTIONS 117

have
status?

fetch
status

ask for

advice

advice
monitor

on?

fetch

data

return

error

fetch

data?

service
time

calculate

no

yes

yes

yes

no

no

no

no response

yes

patience?
time >

Figure 6.4: Cache Miss Handling

This figure illustrates the decision process for weakly connected cache miss handling, explained
in Section 6.2.1.

118 CHAPTER 6. HANDLING CACHE MISSES

Figure 6.5: Augmenting the Hoard Database

This screen, displayed in response to a user’s request to see recorded cache misses, shows the
name of each missing object, the program that referenced it, and the number of misses incurred
on the file by instances of the program. To add an object to the HDB, the user clicks the button
to its right. A pop-up form, shown in Figure 6.6 allows the user to specify the hoard priority of
the object and other related information.

Figure 6.6: Specifying an HDB Entry

This pop-up form is displayed when the user requests that a missing object be added to the HDB
from the screen in Figure 6.5. For directories, the user may include children or descendants by
clicking the appropriate buttons. Clicking the “+” button indicates that the specification will
apply to future children or descendants of the directory as well.

6.3. PATIENCE MODEL 119

6.2.3 Controlling Hoard Walks

A hoard walk is executed in two phases. In the first phase, called the status walk, Venus obtains
status information for missing objects and determines which objects, if any, should be fetched.
The status walk usually involves little network traffic. During the second phase, called the data
walk, Venus fetches the contents of objects selected by the status walk. If there are many large
objects to be fetched, this phase can be a substantial source of network traffic.

An interactive phase between the status and data walks allows a user to limit the volume of
data fetched in the data walk. For each object selected during the status walk, Venus estimates
its fetch time based on its size and the current bandwidth to its VSG. Those objects whose fetch
times fall below the user’s patience threshold are pre-approved for fetching, and Venus fetches
them automatically during the next data walk. The fetching of other objects must be explicitly
approved by the user.

Venus solicits advice from the user by issuing a HoardWalkAdvice RPC to the advice
monitor between the status and data walks. The advice monitor displays a screen like the
one in Figure 6.7. The screen allows users to select the objects to be fetching during the data
walk. If no input is provided by the user within 3 minutes, the screen disappears and the data
walk fetches all objects listed. The user input timeout is much longer than in the cache miss
interaction because the user may need more time to examine the list of objects. Of course, if
the advice monitor is not running, the screen is not displayed, and Venus fetches all objects
selected by the status walk.

6.3 Patience Model

The simplest approach to characterizing a user’s patience threshold (�) is to use a single,
user-selectable number. For example, with � set at 2 seconds, only misses that would take
less than 2 seconds are transparently handled. Implementing such a policy would be trivial.
But as mentioned earlier, � really depends on how important a user perceives an object to be:
for a very important object, the user is probably willing to wait many minutes. Since user
perception of importance is exactly the notion captured by the hoard priority P of an object,
we hypothesize that � should be a function of P . The challenge is to determine and validate
the functional form and parameters of this relationship.

At the present time, we are not aware of any data that would enable us to scientifically
screen potential candidates for this functional form. Hence the current implementation uses a
function based solely on intuition, but this function can easily be replaced if a better alternative
becomes available. We conjecture that patience is similar to other human processes such as
vision and hearing, whose sensitivity is logarithmic [22]. This leads to a relationship of the
form � = � + �e

P , where � and are scaling parameters and � represents a lower bound on

120 CHAPTER 6. HANDLING CACHE MISSES

Figure 6.7: Controlling the Data Walk

This screen enables the user to selectively suppress fetching of objects during a hoard walk.
The hoard priority and estimated service time of each object are shown. The user approves the
fetch of an object by clicking on its "Fetch" button. By clicking on its "Stop Asking" button,
she can prevent the prompt and fetch for that object until strongly connected. At the bottom of
the screen is the cache status that would result from the data walk. This information is updated
as the user clicks on "Fetch" buttons.

6.4. CHAPTER SUMMARY 121

patience. Even if an object is unimportant, the user prefers to tolerate a delay of � rather than
interacting with the system. Intuitively, the value of � should be at least the time it takes for
Venus and the advice monitor to display the cache miss window, and for the user to respond
to it. The default parameter values are � = 2 seconds, � = 1, and = 0:01, but they may
be changed by the user. The default values result in plausible patience values for many files
commonly found in the hoard profiles of Coda users.

Figure 6.8 illustrates the patience model. The patience threshold � is expressed in terms of
the size of the largest file that can be fetched in that time at a given bandwidth. For example,
for a patience threshold of 60 seconds, the largest file that can be fetched at a bandwidth of 64
Kb/sec is 480KB. Each curve in Figure 6.8 shows � as a function of P for a given bandwidth.
The region below a curve represents those combinations of file sizes and hoard priorities for
which caches misses are transparently handled and pre-approval is granted during hoard walks.
For example, a cache miss on the 1 MB file is serviced transparently, regardless of priority, if
the bandwidth exceeds 2 Mb/sec. But at 9.6 Kb/sec, it is serviced transparently only if it is
hoarded at high priority.

6.4 Chapter Summary

This chapter has described mechanisms for more intelligent handling of cache misses while
weakly connected. These mechanisms are motivated by the fact that the servicing of a cache
miss over a weak connection is not necessarily transparent. The high variability in performance
has rendered caching translucent. The system exposes caching to the user in cases where
preserving transparency would harm usability. That is, it selectively relaxes transparency when
necessary, and does so in a way that minimally impacts the user. This chapter has focused on
a specific instance of a more general problem: how can a system decide whether or not to act
transparent? Work by Ebling [35] is exploring how best to relax transparency while preserving
usability.

122 CHAPTER 6. HANDLING CACHE MISSES

Hoard Priority
200 400 600 800 1000

F
ile

 S
iz

e
(M

B
)

2

4

6

8

10

0

9.6 Kb/s
64 Kb/s
2 Mb/s
1 KB File
1 MB File
4 MB File
8 MB File

Figure 6.8: Patience Threshold versus Hoard Priority

Each curve in this graph expresses patience threshold, (�), in terms of file size, as discussed in
Section 6.3. Superimposed on these curves are points representing files of various sizes hoarded
at priorities 100, 500, and 900. At 9.6 Kb/sec, only the files at priority 900 and the 1KB file at
priority 500 are below � . When bandwidth rises to 64 Kb/sec, the 1MB file at priority 500 also
falls below � . At 2Mb/sec, all files except the 4MB and 8MB files at priority 100 are below � .

Chapter 7

Evaluation

The mechanisms for weak connectivity described in this thesis have been implemented and
deployed as part of the Coda file system. This chapter presents a quantitative evaluation of the
transport protocol, rapid cache validation, and trickle reintegration mechanisms. The evaluation
is based on controlled experimentation and empirical data gathered from the deployed system
in everyday use. This chapter begins with the status of the implementation and a description of
the usage environment.

7.1 Evolution and Implementation Status

The mechanisms for weak connectivity were deployed in stages starting in 1993. The first
stage involved enabling the transport protocols to operate at low bandwidths. Early anecdotal
evidence from Coda indicated that users of disconnected operation often wanted to make their
updates visible to collaborators after a period of working disconnected, and they felt more
comfortable when the results of many hours of hard work were safely stored on a server. These
concerns were significant enough that users sometimes came in to work just to reintegrate. The
ability to reintegrate over a phone line addressed both of these concerns.

Serious use of reintegration by phone soon revealed that it was much slower than even
the most pessimistic estimates. Examination of network traffic and Venus code revealed that
cache validation traffic, which is barely perceptible on a LAN, had substantial impact on a
slow network. It was especially painful when connections were intermittent. For slivers of
connectivity to be useful, it is imperative that cache validation occupy a negligible fraction
of each sliver. Batching validation requests on a single RPC helped speed up validation, but
not enough. The rapid cache validation mechanism was then implemented in late 1993 and
deployed in early 1994.

123

124 CHAPTER 7. EVALUATION

The next stage extended Venus to operate write-disconnected. In this state, Venus logged
updates as if it were disconnected, but continued to service cache misses as if it were con-
nected. Entry into and exit from this state was done via explicit commands. A user stayed
connected continuously, operating mostly write-disconnected, but occasionally forcing rein-
tegration. Lapses in a user’s hoarding strategy, resulting in cache misses, were functionally
masked. Once write-disconnected mode was operational, the manual triggering of reintegration
was eliminated with the trickle reintegration mechanism. Trickle reintegration was developed
in late 1994 and released for general use in 1995. Early versions of trickle reintegration prop-
agated data to all AVSG members regardless of connection strength. To conserve bandwidth
over weak connections, users partitioned their clients from all but one server, reintegrated with
it, and then manually triggered resolution to propagate the updates to all AVSG members. The
implementation was refined in 1996 to reintegrate with one server while weakly connected and
trigger resolution automatically, and to check data versions of objects to eliminate unnecessary
refetching of data after resolution.

The last stage was to substantially improve the handling of cache misses when weakly
connected. Examination of misses showed that they ranged in importance from critical to
banal, and arose from a wide range of causes. Fully automating the handling of misses
appeared unlikely to be satisfactory. Instead, users were provided contextual information about
misses, and given opportunity to influence their handling. The user assistance mechanism was
developed in early 1995, and has been released for general use. The mechanism continues to
be refined and extended by Maria Ebling as part of her work [35].

7.2 Usage Environment

Coda has been in daily use by a community of Coda developers and other computer science
researchers since 1991. At the time of this writing, there are ten Coda servers housing
approximately 4.0GB of data. The servers are all DECstation 5000/200 series workstations
running Mach 2.6 [1]. Three of these servers comprise a production VSG, and three a beta-test
VSG. The remaining four servers are used for alpha testing, and hold volumes of varying
replication factors. Each of the three groups runs different releases of the server software.

The servers collectively store 270 volumes. About 30% of these volumes are user volumes,
which store users’ private data. Eighteen of the user volumes are object volumes, used in
addition to home volumes to store the results of compilations. Most user volumes are stored
on the production servers. The main exception is object volumes, which are stored on the beta
servers. Object volumes are good stress tests for the beta servers because they result from real
user activity and object files are relatively easy to regenerate in case a catastrophic bug strikes.
Another 14% are system volumes, which are used to store application software, such as editors,
window managers, compilers, and document processing tools, as well as Coda binaries. System

7.3. TRANSPORT PROTOCOL 125

volumes also form the top levels of the Coda name space. About one third of the system volumes
are stored on the production servers; the rest reside on the beta servers. Project volumes hold
data used in collaborative work, such as the Coda system source areas. Project volumes account
for 40% of all volumes, and are generally stored on the production servers. The remaining
volumes are test volumes, used for system stress testing and demonstration purposes. Test
volumes are stored on the alpha servers.

There are 50 Coda user accounts, of which about 25 are used regularly. There are about
45 clients, evenly divided between desktop and notebook computers. All clients run Mach 2.6,
although the Coda client software has been ported to Mach 3.0 [42], and ports are underway
to NetBSD and LINUX [8]. Most workstations are DECstation 5000/200s, although there are
a few DECstation 3100s and Intel i386-based machines. The notebook computers are all Intel
i486-based. Until December 1995, they were almost entirely DEC pc425SLs. Now about
two thirds of them are IBM Thinkpad 701cs. Many users run Coda on both their desktop
workstations and their notebook computers.

The environments for desktops and notebooks differ with respect to Coda. For the desktops,
most system and application software is supplied by AFS. Hence they tend not to use the Coda
system areas. The notebook computers do not have access to AFS, and were configured this
way for two reasons. First, the notebooks were intended for mobile use, and AFS lacked
support for disconnected operation. Second, disk space on notebooks was limited, and could
not support both AFS and Coda caches. (This is no longer true – the new notebooks have
more disk space than our desktops!) The notebooks access application software from the Coda
system areas, and most notebook users store their home directories and environment files in
their Coda user volume.

7.3 Transport Protocol

The addition of round trip timing to RPC2 and SFTP means the protocols do more work when
processing packets. The obvious question is then: Is transport protocol performance acceptable
with round trip timing? To answer this question, file transfer performance was compared to
that of the most widely used transport protocol available under Mach 2.6, namely TCP [99].

File transfers were performed using three different network configurations: a 10 Mb/s
Ethernet, a 2 Mb/s WaveLan wireless network, and a modem operating at 9.6 Kb/s over a
phone line using SLIP. The configurations are shown in Figure 7.1. The experiment consisted
of disk-to-disk transfers of a 1 MB file using RPC2/SFTP and FTP [100] between a DECpc
425SL notebook and a DEC 5000/200 workstation.

The observed throughput, based on end-to-end transfer times, is shown in Table 7.2. The
results show that RPC2 and SFTP perform well over a wide range of network speeds. In

126 CHAPTER 7. EVALUATION

Client Server

(a) Ethernet

Client

Server

wavept

(b) Wavelan

Server

Client

gateway

(c) Modem

Figure 7.1: Experiment Configuration

This figure shows the three configurations used in the evaluation of the transport protocol. The
experiments were conducted using a DEC pc425SL notebook client and a DECstation 5000/200
server, both with 32 MB of memory, running Mach 2.6. The client and server shared an isolated
network. In the WaveLan configuration, the server was connected via Ethernet to a Wavepoint.
In the Modem configuration, the client dialed an Intel i486-based workstation, which acted as a
SLIP gateway.

7.4. RAPID CACHE VALIDATION 127

Transfer Nominal TCP RPC2/SFTP
Direction Network Speed (KB/sec) % Nom. (KB/sec) % Nom.

Ethernet 10 Mb/s 300 (28) 24 343 (12) 27
Send WaveLan 2 Mb/s 95 (10) 38 146 (6) 58

Modem 9.6 Kb/s 0.80 (0.005) 69 0.86 (0.003) 73

Ethernet 10 Mb/s 228 (8) 18 244 (13) 19
Receive WaveLan 2 Mb/s 71 (17) 28 144 (8) 58

Modem 9.6 Kb/s 0.85 (0.008) 72 0.82 (0.002) 70

Table 7.2: Transport Protocol Performance

This table compares the observed throughput of TCP and RPC2/SFTP. The data was obtained
by timing the disk-to-disk transfer of a 1MB file between a DECpc 425SL notebook client and a
DEC 5000/200 server over an isolated network. Both client and server were running Mach 2.6.
Each result is the mean of five trials. Numbers in parenthesis are standard deviations. The “%
Nom.” column gives the percentage of the nominal bandwidth used by the file transfer, based
on the mean observed throughput.

almost all cases, SFTP’s performance equals or exceeds that of TCP. However, this end-to-
end evaluation does not reveal the individual contributions of the various techniques used in
RPC2 and SFTP (e.g., round trip timing, calculation of retransmission intervals, retransmission
strategy), only the effect of the collection of techniques as a whole. Therefore, one cannot
determine from this evaluation the correctness or relative importance of the design decisions
made; one can only conclude that the combination of those decisions resulted in reasonable
performance for the experiment in question.

Opportunities abound for further improvement to the transport protocols. For example, they
could perform header compression as proposed for TCP [53]. Or, SFTP could be enhanced
to ship file differences rather than entire file contents. But the focus of this work has been at
higher levels of the system, with minimal efforts at the transport level. Further transport level
improvements may enhance higher level mechanisms, but cannot replace them.

7.4 Rapid Cache Validation

Two questions best characterize the evaluation of Coda’s rapid cache validation mechanism.
First, under ideal conditions, how much do volume callbacks improve cache validation time?
Second, in practice, how close are conditions to ideal? This section addresses both questions.

128 CHAPTER 7. EVALUATION

7.4.1 Performance Under Ideal Conditions

For a given set of cached objects, the time for validation is minimal when two conditions hold.
First, at disconnection, callbacks must exist for all volumes represented in the cache. Second,
while disconnected, the volumes containing these objects must not be updated at the server.
Then, upon reconnection, communication is needed only to verify volume version stamps.
Fresh volume callbacks are acquired as a side effect, at no additional cost.

Under ideal conditions, the primary determinants of performance are network bandwidth
and the composition of cache contents. This section describes experiments conducted to
measure validation time as a function of these two variables.

7.4.1.1 Methodology

The figure of merit for these experiments is the time required to validate a client’s cache after a
failure, or the cache recovery time. Obviously, the cache recovery time depends on the cache
contents. For these experiments, the cache contents are based on the hoard profiles of five Coda
users, summarized in Table 7.3. The profiles were chosen to represent a range of user activity
and expertise. These profiles are used primarily for notebooks.

The experiments were performed with a single client and server, both DECstation 5000/200s
with 32 MB of memory, running Mach 2.6. The client used a 50 MB Coda file cache. The
machines were connected via Ethernet. Emulation of slower networks and failure injection
was performed by a package which intercepts outgoing packets and suppresses or delays them
according to a filter. For example, the filter might specify that request packets to a certain host
be dropped with some probability, or delayed as if the network were a lower speed. The delay
is a simple-minded calculation, and does not take into account overheads such as UDP and IP
header sizes, or IP fragmentation. A comparison of RPC latency for emulated and real 9.6Kbps
links is shown in Table 7.4. The filter package is linked into Venus and the server, and requests
to insert and remove filters are issued via RPC.

For each experiment, the client’s hoard database was initialized with the hoard profiles for
a single user, and the cache filled by a hoard walk. Each run of the experiment consisted of the
following steps:

� Partition the client from the server by inserting filters that specify all packets between the
two to be dropped.

� At the client, check server status. (The client times out on the server and declares it
down.)

� Heal the partition by removing the filters.
� At the client, check server status. (The client discovers the server is up.)
� Run a hoard walk to validate cache entries.

7.4. RAPID CACHE VALIDATION 129

Number of Files Cached

Volume Type User 1 User 2 User 3 User 4 User 5

X11 38 127 133 125 142

TEX 560 158

System 9 6 190 342 689

Cboard 361

Other tools 42 13 13 42

Coda binaries 2 6 4

Coda sources 4 549 6

Kernel sources 24

User 1 personal 114

User 2 personal 234

User 3 personal 190

User 4 personal 220 6

User 5 personal 537

Other personal 107 4 5 10 10

Total files 268 413 1097 1423 1821

Total volumes 7 6 9 11 12

Cache size (MB) 2.4 16.5 9.2 37.3 22.3

Table 7.3: Contents of Hoard Profiles for Five Coda Users, by Volume

This table characterizes the contents of the hoard profiles for five Coda users. Entries represent
the number of objects hoarded from each volume by each user.

The system type represents volumes containing system binaries, utilities, and include files.
Cboard is a project volume for a calendar program; its maintainer is user 5. “Other tools”
refers to five volumes containing utilities such as GNU-Emacs and less. The “Coda binaries”
volume contains Coda-related programs that many users hoard. The “Coda sources” category
is of interest primarily to Coda developers. It consists of two volumes containing scaffolding
for the project tree, libraries, include files, and sources. User 4’s personal files are split into a
home volume and a volume solely for object files. “Other personal” is a set of five volumes
belonging to users other than the ones we studied. Two of those volumes contain versions of
kermit that most users hoard, and one contains a popular window manager.

130 CHAPTER 7. EVALUATION

Packet Time (seconds)

Size Emulated Real

60 .11 (.01) .33 (.01)

260 .43 (.03) .76 (.04)

560 .96 (.01) 1.4 (.0)

1060 1.8 (.0) 3.3 (2.6)

2060 3.5 (.0) 4.6 (.28)

3060 5.2 (.0) 6.6 (.0)

4060 7.9 (1.9) 8.7 (.0)

Table 7.4: Emulated versus Real RPC at 9.6 Kbps

This table compares the RPC latency using the network emulator set to 9.6 Kbps over an
Ethernet, and using a dialup SLIP link nominally rated at 9.6 Kbps. RPC request and response
packets were the same size. The experiments were conducted using an i386-based IBM L40
notebook client and a DECstation 5000/200 server, both running Mach 2.6. RPC packet headers
are 60 bytes long; the first line gives the times for a null RPC. Each entry is the mean and
standard deviation for the most consistent eight trials from a set of ten. The large standard
deviations for 4060 bytes (emulated) and 1060 bytes (real) were due to retransmissions during
one or more runs.

7.4. RAPID CACHE VALIDATION 131

The recovery time was taken from the time at which the client noticed the server was up to the
end of the hoard walk. Since the experiment was conducted under ideal conditions, no updates
occurred on cached volumes at the server by any other client during the partition.

The experiments measured cache recovery times for four network speeds and three vali-
dation strategies for each user. The network speeds were 10 Mb/sec, representing Ethernet; 2
Mb/sec, representing packet radio (such as NCR WaveLan); 64 Kb/sec, representing ISDN, and
9.6 Kb/sec, representing a dialup connection. The validation strategies were NoOpt, Batched,
and VCB. The NoOpt strategy validates an object by fetching its status block from the server
and comparing it to the cached copy. This corresponds to the Vnode operation GetAttr [64].
The Batched strategy allows a group of files to be validated in one RPC. This refinement was
described in Section 7.1. In Coda, up to 50 fids may be piggybacked with version information
on a GetAttr request. The VCB strategy validates objects by volume using previously cached
version stamps. These validations are also batched; for these experiments only one RPC is
needed to validate the volumes.

Although the production version of Coda uses the Batched strategy, the NoOpt strategy
was measured for two reasons. First, it allows the results to be compared to file systems
that do not batch validations, such as AFS. Second, even though batching takes less time and
bandwidth at any speed than NoOpt, it has some disadvantages at low bandwidth. Batching
can result in large request packets – nearly 3KB in Coda. These request packets have high
latency at low bandwidth (see Table 7.4), and retransmissions of these packets can starve other
requests, causing Venus to declare servers down. Indeed, such failures occurred during the
experiments! It may be more appropriate to use a smaller batching factor for low bandwidth
networks. A demand (user) request for one file can result in a batch validation of up to 50 files,
which incurs additional latency that could be deferred to background processes.

Batching of volume validations does not have as great an impact on the system as batching
of file validations because clients have information on many fewer volumes than files, and
volume identifiers and version stamps are much smaller than their counterparts for files.

7.4.1.2 Results

Cache Recovery Time Table 7.5 presents the results of the experiments. The same data is
graphically illustrated in Figure 7.6. The results show that for all users, and at all bandwidths,
volume callbacks reduce cache recovery time. The variation in recovery time across users is
proportional to the number of files cached. The reduction is modest at high bandwidths, but
becomes substantial as bandwidth decreases. At 9.6 Kb/sec, where VCB is likely to be most
important, recovery time takes only 4–7% of the time required by NoOpt, and 11–20% of the
time required by batching. The results for VCB at 9.6 Kb/sec are only 25% longer than for
VCB at 10Mb/sec, indicating that VCB compensates successfully for a three order of magnitude
reduction in bandwidth.

132
C

H
A

PT
E

R
7.

E
V

A
L

U
A

T
IO

N
Network Validation Recovery Time in Seconds Relative
Speed Strategy User 1 User 2 User 3 User 4 User 5 Times

NoOpt 6.8 (.5) 9.9 (.8) 20.9 (.6) 31.5 (.5) 46.0 (1.1) 100.0%

10Mb/s Batched 2.5 (.5) 3.6 (.5) 8.2 (.5) 11.0 (.0) 19.0 (.8) 38.5%

VCB 2.5 (.5) 3.5 (.5) 7.4 (.5) 10.0 (1.3) 17.5 (.8) 35.5%

NoOpt 6.5 (.5) 11.0 (2.6) 21.3 (1.2) 32.0 (.5) 46.0 (.9) 100.0%

2Mb/s Batched 3.0 (.0) 4.1 (.4) 9.4 (.5) 12.6 (.5) 21.0 (.8) 42.9%

VCB 2.3 (.5) 3.7 (.5) 7.3 (.5) 9.4 (.5) 18.1 (.8) 34.9%

NoOpt 12.8 (1.4) 17.5 (.5) 40.9 (1.4) 63.6 (1.6) 87.5 (2.2) 100.0%

64Kb/s Batched 5.4 (.5) 7.2 (.5) 16.9 (.4) 24.3 (.5) 36.5 (.9) 40.6%

VCB 2.3 (.5) 4.0 (.5) 7.4 (.5) 9.6 (.5) 17.8 (.9) 18.5%

NoOpt 67.8 (1.4) 102.8 (.9) 226.1 (2.2) 342.4 (4.0) 453.8 (9.7) 100.0%

9.6Kb/s Batched 23.8 (2.8) 31.4 (2.5) 80.9 (15.8) 103.1 (9.7) 136.3 (8.7) 31.5%

VCB 4.8 (.5) 5.3 (.5) 8.9 (.6) 11.3 (.5) 20.3 (.9) 4.2%

Table 7.5: Cache Recovery Time
This table presents the time in seconds needed by a client to validate cached files when it
discovers a server is up. The cache contents are determined by the hoard profiles for each of
the five users. The rightmost column is the average reduction in validation time compared to
NoOpt for each of the other two strategies. The reduction is given as a percentage, and is
calculated as (100� tOther)=tNoOpt. These results are conservative in a number of respects,
as explained in Section 7.4.1.2.

The experiments were conducted using DECstation 5000/200s running Mach 2.6 as the client
and server, and volumes stored at one server. The network speeds correspond to the nominal
speeds of Ethernet (10 Mb/s), WaveLan (2 Mb/s), ISDN (64 Kb/s), and Modem (9.6 Kb/s). For
the three slower speeds, bandwidth was varied using an emulator on Ethernet. Each entry is the
mean and standard deviation (in parentheses) of the most consistent eight trials from a set of
ten.

7.4. RAPID CACHE VALIDATION 133
C

ac
h

e
V

al
id

at
io

n
 T

im
e

(s
ec

s)

100

200

300

400

500

0

User 1 User 2 User 3 User 4 User 5
E W I M E W I M E W I M E W I M E W I M

Object Callbacks = White+Gray+Black
Objects Batched = Gray+Black
Volume Callbacks = Black

Figure 7.6: Validation Time Under Ideal Conditions

This figure depicts the data presented in Table 7.5. Each of the colored bars (black, gray, and
white) represents and entry in the table. The network speeds correspond to the nominal speeds
of Ethernet (E, 10 Mb/s), WaveLan (W, 2 Mb/s), ISDN (I, 64 Kb/s), and Modem (M, 9.6 Kb/s).

134 CHAPTER 7. EVALUATION

An unexpected result was that the recovery time using VCB on a slow network was not
constant over all users. The network was expected to be the bottleneck in these cases. Since
only one RPC was required to validate the volumes, the recovery times should have been
similar. Instead, recovery times were proportional to the number of files cached, indicating the
bottleneck is Venus. Most of its time is spent on two tasks: marking cached objects suspect
when the server appears up, and performing the hoard walk, which involves iterating through
all of the objects in the cache to ensure they are valid.

Accuracy of Results The results in Table 7.5 understate the benefits of VCB in a number
of respects. First, the failure library underestimates the delay for a given network speed, as
shown in Table 7.4. Second, the volumes used in the experiments were singly replicated,
while in practice most volumes in Coda are triply replicated. Since many networks do not
support multicast, an RPC request to an AVSG with more than one member is sent as separate
messages to each member. If the network is the bottleneck, as with the NoOpt and Batched
strategies, the time required to validate cached files for each of the strategies in Table 7.5 will be
proportionately larger. Last, caches typically contain more than what is hoarded. This occurs
for several reasons – name space exploration, objects left over from other tasks, and execution
of a task to find files not included by hoard profiles. Each of these effects underestimates the
savings due to VCB, especially over low bandwidth networks.

Callback Overhead The number of callbacks at the server can be derived from Table 7.3,
from the number of objects and volumes represented by the hoard profiles for each user. In
these experiments, clients using the Batched or NoOpt strategies obtain callbacks for each file
validated. After a successful recovery, clients using VCB obtain callbacks only for the volumes
they validated. The number of callbacks obtained by clients using VCB was less than 3% of
the number obtained by the other two strategies.

VCB versus Read-only Replication Read-only replication is a feature of AFS and Coda
which allows read-only copies, or clones, of volumes to be created to improve availability and
balance load [49]. Access to clones is very efficient, because no cache coherence protocol is
needed. Read-only replication is useful for volumes which contain files that are frequently read
but seldom updated, such as system programs. When a file in a volume with read-only clones
is updated, manual intervention is required to create new clones before changes are globally
visible. Volume callbacks represent an alternative to read-only volumes for collections of “read
mostly” data. In return for modest validation traffic and callback overhead, clients retain the
ability to observe updates immediately, without manual intervention.

7.4. RAPID CACHE VALIDATION 135

Desktop Days Notebook Days
Clients Collected Clients Collected
bach 240 caractacus 41
berlioz 220 deidamia 128
brahms 167 elijah 12
chopin 189 eroica 52
copland 205 finlandia 183
dvorak 247 genoveva 3
gershwin 91 giselle 2
gs125 39 gloriana 82
handel 115 guntram 84
holst 147 harawi 38
ives 236 hiawatha 168
mahler 197 jupiter 107
messiaen 177 messiah 35
michaelangelo 86 nabucco 79
mootaz 192 oberon 53
mozart 234 phoenix 61
purcell 154 planets 58
schumann 26 porgy 31
varicose 237 prometheus 252
verdi 200 serse 68
vivaldi 12 spartacus 62

tosca 84
valkyrie 83

Mean 162 Mean 77

Table 7.7: Mond Clients and Data Collection Length

This table shows the hosts from which data was collected via mond, and the collection period
for each host. All data was collected between July 1995 and March 1996.

136 CHAPTER 7. EVALUATION

Volume Type Number

User 63

System 37

Project 64

Test 17

Total 181

Table 7.8: Volume Classification

This table shows the number of volumes of each type represented in the mond data. User
volumes store private data. System volumes contain released software, such as binaries and
libraries. Project volumes hold data used in collaborative work, such as system source areas.
Test volumes are used by Coda developers for system testing and demonstration purposes.

7.4.2 Use in Practice

There are two ways in which a Coda client in actual use may find conditions less than ideal.
First, a client may not possess volume stamps for some objects at disconnection. If frequent, this
event would indicate that the strategy of waiting for a hoard walk to acquire volume callbacks
is not aggressive enough. Second, a volume stamp may prove to be stale when presented for
validation. This would mean that the volume was updated on the server while the client was
disconnected. If frequent, this event would indicate that acquiring volume stamps is futile,
because it rarely speeds up validation. It could also be symptomatic of a volume being too large
a granularity for cache coherence, for reasons analogous to false sharing in virtual memory
systems with too large a page size. This section answers the following questions:

� How often do volume validations succeed?
� How often do clients miss opportunities to validate their caches by volume?
� How often are volume callbacks broken?
� To what extent are volume callback breaks and failed validations due to false sharing?

7.4.2.1 Measurement Framework

Coda clients were instrumented to record statistics on volume callback usage, and the data was
collected using the mond measurement framework [91]. Clients collect, summarize, and buffer
data in RVM, and then periodically ship it to a central data collector. The collector writes the
data to a disk log. Later, a reaper process reads the data from the log and inserts it into a
relational database. Once in the database, the data may be analyzed off-line using queries.

7.4. RAPID CACHE VALIDATION 137

Missing Validation Fraction Objs per
Client Stamp Attempts Successful Success
bach 1% 19468 98% 146
berlioz 2% 24962 98% 93
brahms 2% 8963 98% 57
chopin 8% 18920 98% 117
copland 2% 19648 97% 99
dvorak 4% 12703 97% 92
gershwin 28% 1994 95% 35
gs125 0% 927 99% 22
handel 3% 7923 97% 57
holst 1% 4841 98% 55
ives 3% 21563 98% 57
mahler 2% 11238 97% 32
messiaen 1% 12786 99% 55
michaelangelo 0% 3383 98% 146
mootaz 1% 4963 98% 283
mozart 2% 20091 98% 80
purcell 9% 18272 99% 71
schumann 6% 239 94% 25
varicose 2% 7572 97% 45
verdi 22% 8808 98% 42
vivaldi 4% 324 92% 28

Mean 5% 10933 97% 78

Table 7.9: Observed Volume Validation Statistics - Desktops

This table presents data collected from July 1995 to March 1996 from 21 desktops. The
“Missing Stamp” column indicates how often validation could not be attempted because of a
missing volume stamp. The “Objs per Success” column gives a per-client average of the number
object validations saved by each successful volume validation.

138 CHAPTER 7. EVALUATION

Missing Validation Fraction Objs per
Client Stamp Attempts Successful Success
caractacus 1% 1768 95% 162
deidamia 2% 5012 97% 110
elijah 0% 439 98% 8
eroica 3% 2967 96% 66
finlandia 27% 3939 97% 42
genoveva 5% 817 98% 38
giselle 1% 265 95% 79
gloriana 2% 4223 98% 44
guntram 10% 4928 99% 108
harawi 1% 1486 97% 63
hiawatha 3% 15636 98% 112
jupiter 1% 4912 97% 31
messiah 9% 2726 98% 77
nabucco 1% 4251 97% 25
oberon 3% 3594 98% 51
phoenix 2% 1977 97% 174
planets 5% 976 95% 35
porgy 11% 2203 97% 70
prometheus 3% 12371 97% 62
serse 2% 4604 98% 21
spartacus 2% 2837 97% 35
tosca 2% 2697 97% 47
valkyrie 6% 5253 92% 63

Mean 4% 4080 97% 66

Table 7.10: Observed Volume Validation Statistics - Notebooks

This table presents data collected from July 1995 to March 1996 from 23 notebooks. Table
headings are as in Table 7.9.

7.4. RAPID CACHE VALIDATION 139

Clients recorded summary statistics each time a volume version stamp was acquired or
validated, each time a stamp would have been validated if one had been present, and each time
a volume callback was broken or cleared (because of connectivity changes). Data was collected
from 44 clients (21 desktops and 23 notebooks) from July 1995 to March 1996. Collection
intervals varied between machines for two reasons. First, a number of clients, particularly
notebooks, were deployed during the collection period. Second, data collection was suspended
during the period because of two month-long outages at the central data collector. Because
clients buffer summary statistics in RVM, most were able to cover the failure completely
once data collection resumed. However, if a Venus was reinitialized on a client during the
suspension, some data was lost. Table 7.7 shows the number of days of data accumulated from
each machine. The data covered a total of 181 volumes, classified by type in Table 7.8.

7.4.2.2 Results

Validation Statistics Tables 7.9 and 7.10 present validation statistics from all clients. The
data shows that the average success rate for volume validations was 97%, and each successful
volume validation saved an average of 70 file validations. There was no significant difference in
the success rate between desktops and notebooks. On average, clients attempted 62 validations
per day. The number of validation attempts is determined by the number of volumes represented
in the cache, and the number of connectivity changes observed in the AVSGs for those volumes.
(Recall that validation is necessary when the AVSG grows, because a newly available server
may hold new data.) The rate of connectivity changes in our environment is high for two
reasons. First, the servers are restarted automatically once a day, and the time to restart exceeds
client probe intervals. Second, the Ethernet backbone is heavily used and is subject to transient
failures. Desktop machines had a higher rate of validations attempted than notebooks (67
compared to 53). Although notebooks observed a slightly higher rate of connectivity changes,
desktops had a higher number of volumes represented in the cache on average.

The data also shows that, on average, clients found themselves without a volume stamp only
in 5% of the cases. This small number indicates that the policy of acquiring stamps on hoard
walks is aggressive enough. Four clients were missing version stamps more than 10% of the
time, and three clients were missing stamps more than 20% of the time. In the past, such rates
were typical for clients whose periodic hoard walks had been deliberately turned off. If hoard
walks are off, Venus does not obtain new volume version stamps, and it loses the ones it has
as volume callbacks are broken and volume validations fail. The two notebook clients, porgy
and finlandia, used this feature. The desktop clients, gershwin and verdi, were being used as
compilation engines during the period in which the rate of missing stamps was high. For these
clients, it is unclear if it was callback breaks or the absence of hoard walks that caused the high
missing stamp rates.

140 CHAPTER 7. EVALUATION

Volume Number of Breaks % Broken

Type Median Range Median Range

User 8 0–29381 2 0–85

System 19 0–825 1 0–29

Project 0 0–5800 0 0–27

Test 13 0–908 26 0–87

All 4 0–29381 1 0–87

Table 7.11: Incidence of Volume Callback Breaks

This table shows the number of volume callbacks broken for all clients in Table 7.7, and the
percentage of all volume callbacks established (through acquisition or validation of a volume
version stamp) that are broken. Data is presented by volume type. The median and range are
given because the distributions are skewed towards zero.

Volume Number of Losses % False

Type Median Range Median Range

User 10 0–29828 3 0-82

System 41 0–863 1 0-91

Project 2 0–6301 1 0-24

Test 10 0–1031 17 0-83

All 7 0–29828 1 0-91

Table 7.12: Incidence of False Sharing

This table shows the number of lost volume callbacks and failed volume validations for all
clients in Table 7.7, and the percentage of all volume callbacks established (through acquisition
or validation of a volume version stamp) that are subsequently lost because of false sharing.
Data is presented by volume type. The raw data differs from Table 7.11 because it includes
failed validations. The distributions of the number and percentage of losses (not shown) are
skewed towards zero.

7.4. RAPID CACHE VALIDATION 141

Volume Callback Breaks A volume callback is insurance for disconnection – if the unfor-
tunate happens, one at least has a rapid way of recovering. The price of this insurance has
two components. One component, the cost of acquiring volume callbacks, is small because
acquisition is piggybacked on hoard walks. The second component is the cost of handling
volume callback breaks. Although a single break is cheap, frequent breaks may add up to a
nontrivial cost.

Data on the incidence of volume callback breaks for the entire collection period is presented
in Table 7.11. The table shows that both the median number and percentage of callbacks broken
is low overall. The overhead due to volume callback breaks is limited by hoard walk frequency,
because volume callbacks are acquired only during hoard walks.

The data overstates the number of volume callback breaks for volumes stored on the
beta servers. Occasionally, bugs in server software can corrupt recoverable virtual memory
to such an extent that the server must be reinitialized. In the past, replicated volumes on
the newly reinitialized servers were repopulated using the resolution subsystem; the server
received its files from other AVSG members as clients referenced them. Because resolution
updates version vectors, to clients it appeared that every file stored in every VSG containing the
reinitialized server was updated. All connected clients lost their volume and file callbacks, and
all disconnected clients’ volume and file validations failed upon reconnection. One of the beta
servers was reinitialized three times during the data collection period; subsequent resolutions
affected 19 system volumes, 47 project volumes, and 18 user volumes. This phenomenon no
longer occurs, because Coda now uses a new re-initialization procedure that allows (good)
recoverable state to be preserved and reloaded.

The volumes whose callbacks were broken most frequently were user volumes, and in
particular, those of the most active Coda developers. Their volumes are both frequently
updated and widely shared among clients. Anecdotal evidence suggests that some of these
callback breaks arise from a user updating an object on her desktop, thus invalidating the
cached copy on her connected notebook.

System volumes accounted for the largest median number of callbacks broken, but the
smallest range. They are widely shared, but updated infrequently. The system volume that had
both the highest number and percentage of callbacks broken was stored on the beta servers, and
contained a version of the Lucid Emacs editor that was used by a few project members. The
volume was updated several times in late 1995 and early 1996 independent of resolution. A
single notebook client accounted for most of the broken callbacks. Although the data does not
contain detailed timing information, it is possible that the client repeatedly obtained and lost
callbacks on this volume because its files were undergoing resolution. Excluding this volume
does not change the medians given in Table 7.11, but changes the ranges for system volumes
to 0–650 callbacks broken and 0–15% of callbacks broken.

Since project volumes are used for collaborative work, one would expect to see a good deal

142 CHAPTER 7. EVALUATION

of callback activity. But the low number of callback breaks indicates that the actual amount of
collaboration is low. Although these volumes are shared widely, they change relatively slowly.
The reason for the slow rate of change is that users of source files make private copies for
development, and modify the shared areas only when they are ready to release final versions
of their changes. The most active project volume by far, both in number and percentage of
callbacks broken, was the volume containing the alpha release of the Coda sources. Although
this volume is updated only occasionally (an earlier set of data showed that it was completely
unchanged for over half the days in a three month period [84]) nearly every client caches files
from it and obtains volume callbacks on it. Therefore, an update in this volume generates many
volume callbacks. Excluding this volume does not change the medians given in Table 7.11, but
changes the ranges for project volumes to 0–1717 callbacks broken and 0–15% of callbacks
broken.

Test volumes showed the highest percentage of callbacks broken, both in median and range.
However, the number of callbacks broken was low, and activity in these volumes is by nature
contrived. Results for test volumes are shown only to separate them from other volume classes.

False Sharing Recall from Section 4.2.2 that when a client updates an object in a volume,
all other clients caching the volume version stamp will lose the stamp through either a volume
callback or a failed volume validation. If the client caches do not contain the object that was
updated, false sharing has occured on the volume. Since both the number and percentage of
failed validations and volume callback breaks is low overall (Tables 7.9-7.11) the impact of
false sharing on the system is minimal.

Table 7.12 shows the number of losses of volume version stamps over the collection period,
from both volume callback breaks and failed validations, and the percentage of losses caused
by false sharing. The data overstates the number of losses because of resolution activity after
server reinitialization. This activity is responsible for some of the false sharing, however, it is
not possible to separate this activity from the data.

User volumes exhibited the largest range of lost version stamps due to false sharing. This
sharing arises from several sources. First, as mentioned earlier, users share files between their
desktop and notebook clients. Second, users cache files from other user volumes. If the number
of files cached from other user volumes is small, as is the case for the hoard profiles shown
in Table 7.3, remote updates are likely to produce false sharing at the volume level. Third,
user object volumes are shared among clients of different architectures. When users compile
software, the compilation engines update files in the same volume, even though they operate
on separate parts of the name space. User object volumes had a higher median proportion of
false sharing (24%, with a range of 0-50%) than user volumes in general.

Project volumes show the lowest proportion of lost version stamps due to false sharing.
The Coda source and documentation areas experienced the most false sharing. This is not

7.5. TRICKLE REINTEGRATION 143

surprising, because project members tend to work on independent modules within the system.

System volumes had the widest range of losses by percentage, however, the number of
losses overall was small. The volume with the highest number of losses was the Emacs volume
mentioned earlier in the discussion on volume callback breaks. The two volumes with the
highest proportion of false sharing were not widely used; collectively clients obtained less than
50 volume callbacks on these volumes during the entire collection period. Excluding these
volumes narrows the range of false sharing by proportion to 0-12%.

7.5 Trickle Reintegration

How much is a typical user’s activity slowed when weakly connected? This is the question most
germane to trickle reintegration, because the answer will reveal how effectively foreground
activity is insulated from update propagation over slow networks.

The simplest way to answer this question would be to run a standard file system benchmark
on a write-disconnected client over a wide range of network speeds. The obvious candidate is
the Andrew benchmark [49] because it is compact, portable, and widely used. Unfortunately,
this benchmark is of limited value in evaluating trickle reintegration. First, the running time
of the benchmark on current hardware is very small, typically less than three minutes. This
implies that no updates would be propagated to the server during an entire run of the benchmark
for any reasonable aging window. Increasing the total time by using multiple iterations is
not satisfactory because the benchmark is not idempotent. Second, although the benchmark
captures many aspects of typical user activity, it does not exhibit overwrite cancellations. Hence,
its file references are only marginally affected by log optimizations. Third, the benchmark
involves no user think time, which may be atypical of interactive applications.

The ultimate in realism would be to measure trickle reintegration in actual use by mobile
users. But this approach has serious shortcomings. First, a human subject cannot be made
to repeat her behavior precisely enough for multiple runs of an experiment. Second, many
confounding factors make timing results from actual use difficult to interpret. Third, such
experiments cannot be replicated at other sites or in the future.

To overcome the limitations of these approaches, the evaluation of trickle reintegration is
based on trace replay, in which a workload from a file reference trace is replayed on the system
under evaluation. Since a trace replay reflects the activity of a real workload, the results are
likely to be a much better indicator of performance of the system in actual use. The use of trace
replay is an original contribution of this work.

144 CHAPTER 7. EVALUATION

7.5.1 Methodology: Trace Replay

The evaluation of trickle reintegration is based on an experimental methodology in which
operations in a file reference trace are replayed at the client. Realism is preserved since the
trace was generated in actual use. Timing measurements are much less ambiguous than with
human subjects, since experimental control and replicability are easier to achieve. In addition,
the traces and the replay software can be exported. Note that a trace replay experiment
differs from a trace-driven simulation in that traces are replayed on a live system. The replay
software [86] generates UNIX system calls that are serviced by Venus and the servers just as if
they had been generated by a human user. The only difference is that a single process performs
the replay, whereas the trace may have been generated by multiple processes. It would be fairly
simple to extend the replay software to exactly emulate the original process structure.

Since a trace is often used many months or years after it was collected, the system on which
it is replayed may be much faster than the original. But a faster system will not speed up
those delays in the trace that were caused by human think time. Unfortunately, it is difficult
to reliably distinguish think time delays from system-limited delays in a trace. However, large
delays are more likely to be caused by user think time than system limits.

To incorporate the effect of human think time, the evaluation includes a sensitivity analysis
for think time, using a parameter called think threshold, �. This parameter defines the smallest
delay in the input trace that will be preserved in the replay. When � is 0, all delays in the
trace are preserved; when it is infinity, the trace is replayed as fast as possible. Neither of
these extreme values is used for the experiments. At � = 0, there is so much opportunity for
overlapping data transmission with think time that experiments would be biased too much in
favor of trickle reintegration. At � = 1, the absence of think time makes the experiment
as short as the Andrew benchmark. In the light of these considerations, the experiments use
values of � equal to 1 second and 10 seconds. These are plausible values for typical think times
during periods of high activity, and they are not biased too far against or in favor of trickle
reintegration.

Since log optimizations play such a critical role in trickle reintegration, the evaluation
includes a sensitivity analysis for this factor as well. The traces described in Section 5.4
were divided into 45-minute segments, and the segments with the highest activity levels were
analyzed for their susceptibility to log optimizations. (Segments longer than 45 minutes
would have made the duration of each experiment excessive, allowing only a few parameter
combinations to be explored.) The compressibility of a trace segment is defined as the ratio
of two quantities obtained when the segment is run through the Venus simulator, described in
Section 5.4.2. The numerator is the amount of data optimized out; the denominator is the length
of the unoptimized CML. Figure7.13 shows the observed distributionof compressibility in those
trace segments with a final CML of 1 MB or greater. The data shows that the compressibilities
of roughly a third of the segments are below 20%, while those of the remaining two-thirds

7.5. TRICKLE REINTEGRATION 145

range from 40% to 100%. One segment from each quartile of compressibility was used for the
experiments. The characteristics of these segments are shown in Figure 7.14.

There are 64 combinations of experimental parameters: four workloads, each a trace
segment representing one quartile of compressibility (8, 32, 69, and 94%); two reasonable
aging windows (A = 300 and 600 seconds), including the system default; two think thresholds
(� = 1 and 10 seconds); and four network types, Ethernet (10 Mb/s), Wavelan (2 Mb/s),
ISDN (64 Kb/s), and Modem (9.6 Kb/s). Except for ISDN, experiments were performed on
actual networks of the corresponding type, using the configurations depicted in Figure 7.1. The
ISDN experiments were conducted on an Ethernet using the network emulator described in
Section 7.4.1.1.

The experiments were run in a single volume on a single server. Venus was forced to
remain write disconnected at all bandwidths. All measurements were deferred until 600
seconds into each run, thus warming the CML for trickle reintegration. The choice of 600
seconds corresponds to the largest value of A used in the experiments.

7.5.2 Results

Elapsed Time Tables 7.15 – 7.21 presents the elapsed times of the trace replay experiments.
The same data is graphically illustrated in Figures 7.16 – 7.22. These measurements confirm
the effectiveness of trickle reintegration over the entire experimental range. Bandwidth varies
over three orders of magnitude, yet elapsed time remains almost unchanged. On average,
performance is only about 2% slower at 9.6 Kb/s than at 10 Mb/s. Even the worst case,
corresponding to the Ethernet and ISDN numbers for Concord in Figure 7.22, is only 11%
slower.

What effects do the experimental parameters have on Venus’ execution of the workloads?
The aging window is a factor for compressible workloads. A small aging window gives Venus
little time to optimize records from the CML, and therefore more data to send to the server.
The more time Venus spends reintegrating data, the greater the likelihood of file contention.
File contention can cause delays in forward processing because Venus must make a shadow
copy of the cache container file. A large aging window, on the other hand, allows Venus to
take greater advantage of CML optimizations on compressible trace segments. Since CML
records are stored in RVM, optimizations create more RVM activity. This activity causes Venus
to invoke RVM log flush and truncation operations more frequently, and these operations can
cause substantial delays in concurrent request processing.

Factors other than the aging window can influence the amount of CML optimization for
compressible workloads. The think threshold controls the amount of delay between operations.
Different think thresholds result in different benchmarks; it is not meaningful to compare
elapsed times between experiments where this parameter differs. A lower think threshold

146 CHAPTER 7. EVALUATION

Compressibility (%)
20 40 60 80 100

F
ra

ct
io

n
 o

f
S

eg
m

en
ts

 (
%

)

5

10

15

20

0

Total Number of Segments = 81
Average Compressibility = 45%

Figure 7.13: Compressibility of Trace Segments

This figure shows the compressibility of 45 minute trace segments with final CML sizes of 1
MB or greater. The compressibility is defined as the ratio of the amount of CML optimizations
to the length of the unoptimized CML when the segment is run through the Venus simulator.

Trace No. of No. of Unopt. Opt.
Segment References Updates CML (KB) CML (KB) Compressibility
Purcell 51681 519 2864 2625 8%
Holst 61019 596 3402 2302 32%
Messiaen 38342 188 6996 2184 69%
Concord 160397 1273 34704 2247 94%

Table 7.14: Segments Used in Trace Replay Experiments

Each of these segments is 45 minutes long. Since Coda uses theopen-close session semantics
of AFS, individualread and write operations are not included. Hence "Updates" in this table
only refers to operations such as close after writing, and mkdir. "References" includes, in
addition, operations such as close after reading, stat, and lookup.

7.5. TRICKLE REINTEGRATION 147

Trace Ethernet Wavelan ISDN Modem
Segment 10Mb/s 2Mb/s 64 Kb/s 9.6 Kb/s

Purcell 2025 (16) 1999 (15) 2002 (20) 2096 (32)

Holst 1960 (3) 1961 (5) 1964 (5) 1983 (5)

Messiaen 1950 (2) 1970 (9) 1959 (3) 1995 (6)

Concord 1897 (9) 1952 (20) 1954 (43) 2002 (13)

Table 7.15: Performance of Trace Replay (� = 1 second, A = 300 seconds)

This table presents the elapsed time, in seconds, of the trace replay experiments described in
Section 7.5.1. The think threshold,�, is 1 second, and the aging window,A, is 300 seconds. Each
data point is the mean of five trials; figures in parentheses are standard deviations. Measurements
began after a 10 minute warming period.

E
la

p
se

d
 T

im
e

(s
ec

s)

600

1200

1800

2400

0
Purcell Holst Messiaen Concord
E W I M E W I M E W I M E W I M

Figure 7.16: Performance of Trace Replay (� = 1 second, A = 300 seconds)

This graph illustrates the data in Table 7.15. Network speed is indicated by E (Ethernet), W
(WaveLan), I (ISDN), or M (Modem).

148 CHAPTER 7. EVALUATION

Trace Ethernet Wavelan ISDN Modem
Segment 10Mb/s 2Mb/s 64 Kb/s 9.6 Kb/s

Purcell 2086 (28) 2064 (6) 2026 (20) 2031 (4)

Holst 2004 (13) 1984 (11) 1970 (11) 2009 (17)

Messiaen 1949 (2) 1974 (8) 1969 (16) 1986 (3)

Concord 2078 (49) 2051 (38) 2017 (39) 2079 (10)

Table 7.17: Performance of Trace Replay (� = 1 second, A = 600 seconds)

This table presents the elapsed time, in seconds, of the trace replay experiments for � = 1
second and A = 600 seconds.

E
la

p
se

d
 T

im
e

(s
ec

s)

600

1200

1800

2400

0
Purcell Holst Messiaen Concord
E W I M E W I M E W I M E W I M

Figure 7.18: Performance of Trace Replay (� = 1 second, A = 600 seconds)

This graph illustrates the data in Table 7.17.

7.5. TRICKLE REINTEGRATION 149

Trace Ethernet Wavelan ISDN Modem
Segment 10Mb/s 2Mb/s 64 Kb/s 9.6 Kb/s

Purcell 1747 (20) 1622 (12) 1624 (5) 1744 (8)

Holst 1026 (6) 1000 (3) 1005 (10) 1047 (2)

Messiaen 1234 (2) 1241 (2) 1238 (5) 1278 (9)

Concord 1254 (7) 1323 (16) 1312 (17) 1362 (18)

Table 7.19: Performance of Trace Replay (� = 10 seconds, A = 300 seconds)

This table presents the elapsed time, in seconds, of the trace replay experiments for � = 10
second and A = 300 seconds.

E
la

p
se

d
 T

im
e

(s
ec

s)

600

1200

1800

2400

0
Purcell Holst Messiaen Concord
E W I M E W I M E W I M E W I M

Figure 7.20: Performance of Trace Replay (� = 10 seconds, A = 300 seconds)

This graph illustrates the data in Figure 7.19.

150 CHAPTER 7. EVALUATION

Trace Ethernet Wavelan ISDN Modem
Segment 10Mb/s 2Mb/s 64 Kb/s 9.6 Kb/s

Purcell 1704 (9) 1658 (14) 1664 (23) 1683 (16)

Holst 1060 (10) 1027 (8) 1021 (8) 998 (3)

Messiaen 1234 (3) 1265 (13) 1263 (11) 1279 (7)

Concord 1258 (7) 1383 (27) 1402 (30) 1340 (16)

Table 7.21: Performance of Trace Replay (� = 10 seconds, A = 600 seconds)

This table presents the elapsed time, in seconds, of the trace replay experiments for � = 10
second and A = 600 seconds.

E
la

p
se

d
 T

im
e

(s
ec

s)

600

1200

1800

2400

0
Purcell Holst Messaien Concord
E W I M E W I M E W I M E W I M

Figure 7.22: Performance of Trace Replay (� = 10 seconds, A = 600 seconds)

This graph illustrates the data in Figure 7.21.

7.5. TRICKLE REINTEGRATION 151

File Contention
Trace Network Overhead
Segment � A Bandwidth (secs) %

Messiaen 1 300 64 Kb/s 1 < 0.1

Concord 1 300 64 Kb/s 15 0.7

Concord 1 300 9.6 Kb/s 15 0.8

Concord 1 600 64 Kb/s 9 0.4

Concord 1 600 9.6 Kb/s 18 0.9

Concord 10 300 64 Kb/s 4 0.3

Concord 10 600 64 Kb/s 7 0.5

Table 7.23: Residual Effect of File Contention

This table shows the effect of file contention on the results in Tables 7.15 - 7.21. Only the
experiments shown above were affected. The overhead is expressed as the mean number of
seconds of the elapsed time due to file contention, and the percentage increase in elapsed time
over the experiment without file contention.

means operations are spaced more widely in time. For updates, a lower think threshold has an
effect similar to a small aging window – the smaller the think threshold, the lower the likelihood
that optimizing updates fall within a given aging window.

Network bandwidth determines how much CML data is shipped to the server. At low
bandwidth, it is network throughput rather than the aging window that determines how long
records stay in the CML. Therefore, low bandwidth can serve to increase opportunities for CML
optimizations in compressible workloads. At high bandwidth, Venus is able to reintegrate more
of the CML during the benchmark. Commitment of CML records upon successful reintegration
also generates RVM activity. For experiments that are otherwise equivalent, the runs at higher
bandwidth may have a longer elapsed time because of RVM activity generated from committing
log records. For example, there were more truncations over Ethernet than ISDN during Purcell
workload at A = 300 and � = 10, and truncation times over Ethernet were two to three times
longer.

During trickle reintegration, the container files associated with store records are locked to
ensure that a consistent copy of the data is propagated to the server. The initial implementation
of trickle reintegration blocked updates to the file until reintegration completed. Evaluation

152 CHAPTER 7. EVALUATION

of this implementation revealed that file contention was a serious problem. The contention
occurred more often at the smaller aging window; the larger window allowed the overwrite to
cancel the store record before Venus attempted to reintegrate it. Not surprisingly, it was most
severe at the lowest bandwidth. The fix for this problem is to create a shadow copy of the object
when contention occurs, as described in Section 5.3.1.2. File contention occurred during seven
of the 64 trace replay experiments. Table 7.23 shows the residual overhead of file contention
on the affected experiments using shadowing. The overhead is primarily due to copying the
cache file. The results show that the effect of file contention using shadowing is miniscule,
accounting for less than 1% of the elapsed time in all experiments in which it occurred.

There are many sources of variability within experiments. The main sources are the periodic
daemons within Venus that perform various housekeeping tasks, and in particular, the daemon
that performs RVM log truncation. This daemon alone accounts for differences in elapsed
times in the tens of seconds. Trickle reintegration is triggered by one of the periodic daemons;
in compressible workloads, minor differences in scheduling can determine whether or not file
contention occurs, or a CML record is optimized. File contention did not have a large effect on
the results, but did occur during the two most compressible workloads (Messiaen and Concord).

Data Shipped Trickle reintegration achieves insulation from network bandwidth by decou-
pling updates from their propagation to servers. Tables 7.24 – 7.27 illustrate this decoupling
for all combinations of � and A. The tables show, for each segment, the amount of data in
the CML at the beginning and end of the measurement period, as well as the amount of data
shipped to servers and optimized from the CML.

It may appear at first glance that the sum of the "End CML", "Shipped", and "Optimized"
columns should equal the "Unopt. CML" column of Figure 7.14. But this need not be true
for a number of reasons. First, because the measurement period begins 10 minutes into each
workload, Venus may perform CML optimizations or reintegrate during the warming period.
This activity is not included in the tables. For example, in Table 7.24(b), Venus reintegrated
approximately 2 MB of CML data during the warming period over Ethernet and Wavelan. But
over the slower ISDN and Modem connections, the data was still in the CML at the end of
the warming period. Second, if an experiment ends while a large file is being transferred as
a series of fragments, the fragments already transferred are counted both in the "End CML"
and "Shipped" columns. That is, a store record is not removed from the CML until all of its
fragments are shipped to the server. In some cases, the number of fragments shipped by the end
of an experiment varies by run, resulting in non-zero variance for the amount of data shipped
even if all other figures have zero variance. Such is the case, for example, for the ISDN and
Modem experiments of Table 7.26(a). Third, the packed representation of CML records when
shipped to the servers is larger than in the CML itself.

In general, as bandwidth decreases, so does the amount of data shipped. For example, in
Table 7.25(b), the data shipped decreases from 2254 KB for Ethernet to 1536 KB for Modem.

7.5. TRICKLE REINTEGRATION 153

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 0 (0) 49 (0) 2603 (3) 189 (0)

WaveLan 0 (0) 49 (0) 2679 (0) 189 (0)

ISDN 0 (0) 523 (0) 2388 (0) 238 (0)

Modem 0 (0) 2351 (82) 383 (35) 238 (0)

(a) Trace Segment = Purcell

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 0 (0) 54 (0) 127 (0) 1068 (0)

WaveLan 1 (0) 54 (0) 135 (0) 1067 (0)

ISDN 2119 (0) 54 (0) 1409 (128) 1068 (0)

Modem 2119 (0) 2289 (0) 1666 (53) 1082 (0)

(b) Trace Segment = Holst

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 0 (0) 0 (0) 1469 (0) 2927 (0)

WaveLan 0 (0) 0 (0) 1412 (52) 2984 (52)

ISDN 0 (0) 0 (0) 1431 (52) 2965 (52)

Modem 708 (0) 957 (229) 1439 (55) 3022 (0)

(c) Trace Segment = Messiaen

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 63 (0) 2105 (0) 4602 (1) 28107 (1)

WaveLan 63 (0) 2105 (0) 4604 (4) 28106 (2)

ISDN 63 (0) 4073 (0) 2885 (33) 28092 (31)

Modem 63 (0) 2180 (0) 1345 (58) 32260 (0)

(d) Trace Segment = Concord

Table 7.24: Data Generated During Trace Replay (� = 1 second, A = 300 seconds)

This table shows components of the data generated in the experiments of Figure 7.16. Each
entry is the mean of five trials; figures in parentheses are standard deviations. Measurements
began after a 10 minute warming period. The columns labelled "Begin CML" and "End CML"
give the amount of data in the CML at the beginning and end of the measurement period.
This corresponds to the amount of data waiting to be propagated to the servers at those times.
The column labelled "Shipped" gives the amount of data actually transferred over the network;
"Optimized" gives the amount of data saved by optimizations.

154 CHAPTER 7. EVALUATION

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 0 (0) 59 (0) 2618 (0) 238 (0)

WaveLan 0 (0) 59 (0) 2618 (0) 238 (0)

ISDN 0 (0) 2128 (0) 800 (105) 238 (0)

Modem 0 (0) 2538 (0) 114 (19) 238 (0)

(a) Trace Segment = Purcell

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 2133 (0) 70 (0) 2254 (0) 1067 (0)

WaveLan 2133 (0) 70 (0) 2254 (0) 1067 (0)

ISDN 2133 (0) 70 (0) 2252 (0) 1069 (0)

Modem 2133 (0) 2289 (0) 1536 (68) 1081 (0)

(b) Trace Segment = Holst

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 896 (0) 0 (0) 2270 (0) 3022 (0)

WaveLan 896 (0) 0 (0) 2270 (0) 3022 (0)

ISDN 896 (0) 0 (0) 2270 (0) 3022 (0)

Modem 896 (0) 1060 (0) 1309 (16) 3103 (0)

(c) Trace Segment = Messiaen

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 63 (0) 2103 (0) 2496 (0) 30209 (0)

WaveLan 63 (0) 2103 (0) 2496 (0) 30209 (0)

ISDN 63 (0) 2103 (0) 2407 (0) 30291 (0)

Modem 63 (0) 2180 (0) 1142 (46) 32322 (0)

(d) Trace Segment = Concord

Table 7.25: Data Generated During Trace Replay (� = 1 second, A = 600 seconds)

This table shows components of the data generated in the experiments of Figure 7.18.

7.5. TRICKLE REINTEGRATION 155

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 0 (0) 49 (0) 2679 (0) 189 (0)

WaveLan 0 (0) 49 (0) 2679 (0) 189 (0)

ISDN 0 (0) 1133 (0) 1528 (105) 238 (0)

Modem 0 (0) 2387 (0) 318 (46) 238 (0)

(a) Trace Segment = Purcell

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 99 (0) 70 (0) 114 (0) 1061 (0)

WaveLan 99 (0) 70 (0) 114 (0) 1061 (0)

ISDN 2218 (0) 70 (0) 1059 (2) 1064 (2)

Modem 2218 (0) 2289 (0) 858 (0) 1072 (0)

(b) Trace Segment = Holst

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 177 (0) 0 (0) 1734 (0) 3022 (0)

WaveLan 177 (0) 0 (0) 1374 (0) 3022 (0)

ISDN 177 (0) 0 (0) 1374 (0) 3022 (0)

Modem 901 (35) 1060 (0) 954 (18) 3104 (0)

(c) Trace Segment = Messiaen

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 164 (0) 2103 (0) 2496 (0) 30146 (0)

WaveLan 164 (0) 2103 (0) 2496 (0) 30146 (0)

ISDN 164 (0) 2103 (0) 2408 (0) 30227 (0)

Modem 164 (0) 2180 (0) 972 (47) 32196 (0)

(d) Trace Segment = Concord

Table 7.26: Data Generated During Trace Replay (� = 10 seconds, A = 300 seconds)

This table shows components of the data generated in the experiments of Figure 7.20.

156 CHAPTER 7. EVALUATION

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 0 (0) 605 (11) 2066 (15) 238 (0)

WaveLan 0 (0) 1282 (777) 1373 (792) 238 (0)

ISDN 0 (0) 2431 (68) 207 (74) 238 (0)

Modem 0 (0) 2591 (0) 26 (0) 238 (0)

(a) Trace Segment = Purcell

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 2212 (44) 70 (0) 2249 (0) 1062 (0)

WaveLan 2232 (0) 70 (0) 2248 (3) 1063 (0)

ISDN 2232 (0) 70 (0) 2242 (4) 1067 (3)

Modem 2232 (0) 2289 (0) 712 (88) 1072 (148)

(b) Trace Segment = Holst

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 1073 (0) 1 (0) 2187 (0) 3104 (0)

WaveLan 1060 (28) 1 (0) 2187 (0) 3104 (0)

ISDN 1073 (0) 0 (0) 2187 (0) 3104 (0)

Modem 1073 (0) 1278 (0) 930 (19) 3103 (0)

(c) Trace Segment = Messiaen

Network Begin CML End CML Shipped Optimized
Type (KB) (KB) (KB) (KB)

Ethernet 164 (0) 2103 (0) 719 (906) 31908 (904)

WaveLan 164 (0) 2103 (0) 2345 (5) 30288 (4)

ISDN 164 (0) 2103 (0) 1552 (1081) 31080 (1080)

Modem 164 (0) 2103 (0) 296 (1) 32329 (1)

(d) Trace Segment = Concord

Table 7.27: Data Generated During Trace Replay (� = 10 seconds, A = 600 seconds)

This table shows components of the data generated in the experiments of Figure 7.22.

7.6. CHAPTER SUMMARY 157

There are a few exceptions. First, during the Holst workload with A = 300 (Tables 7.24(b)
and 7.26(b)) Venus reintegrated data during the warming period. Second, during the Concord
workload with � = 10 and A = 600 (Table 7.27(d)), a large file was shipped in some runs,
but not in others because the corresponding store record was optimized from the CML. This
difference accounts for the large variance in the figures for data shipped and optimized in that
table.

At the end of the experiment, more data remains in the CML at lower bandwidths. For
example, in Table 7.25(b), the amount of data remaining in the CML is 70KB for Ethernet,
versus 2289 KB for Modem. Many entries are non-zero even for Ethernet because updates
occurred within an aging window (300 or 600 seconds) from the end of the workload.

CML optimizations increase as bandwidth decreases, because data spends more time in the
CML. Using the Holst workload example of Table 7.25(b), the amount optimized for Ethernet
is 1067 KB, compared to 1081 KB for Modem. Looking across experiments, as A increases
so do CML optimizations. For example, optimizations increase for each network type during
the Messiaen workload at � = 1 as A increases from 300 to 600 seconds (Tables 7.24 and
7.25). Of course, highly compressible segments benefit more from the increased opportunity
for optimization at lower bandwidths and larger aging windows.

7.6 Chapter Summary

This chapter has presented a quantitative evaluation of the transport protocol, rapid cache
validation, and trickle reintegration mechanisms. The evaluation was performed in the Coda
file system, and was based on controlled experimentation and empirical data gathered from the
system in actual use. The evaluation showed that:

� performance of the transport layer is reasonable compared to the TCP implementation
available under the operating system platform in use.

� rapid cache validation works well in practice; validation by volume is successful 97% of
the time, and when successful, it compensates for a three order of magnitude reduction
in network bandwidth.

� trickle reintegration successfully decouples client and network file system activity;
elapsed time of a trace replay benchmark was nearly unchanged over the entire ex-
perimental range of network bandwidths.

158 CHAPTER 7. EVALUATION

Chapter 8

Related Work

The work described in this dissertation is unique in its focus on high level mechanisms for
exploiting weak connectivity, and its identification of four key mechanisms through actual
system use. Although some techniques resembling the mechanisms described have been used
in other distributed systems, to the best of our knowledge, no other system has identified or
combined these mechanisms in this way to provide support for weakly connected operation.

This chapter discusses work related to weak connectivity in distributed systems. The chapter
is divided into two parts. The first part reports on systems and applications designed to cope
with weak connectivity. The second part describes work related to the specific mechanisms
used to support weak connectivity in Coda.

8.1 Systems that Exploit Weak Connectivity

Effective use of low bandwidth networks has been widely recognized as an important capability
in mobile computing [40, 58]. But only a few systems currently provide this functionality. Of
these, the Little Work distributed file system project [48, 50, 51] is most closely related to this
work.

8.1.1 Distributed File Systems

8.1.1.1 Little Work

Like Coda, Little Work provides transparent UNIX file access to disconnected and weakly-
connected clients. It is designed to be upward compatible with existing AFS servers, and thus
makes no changes to the AFS client-server interface. This constraint hurts its ability to cope with

159

160 CHAPTER 8. RELATED WORK

intermittent connectivity. First, it renders the use of rapid cache validation infeasible. Second,
it weakens fault tolerance because the replay of client updates cannot use a transactional server
primitive as in reintegration.

Little Work supports two flavors of weakly connected operation – partially connected
operation and fetch-only mode. Partially connected operation is analogous to Coda’s write
disconnected state. But there are important differences. First, users cannot influence the
servicing of cache misses in Little Work. Second, update propagation is less adaptive than
trickle reintegration in Coda. For example, there is no fragmentation mechanism to allow
propagation of large files in a way that minimizes interference with other client activity. Third,
much of Little Work’s efforts to reduce and prioritize network traffic occur in the SLIP driver.
This is in contrast to Coda’s emphasis on the higher levels of the system. In fetch only mode,
the client cache manager uses the network solely to satisfy cache misses. All cached files are
assumed to be valid, and no cache coherence protocol is used. There is no analogue of this
mode in Coda. It is unclear from the literature on Little Work if the transitions between the
strongly connected, partially connected, and fetch only modes are performed automatically by
the file system.

8.1.1.2 Ficus

Ficus is a distributed file system that supports optimistic replication [45, 46]. In Ficus, nodes are
considered peers rather than clients and servers. Data is organized into volumes, which may be
replicated across nodes. Updates may be performed as long as a single replica is available, and
they are propagated to other replicas in a best-effort manner. A process called reconciliation
runs periodically on behalf of each replica to pull over missed updates and detect conflicts.

Ficus is used over weak connections such as phone lines. A typical configuration includes
workstations at home and at work, each hosting a replica of the user’s environment. The weak
connection is used for reconciliation. The peer-to-peer structure of the system means that any
two nodes hosting a volume replica may communicate and exchange data. Nodes do not cache
data. Access to objects in volumes replicated at a node is efficient, because the data is local.
However, if an object in a volume not hosted by the node is referenced, the node must access it
remotely. Although nodes may be configured to minimize remote references, such references
inevitably occur. Establishing a replica at a node is a heavyweight operation, and is a waste
of resources if the files in that volume are rarely needed. Caching is lighter weight and more
flexible than replica placement.

8.1.1.3 The Siphon

The Siphon system [102] was developed by DEC PRL to manage a shared software repository
with objects replicated on both sides of a 56 Kb/sec transatlantic link. Repository units are

8.1. SYSTEMS THAT EXPLOIT WEAK CONNECTIVITY 161

file system directories called packages, which are self-contained software or documentation
collections. In this system reads are satisfied by a local replica which may be stale. Writes made
to the local replica are propagated to the others as network bandwidth permits; propagation
delays can range from a few minutes to a few hours. Writes are permitted only after a lock
is acquired; a client cannot acquire a lock until the local replica is up-to-date. The repository
described contained roughly 700 packages totalling 1.6 GB, of which about 40 MB propagated
through the Siphon each day. The authors point out that availability was more of an issue in
their system than bandwidth or latency. They claim a third to a half of the bandwidth would
have been adequate for their purposes.

8.1.1.4 Commercial Products

There are a number of commercial products that keep files on a mobile host synchronized with
servers or desktop machines. The one most similar to this work is Airsoft’s AirAccess [2], which
provides application-transparent support for disconnected and weakly connected file access.
Its implementation focuses on the transport level, using techniques such as data compression
and differential file transfer. Like Little Work, it preserves upward compatibility with existing
servers and therefore suffers from the same limitations with respect to intermittent connectivity.
It does not appear to have analogues to trickle reintegration and rapid cache validation, and the
problem of servicing potentially lengthy cache misses over the weak link is not addressed.

Other file synchronization products, such as Microsoft’s Briefcase [61, 124] and Traveling
Software’s LapLink [87], are non-transparent and require user intervention. In Briefcase, a
user copies files that he wishes to access while mobile to a special part of the namespace called
the briefcase, which may then be transferred to other devices. The system remembers the
original location of the files. The user must manually invoke synchronization, and the system
recommends reconciliation actions for objects in the briefcase (e.g., copy an updated version of
a file from the briefcase to its original location). Newly created files and files with conflicting
updates require user intervention. LapLink also provides tools for manual synchronization.
Like AirAccess, it reduces data volume by transferring file differences rather than entire files.

8.1.2 Databases

There are a number of databases designed for use in weakly connected and disconnected
environments. These systems use replicated, weakly consistent data. Replication improves
availability when sites are disconnected from each other. Weak consistency is preferable to
strong consistency because the latter would impose a severe penalty on availability and perfor-
mance. Availability would be limited because read and update activity must be restricted during
disconnections to avoid conflicts. Performance would suffer because distributed protocols must
execute over slow and unreliable connections.

162 CHAPTER 8. RELATED WORK

A use of weak connections in databases was proposed by Lilien [71]. In this work, weak
connections are used as backup networks when a main network fails. The mode of operation
when this occurs, called a quasi-partition, differs from both fully connected and partitioned
operation. During quasi-partitions, activity within partitions is unrestricted, but message traffic
is reduced between partitions. There are two primitive operations used during a quasi-partition:
creeping retrieval and creeping merge, which provide for reads and update propagation over
the weak link. In addition, the author lists several techniques helpful for reducing the volume
of data sent over the link, such as compression, batching of requests and updates, and defining
abbreviated messages. The system uses backup links to avoid making a priori preparations for
true partitions. Coda does not avoid making preparations for true partitions; on the contrary it
encourages it through hoarding.

More recent databases for use in weakly connected environments include Bayou [126],
OSCAR [33], and Lotus Notes [59]. In Bayou, servers communicate in a pairwise fashion,
propagating updates amongst each other in a process called anti-entropy. In OSCAR, agents for
servers called replicators and mediators cooperate to distribute updates to as many replicas as
possible. Lotus Notes is a commercial shared document database system that is used for group
communication applications, such as document sharing, e-mail, and computer conferencing.
Notes is intended for use in “rarely connected” environments, that is, environments in which
workgroups do not enjoy continuously available high-speed network connectivity. A specific
target of this system is workgroups communicating using PCs and dialup lines. The group com-
munication applications supported by Notes have the following characteristics. Collaboration
is accomplished by adding documents to a database. Once added, documents are not usually
modified. Finally, collaborators do not need to see up-to-the-minute data at all times. These
applications do not have strict consistency requirements, and can be supported by a weakly
consistent replicated database. Notes uses optimistic replication among nodes that are peers.
Updates are performed on the local replica; when nodes connect they pull new and changed
documents from each other. The system guarantees eventual consistency, that is, changes made
to one replica eventually migrate to all. The system detects and notifies users of conflicting
updates.

These database systems differ from Coda in two important respects. First, they do not adapt
dynamically to weak connections. They are structured in such a way that strong connections
are not necessary, because applications access local replicas, and nodes communicate primarily
to exchange updated data. Second, these systems are vertically integrated applications. In
contrast, Coda can support any application written for the UNIX API.

8.1.3 Read Only Systems

Several read only systems have been implemented for use in wide area networks. The most
notable of these systems is the World-Wide Web [9]. The Web is a wide area information system

8.1. SYSTEMS THAT EXPLOIT WEAK CONNECTIVITY 163

structured to facilitate browsing. It consists of read only objects. Updates are issued by servers
and propagated lazily to clients. The system provides no consistency guarantees. Network
performance for Web accesses is frequently poor. Browsers such as Netscape Navigator cope
with this by caching Web pages, providing user-selectable levels of consistency between cached
and server copies, and hiding latency by overlapping image retrieval with user think time.

8.1.4 Application-Specific Approaches

From a broader perspective, some applications employ techniques to exploit low bandwidth
networks. This approach differs from Coda in that support for mobility is entirely the respon-
sibility of the application. By providing this support at the file system level, Coda obviates
the need to modify individual applications. Further, by mediating the resource demands of
concurrent applications, Coda can better manage resources such as network bandwidth and
cache space.

8.1.4.1 Window Systems

Low Bandwidth X (LBX) [41] (now X.FAST [105]) is an example of application-specific
exploitation of weak connectivity. LBX is a version of the X protocol which is more efficient
over low bandwidth, high latency connections. It uses a special program to intercept X packets
on either side of the network, and remove as much redundant information as possible. LBX
makes more aggressive use of caching, re-encodes packets to require less space, uses changes
with respect to previous packets (“deltas”) where appropriate, and compresses the result. To
trade cost for performance, the amount of caching and specific compression algorithm used
are negotiable. These strategies are intended for general use, not just in weakly connected
environments.

8.1.4.2 Electronic Mail and News

There are a number of e-mail and data services designed to use weak connectivity, particularly
in the form of wireless links. Examples include Eudora [103], Lotus cc:mail [80], RadioMail,
and PINE [93]. These packages offer a range of features including automatic uploading and
downloading of e-mail, wireless e-mail (e.g., to pagers), and data services such as news and
weather reports.

Eudora and the Internet Message Access Protocol (IMAP4) [25], the protocol underlying
PINE, contain features that help cope with weak connections. Eudora is a mail client based
on the SMTP [101] and POP3 [78] protocols. It provides support for off-line composition
of messages and automatic uploading and downloading of messages. It includes a “skip big

164 CHAPTER 8. RELATED WORK

messages” option, which prevents downloading of large (> 40 Kbytes) messages. In this case,
Eudora downloads the first few lines of the message and flags it to alert the user that it is a
prefix.

IMAP4 allows a mail client to access and manipulate e-mail message folders, called mail-
boxes, at a server. IMAP4 supports includes disconnected message processing and synchro-
nization upon reconnection, and online processing, in which the client manipulates remote
messages directly [26]. In both cases, it is assumed that network connections are weak, and
the protocol attempts to minimize network usage. Synchronization involves the processing
of any queued commands at the client, and the updating of the client’s message cache with
new server state [4]. In the latter step, the client fetches the current list of mailboxes, then for
each mailbox the list of descriptors. The client determines the server’s state from the list of
descriptors, and fetches new or updated messages from the server. Message synchronization is
guided by the user in the form of configuration files that specify which mailboxes and messages
to examine. IMAP provides three “online performance optimizations” to improve usability
over weak connections [44]. First, a client can determine the message contents without fetch-
ing the entire message. For example, a message might have a few hundred bytes of text and
several megabytes of image data. Second, the client can selectively fetch parts of messages. To
continue the example, a client might elect to fetch only the text portion of a message. Finally,
IMAP provides a mechanism for server-based searching and message selection to minimize
data transfer.

8.1.4.3 Electronic Conferencing

The EDFM [32] system, developed at AT&T, combines design for manufacture (DFM) software
for printed circuit boards with electronic conferencing software to allow simultaneous real-time
viewing of circuit board designs among geographically separated development teams over a low
bandwidth connection. Since circuit board designs involve many large engineering drawings
with thousands of design objects, EDFM uses off-line preparation for an electronic conference
to eliminate all but crucial communication for the real-time conference. A conference proceeds
as follows. First a complete printed circuit board design is sent from a host to a remote sites
off-line, prior to the conference. Both sites load this representation and begin the conference.
Incremental design changes are transferred in real-time using a compact language for describing
design elements. The changes, encoded in small messages, are then applied by the remote site.

8.2 Mechanisms for Weak Connectivity

Some of Coda’s mechanisms for weak connectivity a have been investigated in isolation in
other systems. This section describes work similar to the individual Coda mechanisms for

8.2. MECHANISMS FOR WEAK CONNECTIVITY 165

exploiting weak connectivity.

8.2.1 Communications

The Coda communications layer offers adaptive transport protocols based on round trip time
estimation, passive monitoring of network transmissions, and the export of measurements to
adaptive applications through transmission logs. A number of transport protocols share some
of these features. One of the most widely used adaptive transport protocols is TCP/IP [99].
Its round trip timing mechanism enables it to adapt to changing network conditions [52]. Its
introduction of header compression has improved performance over low bandwidth connec-
tions [53]. Finally, it has been extended to operate over very high speed networks, and networks
with large bandwidth delay products [54]. The TCP round trip timing and header compression
mechanisms were applied to Rx, the AFS transport protocol, in the context of the Little Work
project [5].

The QEX RPC protocol, an extension of the REX RPC protocol for ANSAware [3], also
performs round trip timing [30]. In addition, QEX provides feedback to applications on the
state of underlying communications, but in a different way than RPC2. QEX maintains QoS
information on a per-session basis, and provides its feedback using a callback mechanism.

Applications that adapt their behavior based on estimates of network bandwidth and other
parameters have been implemented primarily in the domain of multimedia. Strategies common
in video applications include dropping frames and reducing picture quality when network
performance degrades [24, 90].

8.2.2 Rapid Cache Validation

Independent of this work, the possibility of rapid cache validation has been recognized in the
Ficus [46] and xFS [127] systems. Ficus uses a strategy called time-based reconciliation to
reduce the amount of network traffic while detecting changes between two volume replicas.
Each pair of volume replicas records the time that the last successful reconciliation started.
Only those files that have changed more recently require checking. Another argument for
maintaining cache coherence at a large granularity has been put forth independently by Wang
and Anderson [127]. They propose maintaining cache coherence on clusters of files, such as
subtrees. Their primary motivation is to reduce server state rather than communication. Neither
Ficus nor xFS has reported on any quantitative evaluation of their mechanisms in the literature.
Therefore, it is impossible to compare rapid cache validation in Coda with these systems.

The rapid cache validation approach for failure recovery contrasts with systems such as
Autonet [106], which hide transients until the network appears stable using a system of skeptics.
This approach makes sense if the cost of changing state is high – otherwise the system would

166 CHAPTER 8. RELATED WORK

spend a disproportionate amount of time doing nothing but recovering from connectivity
changes. If the the cost of recovery can be reduced, more slivers of connectivity can be exposed
to the system and used. This is particularly important if there is monetary cost associated with
the physical connection, or urgency in detecting the presence of new information.

8.2.3 Trickle Reintegration

Trickle reintegration bears resemblance to write-back caching, as used in distributed file systems
such as Sprite [89], Echo [47, 74], and MFS [16]. As discussed in Section 5.1, both techniques
reduce latency by deferring propagation of updates to servers, and reduce network bandwidth
and server load by taking advantage of updates that cancel or overwrite each other. However,
they differ in three respects. First, these systems preserve strict UNIX write-sharing semantics.
They are able to do so because they all assume LAN connectivity. In weakly connected
environments, this guarantee is impractical, because it would require strongly connected clients
to wait for updates to propagate from weakly connected clients. Second, the primary focus
of write-back caching is to reduce file system latency rather than data volume. In weakly
connected environments, the emphasis is on reducing data volume. Third, write-back caching
schemes maintain their caches in volatile memory, and thus suffer from the possibility of data
loss due to system failures. Their need to bound the damage limits the delay before updates
must be propagated. In contrast, the local persistence of updates in Coda allows for longer
propagation delays, bounded only by concerns of client theft, loss or disk damage.

Chapter 9

Conclusion

Ubiquitous data access is an increasingly important capability for information systems. The
demand for this capability is evident in the proliferation of portable computers and wireless
communication. Network technology will remain diverse for the foreseeable future. Weak
connectivity represents the lower end of the range of available technologies, and it is inevitable
in mobile file access. Thus it is crucial that information systems cope with weak connectivity.

This dissertation has described several mechanisms necessary for coping with weak con-
nectivity in a distributed file system. It has introduced adaptation to network conditions in
multiple system layers. The foundation of adaptivity in this system is the communications
layer, which derives and supplies information on network conditions to higher layers. The
rapid cache validation mechanism enables the system to recover quickly in the face of inter-
mittent connectivity. The trickle reintegration mechanism insulates the user from poor network
performance by trading off consistency. The cache miss handling mechanism alerts the user to
potentially lengthy service times and provides opportunities for intervention.

These mechanisms were implemented and deployed as part of the Coda file system, which
enjoys daily use by several dozen users from mobile and stationary clients using Ethernet,
WaveLAN, and SLIP connections. Measurements from the system show that it allows users to
largely ignore the vagaries of network performance and reliability typical of mobile environ-
ments.

9.1 Contributions

The main contribution of this thesis is a demonstration that weak connectivity can be used
effectively to alleviate the shortcomings of disconnected operation. More specifically, this
thesis makes contributions in the following areas:

167

168 CHAPTER 9. CONCLUSION

1. Conceptual contributions

� Architectural focus on high level mechanisms for weak connectivity.
Recognition of the importance of high level mechanisms results in substantial
benefits for weakly connected operation. Low level improvements may enhance
those mechanisms, but cannot replace them (Section 1.3).

� Identification of mechanisms for weak connectivity.
The mechanisms evolved through actual use of system, and were found to be
necessary for weakly connected file access (Section 7.1).

� First formal analysis of cache coherence in a distributed file system.
The introduction of multiple granularities into the cache coherence protocol ren-
dered it sufficiently complex that ad-hoc reasoning was no longer sufficient. A
novel technique based on the notion of belief [18] was derived to reason about the
correctness of the protocol (Appendix A).

2. System design and implementation contributions

� Communications layer

– Techniques for adaptation in user-level transport protocols.
Incorporation of adaptation into RPC2 and SFTP protocols using round trip
time estimation (Sections 3.2 and 3.3).

– Novel log-based technique for flexible, efficient export of network quality in-
formation.
The transport protocols log measurements on network transmissions using a
passive monitoring technique. Venus obtains these measurements through an
API for exporting transmission logs, and derives bandwidth estimates to trigger
transitions to and from weakly connected operation (Sections 3.4 and 3.5.2).

� Rapid cache validation

– Design and implementation of large granularity cache coherence protocol for
rapid cache validation.
Clients synchronize their caches with servers rapidly upon reconnection at the
granularity of volumes. This mechanism improves system agility in intermit-
tent environments (Chapter 4).

� Trickle Reintegration

– Design and implementation of adaptive, asynchronous update propagation
mechanism.
Clients propagate updates asynchronously to servers, in a manner that mini-
mizes interference with demand activity (Chapter 5).

9.2. FUTURE WORK 169

– Use of aging as a metric for CML record propagation.
Aging allows trickle reintegration to preserve the effectiveness of log optimiza-
tions by taking advantage of temporal locality of updates (Section 5.2.2).

– Methodology for selecting aging windows and trace based analysis.
A good default aging value for the window was chosen as a result of trace
driven simulation and analysis of CML optimizations (Section 5.4).

– Adaptive strategy for determining data propagation volume.
The client uses bandwidth estimates to determine the amount of data to prop-
agate at one time. If a record involves a large amount of new data, the data is
transferred using high level fragmentation (Section 5.3.2).

� Cache Miss Handling

– Novel model-based technique for weakly-connected cache miss handling.
This mechanism trades off impact of cache misses at low bandwidth between
usability and performance degradation. (Chapter 6).

3. Evaluation contributions

� Controlled experiments showing transport protocol performance at least comparable
to that of TCP (Section 7.3).

� Controlled experiments showing dramatic reduction in cache recovery times using
rapid cache validation (Section 7.4.1.2).

� Empirical data from system in actual use demonstrating effectiveness of rapid cache
validation in practice (Section 7.4.2.2).

� Experimental methodology based on trace replay, in which a workload from a file
reference trace is replayed on the live system (Section 7.5.1).

� Controlled trace replay experiments confirming effectiveness of trickle reintegration
over a three order of magnitude range in network bandwidth (Section 7.5.2).

9.2 Future Work

Although the system in its current form is useful, it could be improved in a number of ways.
This rest of this section discusses directions for future work, in order of increasing scope. The
narrowest scope represents enhancements to weakly connected operation. Work of medium
scope represents more substantial extensions to the system as a whole. At the broadest scope
are directions for new research.

170 CHAPTER 9. CONCLUSION

9.2.1 Refinements for Weakly Connected Operation

Previous chapters have suggested a number of enhancements to the implementation. In general,
they represent more sophisticated policies using the existing mechanisms described in those
chapters. In the communications layer, the transport protocols described in Sections 3.2 and 3.3
could incorporate header and data compression. The bandwidth estimates Venus derives
from the transmission logs, described in Section 3.4.3, could be improved in several ways.
Venus could incorporate variance into its bandwidth estimates, and estimate conservatively
when variance is high. If Mobile IP is available, the communications layer could incorporate
information from upcalls generated when a mobile host changes location [56] as static entries
deposited into its transmission logs.

For trickle reintegration, the selection of the aging window described in Section 5.4 could
be adaptive to connection strength. At low bandwidths, Venus would use a large window to
minimize data volume by taking advantage of log optimizations. At higher bandwidths, Venus
would shrink the window because the benefits of propagating updates to the server outweigh the
benefits of reducing the amount reintegrated. Section 5.3.2.2 describes another enhancement
to trickle reintegration called selective reintegration, in which a user or program propagates
updates to particular objects to the server. Finally, Venus could propagate file differences
instead of file contents.

9.2.2 Incorporating Monetary Cost

This work has assumed that performance is the only metric of cost. In practice, many networks
used in mobile computing cost real money. Where cost is prohibitive, Venus should conserve
its use of the network just as it does when performance is very poor. This extension involves
exploring techniques whereby Venus electronically inquires about network cost, and bases its
adaptation on both cost and performance. Of course, full-scale deployment of this capability
will require the cooperation of network providers and regulatory agencies.

9.2.3 Improving Effectiveness and Usability of Hoarding

As discussed in Chapter 6, servicing cache misses over a weak connection can be painfully
non-transparent. Avoiding the performance penalty associated with a cache miss remains an
important goal.

Hoarding is the current mechanism for caching for availability in Coda. However, expe-
rience has shown that novice users frequently forget to hoard critical files. Further, Maria
Ebling found that the time to the first reference of a critical file was very small [36]. Thus she
is exploring ways to improve caching for availability [35]. She argues that user assistance is

9.2. FUTURE WORK 171

necessary to avoid cache misses while operating disconnected or weakly connected. Further,
assistance should be provided to the system in an ongoing manner rather than a separate activity
as in hoarding, and the information supplied by the user should be based on “tasks” rather than
directories.

In addition, she is evaluating alternative strategies for caching for availability. This evalu-
ation is difficult because the only caching metric available today is the miss ratio. This metric
assumes that all cache misses are equal. However, while disconnected, cache misses do not
exact the same penalty from the user. While weakly connected, cache misses can have wildly
different service times. Further, the miss ratio does not take into account the timing of a miss
– a user may react very differently to a cache miss at the beginning of a task than at the end.
Ebling is exploring new caching metrics to evaluate the impact of different caching strategies
on users and the accuracy of user assistance.

9.2.4 Exploiting Reserved Network Services

The communications layer assumes that the network provides no guarantees about perfor-
mance. It assumes the network delivers data in a best-effort manner, and it simply observes
the performance of its data transfers and derives estimates from those observations. There is
a great deal of work on providing guaranteed or reserved services in both wired and wireless
networks [27, 37, 38, 130]. An interesting extension to Coda would be to take advantage of
reserved services when available. For example, the communication layer could adjust its re-
transmission strategy and frequency of round trip time measurements given a latency guarantee.
Higher layers could take advantage of bandwidth guarantees to schedule file transfers.

9.2.5 Application-Level Logging

When connectivity is weak, a system must strive to minimize bandwidth requirements. An
obvious way to reduce network usage is through compression, and several systems use this
technique [2, 5]. However, more efficient communication may be possible by examining the
activity at a higher level. For example, rather than shipping data between server and client, it
may be more efficient to send operations.

This idea can be applied to the Coda CML. The CML can be viewed as an operation log for
directories, and a value log for files. To incorporate function shipping into weakly connected
operation, one could introduce application-level logging, in which the CML includes operation
logging for files, and applications specify the operation. For example, consider a text editor
replacing string string1 with string2. The current implementation logs a store CML
record with the new file data, and ships the new file data in its entirety to the server. In

172 CHAPTER 9. CONCLUSION

application-level logging, the application would log a single CML record with the instructions
for string replacement, and the server would perform the replacement upon receipt of the record.

High level operation logging places a greater burden on the server, because operations
require greater computational resources. To preserve scalability, the system must take server
load into account before agreeing to perform these functions. The client should negotiate
operation logging rights upon connection, and the server should be able to revoke those rights
if load becomes heavy.

9.2.6 Application-Aware Adaptation

This thesis has taken the approach of application transparent adaptation, placing the entire
responsibility for adapting to network conditions on the file system. This approach is attractive
because applications benefit from weakly connected support without modification. However,
there are cases where adaptation performed by the file system is inappropriate for certain
applications. For example, the file system operates weakly connected when the bandwidth
to a server (or VSG) falls below a certain threshold. But from an application’s point of
view, a network connection is weak only when it imposes a significant bottleneck on the
application’s performance. One can imagine a compute-bound application that would not be
weakly connected even at low speeds. On the other hand, there are applications that make
an Ethernet look weak. Coda’s simple thresholding policy does not take this observation into
account.

Application transparent adaptation occupies one end of a spectrum of adaptation strategies.
At the other end is the laissez-faire approach [112], which places the responsibility of coping
with network conditions entirely upon the individual application. This approach allows ap-
plications to customize their handling of weak connectivity. However, it makes applications
harder to write, because support for weak connectivity must be reinvented for each application.
In addition, there is no way to arbitrate conflicting demands for resources between applications.

Between these two extremes is a spectrum of adaptation strategies referred to as application
aware adaptation [112]. The application and system collaborate to allow applications to
provide their own adaptation strategies, and the system to control and monitor resource usage
between applications. This approach is being explored in the Odyssey system [90, 122] and
work by Welling and Badrinath [129]. These systems provide an API that allows applications
to monitor and react to changes in their environment, and support for resource management
within the system.

9.3. CLOSING REMARKS 173

9.3 Closing Remarks

Weak connectivity is a fact of life in mobile computing. The deep challenge of weak connec-
tivity is not just poor network performance, but rather the variation in network performance
over a wide range. This variation implies that a system cannot make a priori decisions about
the performance impact of communication. It must adapt to network conditions, but in a way
that does not preclude use of strong connectivity. The ideal system takes advantage of strong
connectivity when available, but copes with weak connectivity when necessary. Further, it
exploits periods of strong connectivity to improve quality of life during future periods of weak
connectivity.

Disconnected operation is an invaluable starting point for this work. From the standpoint of a
disconnected client, weak connectivity provides opportunities for improvement. This work was
able to leverage off of the mechanisms for disconnected operation, such as update logging and
reintegration, to exploit weak connectivity. Disconnected operation is still necessary, because
it provides a viable fallback position when network conditions degrade beyond usability.

Performance, availability, and consistency are conflicting goals in distributed systems.
This work trades consistency for performance and availability while weakly connected to
allow the user to continue working with minimal interference. When strongly connected,
performance, availability, and consistency are unaffected. The system strives to provide
weakly connected performance comparable to that of a disconnected client, but with better
consistency and availability. It maintains transparency as much as possible, but relaxes it
where necessary in favor of usability. This adaptation is a crucial element for operating in
weakly connected environments. Although network performance is improving, the wide range
of network characteristics available will remain. Thus weakly connected operation will be a
vital capability in future distributed systems.

174 CHAPTER 9. CONCLUSION

Appendix A

Protocol Analysis

This chapter presents the details of the large granularity cache coherence protocol analysis. The
first two sections present the system model, logic, and notation. The correctness criterion is
stated formally in Section A.3. Section A.4 presents the analysis of the protocol. For simplicity
the analysis assumes messages are received instantaneously; the effects of transmission delay
and failures on correctness are discussed in Section A.5. The chapter closes with a discussion
of simplifications made to the model, and how the definitions could be extended.

A.1 System Model

Hosts are designated clients or servers of the file system. Clients and servers communicate by
sending messages to each other via remote procedure call [11]; each request made by one party
requires a response from the other. The notation

C ! S : M

means client C sends a message M to server S.

Clients speak only to servers, not to other clients. The underlying communication protocol
addresses end-to-end concerns such as guaranteeing authenticity and eliminating duplicate
messages.

Exactly one repository, which could be one server or a group of servers, is the authority for
a file system object. The generic term “server” refers to a repository. A file system object is
any data stored by a server that may be cached at a client, including files, portions of files, file
attributes, or version numbers.

The local state of a client, C , includes a set of cached data, C:D, and a set of beliefs, C:B,
about objects in its cache. The local state of a server, S, includes the set of objects it stores,

175

176 APPENDIX A. PROTOCOL ANALYSIS

S:D, and for each client C , a set of beliefs, SC:B, that includes which objects are present in
C’s cache and their validity.

The global state of the system is a tuple of all clients’ and servers’ local states, plus an
agreement setACS , which determines for each data object d whose authority is S and is cached
at C, whether the server and client copies are equal. It is this state variable that approximates
global knowledge about the validity of all files. It represents pairwise knowledge, attained
between connected pairs of clients and servers.

State transitions occur when a component of the global state changes. For the most part, this
is when clients and servers exchange messages. The types of message exchanges are discussed
in Section A.4.

The analysis makes statements about the presence or absence of file system objects cached
at clients and their validity. An object is valid if it is the most recent copy in the system.
Otherwise, it is invalid. Recency is determined by a timestamp associated with the file. The
timestamp is replaced whenever the file is updated.

Since servers may not hear about updates immediately, validity is global knowledge and
cannot always be determined by clients and servers. However, if C and S agree on an object,
and S believes its copy is valid, then C should be able to conclude that its cached copy is valid.
If S receives an update from a client other than C , then S is justified in telling C that its copy
of the object is now invalid, regardless of the global validity of the updated copy.

Each protocol has a predefined set of initial and final messages. A run of a cache coherence
protocol begins with an initial message and ends with a final message. Failures can terminate
runs; they are detected by message timeouts. If a message times out, the principal that sent the
message considers it a final message. However, if a client and server both believe a run is in
progress, then the run ends once both principals detect the failure. An example of this appears
in Section A.5.

Before a run, a client C considers all objects in its cache suspect; that is, it neither believes
an object d is valid, nor believes d is invalid. During a run, C and S accumulate beliefs about
d as a result of exchanging messages. At the end of the run, C and S discard their beliefs
regarding the validity of d. If a run is not in progress, C must consider all cached objects
suspect because it cannot check if they are valid, nor can S notify C that they are not.

A.2 Logic

The logic is a subset of the BAN logic [17, 18] with a few extensions. Below, P and Q are
principals, which are either clients or servers. S refers to a server and C refers to a client. A
message is denoted X; a file system object d. The constructs are:

A.2. LOGIC 177

P believes X P behaves as if X is true.
P sees X from Q P receives message X fromQ.
P controls X P is an authority on X .

The notions of belief and control are taken directly from the BAN logic. The statement
P believes X is equivalent to X 2 P:B, where P:B is the belief set for principal P . The
sees construct is derived from the BAN logic based on our assumptions about the underlying
communication mechanism.

The following constructs, extensions to the BAN logic, are for reasoning about file system
objects:

d 2 P P has a copy of d, i.e., d 2 P:D. The copy held by P is denoted dP 1.
valid(dP) The value of d’s timestamp at P is greater than or equal to the timestamp

associated with every other copy of d in the system.

Messages can contain the above two constructs and their negations. As in the BAN logic,
a message X may consist of formulae, data, or both. For example, a message might contain a
formula about some object d such as valid(dC), or it might contain the object itself (simply d).
Messages may be classified further based on their contents. For example, the various kinds of
update requests form one class of messages. An update request involving object d is denoted
update(d).

Belief sets can contain the above two constructs and their negations, as well as statements
of the form “P believes X”.

The axioms of the logic are:

A1. 8d 2 C:D (C believes d 2 C)
A2. 8d 62 C:D (C believes d 62 C)
A3. P believes X) :(P believes :X)

The first two axioms simply state that client C is allowed to believe what it knows about
the contents of its cache.

The third axiom says belief sets must be internally consistent. In the BAN logic, beliefs
are stable, meaning that once a principal holds a belief, it holds that belief for the duration of
the protocol. Thus during their protocols, belief sets only grow. In contrast, in a file system
cached files may become invalid because of updates. Because of this, beliefs about the validity
of files may change. Axiom 3 guarantees at most one of X and :X appears in P ’s belief
set. If a new belief is derived during a run that contradicts a currently held belief about d,

1AlthoughP is a parameter, it is more readable as a subscript.

178 APPENDIX A. PROTOCOL ANALYSIS

the new belief supersedes the old one because it is based on more recent information. Thus
if C:B = f valid(dC) g, and a message arrives invalidating dC , then C:B would become
f:valid(dC) g.

The converse of A3, :(P believes X)) (P believes :X), does not hold. In other words,
absence of belief is distinct from belief of the opposite.

It may be the case that principal P has no beliefs regarding X , i.e., it believes neither
X nor :X . Since X 2 P:B is equivalent to P believes X , then X 62 P:B is equivalent to
:(P believes X). Thus, for example, if valid(dP) does not appear in P ’s belief set, then one
can say :(P believes valid(dP)). Again, this does not mean that P believes dP is invalid, as
explained above.

The inference rules in the logic are:

R1. The visibility rule says if a principal sees a message, it sees its components. This rule is
taken from the BAN logic.

P sees X;Y from Q

P sees X from Q;P sees Y from Q

R2. The message interpretation rule says if a principal sees a message, it can believe that
the sender believes what it said in the message. This is derived from the BAN mes-
sage meaning and nonce-verification rules, and it follows from assumptions about the
underlying communication mechanism.

P sees X from Q

P believes Q believes X

R3. The jurisdiction rule, taken directly from the BAN logic, says if P believes Q is an
authority on X , then P may believe whatever Q believes about X .

P believes Q controls X;P believes Q believes X

P believes X

A.3. GOAL OF CACHE COHERENCE 179

R4. The update rule says observers of an update invalidate old versions of the updated data.
Below, C 0 6= C, and S is the repository for d.

S believes valid(dC),S sees update(d) from C0

S believes :valid(dC)

A.3 Goal of Cache Coherence

The goal of a cache coherence protocol is to ensure that no invalid object is ever portrayed as
being valid. That is, for all clients C and objects d,

if C believes valid(dC) then valid(dC)

This is not achievable in practice because the system model allows partitioned updates.
However, a weaker version of this statement is a practical correctness criterion: for all clients
C , servers S, and objects d for which S is the repository,

if C believes valid(dC) then S believes valid(dC)

Notice that the correctness criterion is defined on a per-object basis. The aim of a run is to
establish the correctness criterion for as many cached objects as possible.

Unlike authentication, cache coherence is not a final system state to be achieved after
running the protocol, but an invariant to be maintained while running it. To argue a cache
coherence protocol correct, our obligation is to prove the invariance of the correctness criterion
over each run of the protocol.

A.4 Protocol Analysis

This section presents an analysis of the large granularity protocol. The protocol is reviewed
briefly, and the initial and final messages are defined. Then the smallest system possible in
which the protocol could operate is defined. The possible states of a client and server are listed,
determining all possible valid runs. Correctness arguments for each follow, assuming initially
that message transmission and failure detection occur instantly. The effect of transmission
delays and failures is discussed in Section A.5.

The following assumptions apply to all runs:

180 APPENDIX A. PROTOCOL ANALYSIS

S1. 8d 2 S:D (S believes valid(dS))
S2. 8d 2 S:D d 2 C) (C believes S controls valid(dC))
S3. 8d 2 S:D d 2 C) (C believes S controls :valid(dC))

The first assumption states that a server believes all the data it stores is valid. The last two
assumptions say a server is the authority on the validity of data it stores.

As described in Chapter 4, the large granularity cache coherence protocol allows callbacks
to be maintained on volumes in addition to or instead of files. A callback on a volume constitutes
proof that all cached files in the volume are valid. To establish a volume callback, the client
caches the version number for the volume. The server increments the volume version number
whenever a file in that volume is updated.

A run of this protocol concerns a file f , and optionally the version number v from volume
V containing f . Before requesting v, the client must have at least one file in V in its cache,
and all cached files in V must be valid. This requirement ensures the files at C correspond to
the version number it receives.

A client may validate v just as it would a file. If it has both file and volume state at the
beginning of a run, it may validate them in either order. If a client validates v successfully, it
receives a callback for the volume. While holding the volume callback, no communication is
necessary to read any file cached in the volume.

In this protocol, a client may send a server a fetch request for new data, a validation of
already cached data, or an update. Servers may respond to fetch and validation requests with
new data, and an indication if already cached data is valid. Update requests additionally cause
servers to send invalidation messages to clients caching the updated data. The initial messages
for this protocol are any one of the following: a fetch for a file or a version number, or a
validation for a file or a version number.

Final messages for the protocol are the response to a file invalidation and a failed file
validation. A volume invalidation response or a failed volume validation are also final messages
if there is no callback on the file. The run ends when the file is discarded or rendered suspect.

This protocol may be analyzed considering one client, C, one server, S, one file, f , and
one volume V with version number v. The system state is again a tuple of four variables,
(C:D;C:B; S:B;A), where

� C:D ranges over ;; ffg; and ff; vg. This means if the volume version number is cached
then so is a file from that volume.2

2This analysis uses a simplified model consisting of only f and v, even though in practice it would take more
than one file to make obtaining a volume callback worthwhile. This is discussed in Section A.7.

A.4. PROTOCOL ANALYSIS 181

� A is the agreement set on the cached objects. It ranges over the following values:

;; ffC = fSg;ffC 6= fSg; ffC = fS; vC = vSg

ffC = fS ; vC 6= vSg; ffC 6= fS; vC 6= vSg

Note that because the volume version number is updated whenever an object in the volume is
updated, it is not possible for f to be invalid and v to be valid at the same time.

A run of the protocol maps some initial state (C:Di; C:Bi; S:Bi; Ai) to some terminating
state (C:Dt; C:Bt; S:Bt; At). The state space is restricted in the following ways. For all states,
(C:D;C:B; S:B;A), in a run:

1. For each object d (f or v) in C:D, dC = dS or dC 6= dS must be in A. If C:D = ; then
A = ;.

2. When an object is invalidated, the client must discard it. An invalidation for the file is
an implicit invalidation for the volume. More precisely,

(fC 6= fS) 2 A) C:Dt = ;

(vC 6= vS) 2 A) v 62 C:Dt

3. At the end of a run, either d is not cached, or it is cached and agrees with the server. This
follows from 2 above, because once the client discovers d is invalid it discards it. Thus
At = ; or At = fdC = dSg.

Runs of the protocol are classified by the initial and final cache contents of the client (C:Di

and C:Dt) and by the initial agreement set (Ai). (At is not relevant because it will either
be empty or indicate agreement as stated in item 3 above.) Multiple runs may correspond
to each combination of C:Di; C:Dt; and Ai. The set of runs corresponding to these state
variables is a class of runs. There are fifteen possible classes of runs of the protocol. The client
state transition diagram is shown in Figure A.1. For each object in C:Di, the contents of the
agreement set determines whether the first transition concerning the object is a validation or a
failed validation.

Individual runs (or classes of runs) are analyzed in the following subsections. The first
five runs concern files only, and correspond to all possible runs in the original cache coherence
protocol. Analogous runs for volume data are mentioned where they exist. Section A.4.6
illustrates a loop in the client state transition diagram by discussing a volume miss with no
failures. The final run shown in this section is a volume validation followed by a communication
failure. This run is the common case in intermittent network environments.

182 APPENDIX A. PROTOCOL ANALYSIS

f,v

f, v

f,v

fetch f invalidate f

validate f failure

validate f

failed validation f

fetch v invalidate v

failed validation f
validate v

failed validation v

failure

failure

invalidate v

failure

invalidate f

invalidate f

failed validation v

validate v

f,vf,v

f

f

f

C.D tC.D i

Figure A.1: Client State Transitions – Invalidation Based, Large Granularity

This is the state transition diagram for the client for a file-volume pair (f; v). The leftmost
states correspond to the client cache contents at the beginning of the run, C:Di. Similarly, the
rightmost states correspond to the client cache contents at the end of the run, C:Dt. An object
in boldface means the client has a callback for the object. If object x 2 C:Di, a “validate”
transition is taken if (xC = xS) 2 A, otherwise a “failed validation” transition occurs.

A.4. PROTOCOL ANALYSIS 183

The proof of invariance is based on either fC or vC , depending on which callback, if any,
is established first. It is never the case that the client switches from depending on one type of
callback to another during the run. If the proof of invariance concerns vC , and fC is contained
by the volume whose version number is vC , if C believes valid(vC) then it can be confident
that valid(fC) as well.

A.4.1 Cache miss, no failures

The critical transitions for the client are a fetch of f , and an invalidation of f . The initial and
final system states for this run are both (;; ff 62 Cg; ;; ;). This run corresponds to the topmost
path in Figure A.1.

The run proceeds as follows. A request involving f is issued at C , however f is not present
in C’s cache. C sends the initial message to S requesting a copy of f . S records the fact that
C is caching f (f 2 C on S). This is the callback promise. When C receives the response
from S, it may use the data to service requests for f until S tells it otherwise. Since no failures
occur in this case, eventually some other client updates f , rendering C’s copy invalid. The
server sends C an invalidation message (the callback break), causing C to discard its copy of
f . C sends the final message to S indicating that it received the invalidation, and S discards its
callback promise on f for C .

The evolution of C’s and S’s beliefs as the protocol is shown below.

184 APPENDIX A. PROTOCOL ANALYSIS

C believes Message S believes Notes

f 62 C cache miss
C ! S : f 62 C request f

f 2 C; valid(fC) record callback promise
S ! C : f; valid(fC) ; f 2 C send f , callback status

f 2 C

S believes f 2 C

valid(fC)
...

C0 ! S : update(f) C 0 updates f
f 2 C;:valid(fC) C’s copy stale

S ! C : :valid(fC) callback break for fC
f 2 C

S believes f 2 C

:valid(fC) supersedes valid(fC)

f 62 C C discards f
[S believes f 2 C] C erases beliefs
[:valid(fC)]

C ! S : response to invalidation
[f 2 C;:valid(fC)] erase callback promise

Since valid(fC) 62 C:B, :(C believes valid(fC)). Thus the invariant is established.

The next event that changes the system state occurs when S responds to C’s request. Using
assumption S1 stated at the beginning of this section, S believes valid(fS) . Since fC = fS
when S sends f , it is also the case that S believes valid(fC) .

When C receives the response from S, C sees f; valid(fC) ; f 2 C from S. Using the
visibility rule, C sees valid(fC) from S Using the message interpretation rule C believes
S believes valid(fC) . Using the jurisdiction rule instantiated with valid(fC) ,C believes valid(fC) .
But since S believes valid(fC) , the invariant still holds.

When the remote update to f occurs, S receives a message containing an update request
involving f from some client C 0 6= C. That is, S sees update(f) from C0. Using the update
rule, S believes :valid(fC) . S sends C an invalidation message for fC . If the message arrives
at C instantaneously, both parties change their beliefs at the same instant and the invariant still
holds. Of course, the message does not arrive instantaneously. This is discussed in Section
A.5.

A.4. PROTOCOL ANALYSIS 185

WhenC receives the invalidation message, C sees :valid(fC) from S. Using message in-
terpretation,C believes S believes :valid(fC) . Using assumption S3 and the jurisdiction rule
instantiated for :valid(fC) , C believes :valid(fC) . This supersedes C believes valid(fC) .
Since belief sets must be internally consistent (axiom A3), :(C believes valid(fC)) and the
invariant holds.

C discards f and responds to the invalidation message, ending the run. Since C no longer
has a copy of f , clearly valid(fC) 62 C:B, and therefore :(C believes valid(fC)). Thus at the
end of the run, the invariant holds.

A.4.2 Successful validation, no failures

This run begins with f already cached at C. Since f is suspect, on the first reference C

attempts to validate f with S. In this case S replies that it is valid, and records a callback
for f at C. The rest of this case is the same as in Section A.4.1. Initial and final states are
(ffg;ff 2 Cg;;; ffC = fSg) and (;; ff 62 Cg; ;; ;).

C believes Message S believes

f 2 C

C ! S : f 2 C

f 2 C; valid(fC)
S ! C : valid(fC) ; f 2 C

f 2 C

S believes f 2 C

valid(fC)
...

C 0 ! S : update(f)
f 2 C;:valid(fC)

S ! C : :valid(fC)
f 2 C

S believes f 2 C

:valid(fC)

f 62 C

[S believes f 2 C]

[:valid(fC)]
C ! S :

[f 2 C;:valid(fC)]

186 APPENDIX A. PROTOCOL ANALYSIS

Initially C cannot be certain of the validity of fC , so valid(fC) 62 C:B and therefore
:(C believes valid(fC)). Thus the invariant is established.

C sends the validation request for f to S. S believes valid(fS) using assumption S1. Since
fC = fS , in this case S believes valid(fC) , and the invariant still holds.

When C receives the response, C sees valid(fC) from S. Using message interpretation
yieldsC believes S believes valid(fC) , and applying jurisdictionC believes valid(fC) . Since
S believes valid(fC) the invariant holds.

The rest of the proof is identical to Section A.4.1.

A.4.3 Cache miss, followed by failure

This case begins as in Section A.4.1, but ends when a failure severs the connection between C

and S. Initial and final states are (;; ff 62 Cg; ;; ;), and (ffg; ff 2 Cg; ;; ffC = fSg).

C believes Message S believes

f 62 C

C ! S : f 62 C

f 2 C; valid(fC)
S ! C : f; valid(fC) ; f 2 C

f 2 C

S believes f 2 C

valid(fC)
...

failure
f 2 C [f 2 C; valid(fC)]
[S believes f 2 C]

[valid(fC)]

As in Section A.4.1, S believes valid(fC) when it responds toC’s request, andC believes valid(fC)
when it receives the reply from S. The invariant holds until the failure occurs.

When S detects the failure, it discards its beliefs about C . This includes beliefs about which
objects C has cached, and the validity of those objects. When C detects the failure, it discards
its beliefs about S, and the validity of objects in its cache. It retains beliefs about the presence
or absence of objects in its cache. These beliefs are always derivable using the axioms, because
they are based on strictly local information. C and S react conservatively because they cannot
distinguish between a communication failure and a machine failure. For example, if C loses

A.4. PROTOCOL ANALYSIS 187

contact with S, it may be because S crashed. If S crashes, callback information is lost. C

cannot rely on S retaining callback information, so it must consider its f suspect.

A.4.4 Successful validation, failure

C believes Message S believes

f 2 C

C ! S : f 2 C

f 2 C; valid(fC)
S ! C : valid(fC) ; f 2 C

f 2 C

S believes f 2 C

valid(fC)
...

failure
f 2 C [f 2 C; valid(fC)]
[S believes f 2 C]

[valid(fC)]

This case begins as in Section A.4.2 and ends as in Section A.4.3. Initial and final states
are both (ffg; ff 2 Cg; ;;ffC = fSg).

The proof of invariance begins as in Section A.4.2. When C receives the response from S,
C believes valid(fC) , S believes valid(fC) , and the invariant holds. The rest of the proof is
as in Section A.4.3.

A.4.5 Failed validation

As above, the protocol begins with f already cached at C. Since f is suspect, C attempts to
validate it with S. In this case S replies that it is not valid. No state about f at C is recorded at
the server. When C receives the reply, it discards its copy of f . Initial and final states for this
run are (ffg; ff 2 Cg;;; ffC 6= fSg) and (;; ff 62 Cg; ;; ;).

188 APPENDIX A. PROTOCOL ANALYSIS

C believes Message S believes

f 2 C

C ! S : f 2 C

:valid(fC)
S ! C : :valid(fC)

f 2 C

:valid(fC)

f 62 C

[:valid(fC)]

This run is vacuously correct because at no time does C believe f is valid. That is, the
invariant holds throughout because :(C believes valid(fC)). The same reasoning applies to
f if v 2 C initially (i.e. from initial state (ff; vg;ff 2 C;v 2 Cg; ;; ffC 6= fS ; vC 6= vSg)).
In this case the client discards v as well as f , resulting in the same final state as above. The
same reasoning also applies to v, if C attempts to validate v before f , from initial states
(ff; vg; ff 2 C; v 2 Cg; ;; ffC = fS; vC 6= vSg)) and (ff; vg; ff 2 C; v 2 Cg; ;; ffC 6=

fS ; vC 6= vSg)). The final states for these runs are (ffg;ff 2 Cg;;; ffC = fSg)) and
(ffg;ff 2 Cg;;; ffC 6= fSg)), respectively.

A.4.6 Volume miss, no failures

In this case, the client establishes a volume callback by fetching the volume version stamp.
The run is shown in progress with with f already cached at C and valid, to address all runs
containing this state, which corresponds to the topmost middle state of Figure A.1. C requests
and receives a volume callback, so that it has callbacks on both f and v. Eventually f is
updated from another client. Because the invalidation for f also serves as an invalidation for
v, C discards both and the run ends. There are four possible initial states for the run segment
shown in this section – (;; ff 62 C; v 62 Cg; ;;;), (ffg; ff 2 C; v 62 Cg; ;; ffC = fSg),
(ff; vg; ff 2 C; v 2 Cg; ;; ffC = fS ; vC = vSg), and (ff; vg; ff 2 C;v 2 Cg; ;;ffC =

fS ; vC 6= vSg)
3. The final state for these runs is (;; ff 62 C; v 62 Cg; ;; ;).

While C has the volume callback, another client could update an object in the volume other
then f . This is an example of false sharing. Such an update would break C’s volume callback,
but because C still had a callback on f , the run would persist until f itself was updated.

First consider the case in which no object in V is updated remotely before f .

3In practice the latter two would not occur because the implementation validates v before f , resulting in
different runs.

A.4. PROTOCOL ANALYSIS 189

C believes Message S believes Notes

f 2 C fC 2 C

valid(fC) valid(fC)
S believes f 2 C

C ! S : v 62 C request V ’s version stamp
v 2 C; valid(vC) record callback

S ! C : v; v 2 C send stamp, callback status
f 2 C; v 2 C

S believes f 2 C

S believes v 2 C

valid(fC) ; valid(vC)
...

C0 ! S : update(f) C 0 updates f
f 2 C;:valid(fC) fC ; vC now invalid
v 2 C;:valid(vC)

S ! C : :valid(fC) callback break for fC
f 2 C; v 2 C

S believes f 2 C

S believes v 2 C

:valid(fC) ;:valid(vC)

f 62 C; v 62 C C discards f; v
[S believes f 2 C] C erases beliefs
[S believes v 2 C]

[:valid(fC) ;:valid(vC)]
C ! S : C responds to invalidation

[f 2 C;:valid(fC)] erase callback promises
[v 2 C;:valid(vC)]

Now assume an update occurs on some object g in V , where g 62 C , during the
... above.

190 APPENDIX A. PROTOCOL ANALYSIS

C believes Message S believes Notes

f 2 C; v 2 C f 2 C; v 2 C

valid(fC) ; valid(vC) valid(fC) ; valid(vC)
S believes f 2 C

S believes v 2 C
...

C0 ! S : update(g) C 0 6= C updates g 62 C

f 2 C; valid(fC)
v 2 C;:valid(vC) vC now invalid

S ! C : :valid(vC) invalidate vC
f 2 C; v 2 C

S believes f 2 C

S believes v 2 C

valid(fC) ;:valid(vC) supersedes valid(vC)

f 2 C; v 62 C C discards v
S believes f 2 C

valid(fC)
[S believes v 2 C] C erases beliefs
[:valid(vC)]

C ! S : C responds to invalidation
[v 2 C;:valid(vC)] erase callback promise
f 2 C; valid(fC)

At this point C is back where it started. C could conceivably loop, obtaining and losing the
callback on V , as shown in the topmost middle states of Figure A.1. This loop may occur in
any run once C holds a callback on f , including those shown in Sections A.4.1 to A.4.4. In the
runs ending with a failure, if v 2 C the client retains v (but drops the callback) just as it does
f . In the run above, the update to f could occur while v 2 C or not; either way the run ends
without v.

The proof of invariance for fC is as in section Section A.4.1 if f was fetched, or Section
A.4.2 if f was validated successfully. The presence or absence of v at C has no effect on beliefs
regarding f because C has a callback on f . During this run, there is no benefit derived from
obtaining the volume callback; its strength in providing quick validation is not part of this run.

A.4. PROTOCOL ANALYSIS 191

A.4.7 Volume miss, failure

This case begins as in Section A.4.6 but ends when a failure severs the connection between C

and S. Note that as in Section A.4.6 C may obtain and lose a callback on V repeatedly before
the failure.

The final state for this run is (ff; vg; ff 2 C; v 2 Cg; ;; ffC = fS; vC = vSg) if v is not
invalidated before the failure, otherwise it is (ffg; ff 2 Cg; ;; ffC = fSg). The proof of
invariance for fC is as in Section A.4.6; the invariant holds until the failure occurs as in Section
A.4.3.

A.4.8 Volume validation, failure

From the client’s viewpoint, this run corresponds to the path in Figure A.1 from state (f; v) to
(f; v) to (f; v). The critical transitions for the client are the validation of v and detection of a
failure. The initial and final system states for this run are (ff; vg; ff 2 C; v 2 Cg;;; ffC =

fS ; vC = vSg).

When this run begins, C already has volume and file state in its cache. C sends V ’s identifier
and volume version number v to the server to determine if anything in V has been updated. In
this case, the validation is successful (i.e., nothing has changed), so C may assume all cached
state from V is valid. In addition, C receives a callback promise for V , meaning S will notify
C if anything in V changes. At this point C may consider all files in V valid, even though this
analysis considers only f . The run ends when a failure severs the connection between C and
S.

192 APPENDIX A. PROTOCOL ANALYSIS

C believes Message S believes

f 2 C; v 2 C

C ! S : v 2 C

v 2 C; valid(vC)
S ! C : v 2 C; valid(vC)

f 2 C; v 2 C

valid(vC)
S believes v 2 C

...

failure
f 2 C; v 2 C [v 2 C; valid(vC)]
[S believes v 2 C]

[valid(vC)]

Initially C cannot be certain of the validity of vC , so valid(vC) 62 C:B and therefore
:(C believes valid(vC)). Thus the invariant is established.

C sends the validation request forv toS. Using assumption S1, we obtainS believes valid(vS) .
Since vC = vS in this case, we have S believes valid(vC) , and the invariant still holds.

When C receives the response, we have C sees valid(vC) from S. Using message
interpretation we have C believes S believes valid(vC) . Using assumption S2 and the
jurisdiction rule, we have C believes valid(vC) . Since S believes valid(vC) the invariant
holds.

When S detects the failure, it discards its beliefs about C . This includes beliefs about which
objects C has cached, and the validity of those objects. When C detects the failure, it discards
its beliefs about S, and the validity of objects in its cache. It retains beliefs about the presence
or absence of objects in its cache; these beliefs are always derivable using the axioms, because
they are based on strictly local information.

A.4.9 Volume validation, no failures

This run begins as in Section A.4.8, but ends when C receives an invalidation for f or v.
The final state for this run is (;; ff 62 C;v 62 Cg; ;; ;) if f is invalidated, otherwise it is
(ffg;ff 2 Cg; ;; ffC = fSg).

Below are the beliefs of C and S for a run in which f is invalidated.

A.4. PROTOCOL ANALYSIS 193

C believes Message S believes

f 2 C; v 2 C

C ! S : v 2 C

v 2 C; valid(vC)
S ! C : v 2 C; valid(vC)

f 2 C; v 2 C

valid(vC)
S believes v 2 C

...
C 0 ! S : update(f)

f 2 C;:valid(fC)
v 2 C;:valid(vC)

S ! C : :valid(fC)
f 2 C; v 2 C

S believes v 2 C

:valid(fC) ;:valid(vC)

f 62 C; v 62 C

[S believes v 2 C]

[:valid(fC) ;:valid(vC)]
C ! S :

[v 2 C;:valid(vC)]

For a run in which v is invalidated, the beliefs are:

194 APPENDIX A. PROTOCOL ANALYSIS

C believes Message S believes

f 2 C; v 2 C

C ! S : v 2 C

v 2 C; valid(vC)
S ! C : v 2 C; valid(vC)

f 2 C; v 2 C

valid(vC)
S believes v 2 C

...
C0 ! S : update(g)

v 2 C;:valid(vC)
S ! C : :valid(vC)

f 2 C; v 2 C

S believes v 2 C

:valid(vC)

f 2 C; v 62 C

[S believes v 2 C]

[:valid(vC)]
C ! S :

[v 2 C;:valid(vC)]

A.4.10 Other validations

When both f and v 2 C:Di, they may be validated in either order. Different orders result in
different runs. The remainder of the runs in the analysis involve C attempting to validate f

before v. These runs do not occur in practice because the implementation always validates v
first if present.

IfC validates f successfully before it attempts to validate v, the proof of invariance is based
on f as in Section A.4.2 if an invalidation for f ends the run, or as in Section A.4.4 if a failure
occurs. During the run, the client could attempt to validate v, refetching it if necessary, and it
could loop as in Section A.4.6. The final states of such runs depend on Ai, and whether or not
v 2 C:D when the terminating event occurs.

A.5. TIME-BOUNDED CORRECTNESS 195

A.5 Time-Bounded Correctness

Two factors complicate reasoning about correctness in distributed systems: transmission delay
and failures. During the interval in which a message is traveling, the sender may have made
some state change that renders the correctness condition false until the receiver processes the
message and changes its state. While transmission time is often assumed to be negligible
in LAN-based environments, this assumption is not valid in weakly connected environments.
However, transmission delay is loosely bounded by the timeout period used by the underlying
communication protocol, denoted by �. If a message is not acknowledged within � after it is
sent, the sender declares a failure. The timeout period is a system parameter, and is usually on
the order of a minute.

Failures are the second complication. It takes time for principals to detect failures. During
the interval between the occurrence of a failure and its detection, it is possible for the correctness
condition to be false because one of the principals was unable to notify another of some event.
This interval, denoted by � , defines a window of vulnerability for the protocol. To bound the
failure detection interval, clients and servers probe each other periodically, and declare failures
if messages time out. Let � be the message timeout period as above, and let � be the probe
interval. Assume clients and servers use the same probe interval, but do not necessarily probe
each other at the same time. Then the failure detection interval � = �+ � at most.

The timetable in Figure A.2 shows the worst-case behavior of a system whose failure
detection interval is � . Let tp be the latest time at which C probes S successfully before the
failure, and let tf be the time at which the failure occurs. Eventually either C or S will send a
message and discover the failure. If the failure is discovered through a probe by either party, C
was still correct in believing that fC was valid, even though C’s and S’s beliefs about callback
state were not consistent.

The worst case occurs if another client in contact with S updates f while C is partitioned
from S, but before C has detected the failure. S tries to break C’s callback on f at time t i but
fails. This is a lost callback. During this interval, C believes that fC is valid when it is not.
This interval is largest when the failure and the update occur immediately after tp. At time
ti + �, C is still blissfully ignorant of the status of f , and does not discover a problem until it
tries to contact S at tp+�. It is not until tp+ � that C declares failure and demotes f to suspect
status. Thus � is the longest period in which C can believe f is valid when it is not.

Correctness for this protocol is bounded by � . A protocol � -correct if the interval in which it
does not meet the correctness criterion is at most � . A 0-correct protocol obeys the correctness
criterion strictly. In the Coda file system, � is composed of a probe interval of 10 minutes, and
a message timeout of 15 seconds.

196 APPENDIX A. PROTOCOL ANALYSIS

C believes Message S believes Notes

f 2 C; valid(fC) f 2 C; valid(fC)
S believes f 2 C

...
C ! S : probe tp; probe successful

...
failure tf ; C and S partitioned

...
update f C 0 updates f
:valid(fC)

S ! C : :valid(fC) [f 2 C] ti
ti + �; S declares failure

...
C ! S : probe tp + �

tp + �+ � = tp + �;

C declares failure
f 2 C

[S believes f 2 C] C erases beliefs
[valid(fC)]

Figure A.2: Worst Case Behavior During a Failure

A.6. CLASSIFYING BELIEFS 197

A.6 Classifying Beliefs

Beliefs can be classified in three ways. Correct beliefs are those beliefs that are actually true.
Pessimistic beliefs refer to beliefs that are discarded when a run ends. In effect, this set captures
those objects for which there are no beliefs. Finally, it is possible to have temporarily false
beliefs because correctness is time bounded, as described in Section A.5.

Viewed in this way, the goal of a cache coherence protocol is to establish correct beliefs.
When a run begins, all beliefs are essentially pessimistic. As the run proceeds, correct beliefs
gradually replace pessimistic beliefs. Given a fixed number of objects, the set of pessimistic
beliefs becomes empty after some bounded period of connectivity. Because of failures, the set
of temporarily false beliefs may be non-empty. However, Section A.5 shows that no belief
remains in that subset for longer than � .

A.7 Extensions

This analysis is oversimplified in two respects. First, its considers only a single f and v,
even though in practice it would take more than one file to make obtaining a volume callback
worthwhile. Given this simplified model, we must exclude the states whereC:D = fvg because
there must be at least one file present to obtain a volume callback. In practice, this value for
C:D is permissible provided there are other files in volume V cached at the client.

Second, although a repository may consist of a group of servers, the analysis ignores some
of the practical aspects of replication. For example, if the client uses a replicated volume, it
must collate responses from multiple servers. One complication is that the client may receive
responses from only a subset of the servers because of failures. A small change to the definition
of a run takes care of this problem. For a replicated service, the run ends when the number of
servers communicating with the client changes. This is natural because if the number shrinks,
there exists the potential for a lost callback from a server that disappeared. If the number grows,
a newly available server may hold updated versions of cached data.

The notion of a run could be extended in other ways. For example, some systems incorporate
expiration times in their cache coherence mechanism [43]. We can address this by extending
the definition of a run such that when a token or lease expires, the run ends.

The update rule is applied only at servers. The rule could be extended to apply to any
principal in systems where clients observe updates through broadcasts. This extension would
allow clients to invalidate their own cache entries.

A pleasant surprise in constructing the proofs for the protocol was that the proof could
be based on the data for which the client received a callback first. That is, the proof rested
on f being valid or v being valid. There is one exception, which does not occur in our

198 APPENDIX A. PROTOCOL ANALYSIS

implementation. If a volume callback is obtained before a file callback, the client could lose
the volume callback and still continue the run. A notion of hierarchy (i.e., x is “contained in”
y) would help to switch the proof from one data type to the other cleanly.

Appendix B

Coda Internals

This chapter provides detail on the Coda client and server implementation and system interfaces
necessary to understand the body of this dissertation. It is intended to be a supplement to the
system overview given in Chapter 2.

B.1 Client Structure

Coda support on a client workstation consists of two components. The first component,
called the MiniCache [123], is a small in-kernel module that implements the Sun Microsystems
Virtual File System (VFS) interface [64], a standard system call intercept mechanism that allows
multiple file systems to co-exist within a single Unix kernel. This interface is summarized in
Table B.1. The second component is a much larger user-level cache manager called Venus.
Although its functionality could be provided within the kernel for better performance, the
user-level implementation is more portable and considerably easier to debug. The structure of
a Coda client is illustrated in Figure 2.9.

An application system call involving a Coda object is directed by the VFS layer to the Coda
VFS. If the information required is contained within the Coda VFS, the call is serviced without
involving Venus and control returns to the application. Otherwise, the kernel contacts Venus
by writing a message to a pseudo-device. Venus reads the request from the pseudo-device, and
if remote access is necessary, contacts the Coda file servers using the RPC2 remote procedure
call package [111]. When Venus completes processing the request, it writes a response on the
pseudo-device, and control returns back through the kernel to the application process.

199

200 APPENDIX B. CODA INTERNALS

Operation Description

vfs mount Mount a VFS.
vfs unmount Unmount a VFS.
vfs root Return the root vnode of a VFS.
vfs statfs Return file system information.
vfs sync Write out all cached information for a VFS.
vfs vget Return the vnode corresponding to a fid in the VFS.

vn open Perform the open protocol on a vnode.
vn close Perform the close protocol on a vnode.
vn rdwr Read or write a vnode.
vn ioctl Perform an ioctl on a vnode.
vn getattr Get attributes for a vnode.
vn setattr Set attributes for a vnode.
vn access Check access permissions for a vnode.
vn lookup Look up a component name in a directory vnode.
vn create Create a new file with the specified name in a directory vnode.
vn remove Remove a file in a directory vnode.
vn link Link a vnode to a target name in a target directory vnode.
vn rename Rename the file corresponding to a vnode.
vn mkdir Create a directory in a directory vnode.
vn rmdir Remove a directory in a directory vnode.
vn readdir Read entries from a directory vnode.
vn symlink Create a symbolic link in a directory vnode.
vn readlink Read a symbolic link vnode.
vn fsync Write out all cached information for a vnode.
vn inactive Indicate that a vnode is inactive and may be deallocated.

Table B.1: VFS and Vnode Interfaces

This table shows the VFS and Vnode interface operations supported by Coda. The operations
correspond to the original interface described by Kleiman [64].

B.1. CLIENT STRUCTURE 201

B.1.1 Coda MiniCache

The VFS interface separates system call execution into file system independent and dependent
layers. It defines sets of operations on file systems through the VFS, and on files through
the virtual inode (vnode). The file system independent layer of the VFS interface redirects
operations to the appropriate file system implementation based on vnode type. The Coda
MiniCache exports the operations in the VFS interface for Coda objects.

As Figure 2.9 shows, the MiniCache interacts with the user-level Venus process to service
operations on Coda objects. The performance cost for this interaction can be high; for example,
pathname translation involves a separate vnode operation for each pathname component. To
reduce the number of kernel-Venus interactions, the MiniCache caches four kinds of information
that allows it to satisfy common file system requests without contacting Venus:

� Pathname translations. The MiniCache retains successful translations of pathname
components. This allows it to satisfy pathname lookup requests, as well as some access
checking.

� Open file handles. When a file is opened, the MiniCache retains a pointer to the vnode
of the local Unix file in Venus’s cache. This allows read and write system calls to be
handled by the local file system. The MiniCache notifies Venus when the file is closed.

� File attributes. The MiniCache caches file attributes to allow it to service the frequently
used stat system call.

� Symbolic links. The MiniCache caches symbolic link contents to improve pathname
translation performance.

The MiniCache has yielded performance results comparable to AFS-3, which has an in-
kernel cache manager.

Because the MiniCache shares file system state with Venus, the state must be coherent. The
MiniCache is updated after all calls forwarded to Venus. In addition, it provides an interface
through which Venus may invalidate or replace MiniCache state, such as when a server breaks
a callback. This interface is shown in Table B.2.

B.1.2 Venus

The primary responsibilities of Venus are to service user file system requests, maintain cache
coherence while connected, and manage the cache within predefined resource limits. In
addition, it must hoard data in anticipation of disconnection, log and reintegrate disconnected
updates, detect diverging replicas and trigger their resolution or quarantine them for repair.

Venus is implemented as a multi-threaded process using a lightweight co-routine thread
package called LWP [111]. Venus threads types are summarized in Table B.3. A main thread

202 APPENDIX B. CODA INTERNALS

Operation Description Usage

CFS FLUSH flush all cache entries Venus startup, repair

CFS PURGEUSER flush all cache entries pertaining to a spe-
cific user

token expiration

CFS ZAPFILE invalidate attributes for the specified file file callback

CFS ZAPDIR invalidate attributes for the specified direc-
tory, and flush cache entries for its children

directory callback

CFS PURGEFID flush cache entry for the specified fid. If
it is a directory, flush cache entries for its
children

inconsistent object

CFS REPLACE replace one fid in all cache entries with
another

reintegration

Table B.2: MiniCache Interface

starts the program and acts as a dispatcher of requests from the kernel. A set of worker
threads services these requests. Venus exports the callback interface, shown in Table B.4, to
servers. The callback interface is used not only for callbacks, but for other server-to-client
operations as well, such as backfetching during reintegration. A variable number of callback
server threads handle requests on this interface. When Venus detects that replicas of an object
are diverging, it creates a resolver thread to invoke resolution on the object. The reintegrator
thread merges disconnected and weakly connected updates with servers. A slew of daemon
threads perform various periodic housekeeping tasks, such as hoard walks, detection of server
and communication failures, and data collection. The mariner thread implements a dynamic
debugging facility. The fcon workers service requests on an interface that provides failure
injection and slow network emulation. A separate simulator mode is provided for trace-driven
simulation. The socket listener and SFTP listener respond to packets sent by the RPC and
bulk transfer protocols, respectively. Finally, The I/O manager provides a mechanism through
which LWPs can wait for requests using a thread-specific version of the select system call.

B.1.2.1 Cache Structure

The file cache is logically divided into a status cache and a data cache. Two different non-
volatile storage types are used to store cached structures. The status cache contains file system
meta-data, such as status information on objects, and symbolic links. Meta-data is kept in
RVM. The data cache is kept on the client’s local disk, in local UNIX files called container

B.1. CLIENT STRUCTURE 203

Thread Name Number Description

Main 1 initialize Venus, dispatch messages

Worker variable service requests from kernel

Callback server variable process callback messages

Reintegrator variable reintegrate disconnected, weakly-connected updates

Resolver variable invoke resolution on diverging replicas

Cache daemon 1 garbage collect cache entries, recompute object pri-
orities, enforce usage limits

HDB daemon 1 maintain hoard database, perform hoard walks

Probe daemon 1 determine if a server is reachable, topology
management

VSG daemon 1 garbage collect VSG database

Volume daemon 1 garbage collect volume database, perform volume
state transitions, trickle reintegration, update proto-
col, CML checkpoints, periodic messages

User daemon 1 check for token expiry

Recovery daemon 1 truncate, flush RVM log

Advice daemon 1 service advice monitor requests

Local repair daemon 1 notify user of pending local repairs

Vmon daemon 1 send data to Mond data collection facility

Mariner 1 debugging facility

Simulator 1 main thread in simulator mode

Fcon worker 2 service requests for network emulation package

Socket listener 1 process, dispatch incoming RPC packets

SFTP listener 1 process, dispatch incoming bulk transfer packets

I/O manager 1 manage I/O for LWPs

Table B.3: Venus Thread Types

This table describes the function of Venus LWPs. All threads except the last three are created
by Venus; the remainder are created by the RPC2 run-time library.

204 APPENDIX B. CODA INTERNALS

Operation Description

CallBackConnect Called the first time a server contacts a client

CallBack Break the callback promise for an object, also used to
determine if a client is reachable

CallBackFetch Fetch file data from Venus during reintegration

CallBackReceivedStore Early return from a ViceStore call

Table B.4: Callback Interface

This table shows the Coda server-to-client RPC interface. In the descriptions above, “object”
refers to a file, directory, or symbolic link.

files. The number of slots in the cache is fixed at Venus initialization, as is the maximum cache
size. The cache daemon ensures that the cache stays within its specified size.

Cache entries are represented by a data structure called the fsobj. An fsobj is a
recoverable structure containing the object’s identification and status block. It includes a
descriptor for the object’s data, if it is cached; information on cache priority; mount state,
if appropriate; links to CML records and other state, if the object has been modified while
disconnected; and synchronization variables. The file cache as a whole is called the file system
database (FSDB).

Venus also maintains a number of other kinds of persistent data. The volume database
(VDB) contains volume entries, which in turn contain information on preallocated fids and
client modify logs. Most persistent structures contain non-persistent fields. For example,
volume entries contain the volume states illustrated in Figure 2.1. In addition, threads perform
synchronization at the volume level; in particular, reintegration and resolution are volume-level
operations. Other persistent structures include VLDB mappings and the HDB.

B.1.2.2 Management of Persistent Data

Venus requires persistence for cached data, because the client must be able to survive reboots,
and a server may not always be available to help it reload cached state.1 A cached object
has multiple persistent structures associated with it. For example, a cached file consists of its
fsobj and container file. Because of this structure, Venus requires atomicity of updates. For
example, appending data to a file changes the container file, the fsobj (length of the file), and

1The implementation assumes no media failures. To address media failures, the client could use disk mirroring
or some other local fault tolerance mechanism.

B.1. CLIENT STRUCTURE 205

the FSDB (cache space usage). Either all or none of these structures must be updated for the
data to remain mutually consistent.

While it is possible to use local files for all persistent data, such an implementation is
awkward for a number of reasons. First, the UNIX buffer cache performs writes asynchronously
to hide disk latency from applications [70]. Writes may be delayed to amortize the cost of a
disk write and take advantage of cancelling or overwrite behavior, and they may be reordered
for more efficient writing to disk. Data is vulnerable until it is written to disk; if a crash occurs
some writes (not necessarily the latest ones) may be lost. To store persistent data entirely in
local files, Venus would have to employ some combination of the following techniques:

� make extensive use of the fsync system call, which forces buffered writes to disk,
� modify the kernel to recognize data dependencies and ensure that data is written out in

the correct order,
� organize the disk layout of persistent data to avoid inconsistencies after crashes,
� implement recovery code that can detect and recover from inconsistencies in persistent

data.

All of these techniques have either high performance cost, are complex to implement and
difficult to verify, or lack generality. Instead, Venus uses a local transaction facility called
RVM [116, 75] that provides failure atomicity and permanence of updates. RVM exports the
abstraction of recoverable virtual memory, which allows an application to read and update
recoverable storage much as it would other in-memory structures. Atomicity of updates is
guaranteed as long as they occur within transactions. Crash recovery is handled entirely by
RVM.

RVM is implemented as a library which is linked into applications; its interface is shown
in Table B.5. Recoverable data is stored as recoverable segments on disk. An application
maps regions of these segments into its virtual address using the rvm map routine. The
application may perform transactions on recoverable data by bracketing updates between
rvm begin transaction and rvm end transaction, and indicating the addresses
of data updated with rvm set range. RVM tracks the old and new values of updated data
in change records. RVM flushes updates to disk by appending the change records to a disk
log. If the transaction commits, RVM writes a commit record for the transaction. By default,
RVM flushes a transaction to the log at commit time. However, there is a no-flush option that
allows an application to batch flushing of changes to disk. No-flush transactions are buffered
in memory until the next flush occurs. When the RVM log exceeds a threshold, RVM truncates
it by applying the change records for committed transactions in the log to the recoverable
segments. Because flushes and truncates may interfere with request processing, RVM exports
rvm flush and rvm truncate calls to allow applications to manage their own disk writes.

206 APPENDIX B. CODA INTERNALS

Operation Description

rvm initialize initialize library state
rvm terminate finalize library state and terminate interaction
rvm map map a region of a recoverable segment into the appli-

cation’s address space
rvm unmap unmap a previously mapped region

rvm begin transaction begin a transaction
rvm set range indicate addresses of data modified by a transaction
rvm end transaction commit a transaction
rvm abort transaction abort a transaction

rvm flush force log records for committed transactions to the
RVM disk log

rvm truncate apply change records in the RVM log to recoverable
segments and discard the records

Table B.5: RVM Library Interface

This table shows the main RVM library routines used by Coda. The top four routines are
initialization and mapping operations, the middle four are transactional operations, and the
last two are log operations. There are a few additional routines for setting options, collecting
statistics, and so on. Details appear in the RVM manual [75].

B.1. CLIENT STRUCTURE 207

Venus uses no-flush transactions to avoid the overhead of disk writes on every transaction,
and schedules both RVM flushes and truncates to avoid delays during a user request. Flushes and
truncates can impede other client activity because Venus threads are blocked in the meantime,
and other client processes encounter contention for the disk. The use of no-flush transactions
means that Venus offers bounded persistence, that is, updates are locally persistent only after
some time period has passed. While connected, the bound is 600 seconds; there is no need for
a tighter bound because updates are globally persistent once executed at the servers. While
disconnected, the bound is 30 seconds, consistent with the bound offered by UNIX on container
files. The recovery daemon performs RVM flushes when:

� the persistence time bound has passed since the last flush,
� the buffer space used by the no-flush transactions exceeds a threshold (64 KB by default),
� Venus has been idle with respect to user requests for some period of time (60 seconds by

default),
� Venus receives a signal to shut down.

Log truncation typically takes an order of magnitude longer than a log flush. To avoid the
automatic truncations performed by the RVM library during transaction commit and log flush,
the recovery daemon triggers log truncation when:

� the log size exceeds a threshold (256 KB by default),
� Venus has been idle with respect to user requests for some period of time (60 seconds by

default).

B.1.2.3 Request Processing

The following list outlines Venus request processing of common UNIX file system calls. Venus
begins servicing a request when the kernel writes a message to the Coda pseudo-device.

1. Read request message and dispatch worker. The main thread awakens from the
equivalent of a select system call on the pseudo-device and reads the message. If
there are any worker threads available, the main thread dispatches a worker to process
the request. Otherwise, it queues the message for the next available worker.

2. Decode request message. The worker thread decodes the message to determine the re-
quest type and input parameters. It then invokes a routine that implements the appropriate
VFS operation.

3. Validate arguments. The worker thread validates the input parameters for the request.
For example, a creat system call cannot create an object with a pathname of “/”.

208 APPENDIX B. CODA INTERNALS

4. Enter the volume. Certain operations require access guarantees at the volume level.
For example, resolution requires exclusive access to the volume. In this step, the worker
thread performs synchronization on the volume.

5. Get objects. Objects involved in the request must be cached and valid. The worker
thread looks up the objects based on the fids in the request message, contacts the servers to
fetch or validate them if necessary, and acquires locks. If the worker contacts the servers,
it checks the status of the replicas and and invokes resolution if it detects divergence.

6. Perform semantic, protection checks. The worker thread verifies the soundness of
the operation, and checks that the user making the request has permission to do so. For
example, the object of an unlink request must not be a directory, and the user must
have delete permission for the parent directory. Venus performs protection checks, even
though the server does also, for two reasons. First, while connected, Venus can filter
out illegal requests without contacting the server. Second, while disconnected, Venus
emulates the server by performing local protection checks.

7. Invoke operation. In this step the worker thread actually performs the operation. In the
case of a connected update, the worker issues a Vice RPC to the AVSG and processes the
responses.

8. Put objects. The worker thread releases locks on objects.

9. Exit the volume. Volume state transitions occur after all threads have exited the volume.

10. Return to kernel. The worker thread returns the result of the request and output
parameters, if any, to the kernel by writing them in a message on the Coda pseudo-
device. The worker then makes itself available other requests.

B.2 Server Structure

Server support for Coda consists of a set of user-level processes, the Vice file server, and
authentication server, and either an update server or an update client. One server is designated
the System Control Machine (SCM), and runs an update server; all other servers run an update
client. Most servers run all three components, but this configuration is not necessary. Figure
2.10 shows an example server configuration.

B.2.1 Vice File Server

The primary responsibilities of a Vice file server are to handle file system requests from Venus,
break callbacks to Venus when objects are updated, and participate in the resolution protocol.

B.2. SERVER STRUCTURE 209

Operation Description

ViceConnectFS Begin dialogue with file server
ViceDisconnectFS Terminate dialogue with file server
ViceFetch Fetch status (and possibly data) for an object, establish a callback

for it
ViceStore Store status (and possibly data) for a file
ViceRemove Remove a file or symbolic link
ViceCreate Create a file
ViceRename Rename an object
ViceSymLink Create a symbolic link
ViceLink Create a name for a pre-existing object
ViceMakeDir Create a directory
ViceRemoveDir Remove a directory
ViceGetRootVolume Return the name of the root volume
ViceSetRootVolume Set the name of the root volume
ViceNewConnection Called the first time a client contacts a server
ViceGetVolumeStatus Get volume status information
ViceSetVolumeStatus Set volume status (e.g., quotas)
ViceGetTime Get time of day at server, used to determine if a server is

reachable
ViceGetStatistics Get file server statistics (e.g., CPU utilization)
ViceGetVolumeInfo Get volume location information
ViceEnableGroup Enable an authentication group
ViceDisableGroup Disable an authentication group
ViceCOP2 Update version vectors modified during update protocol
ViceResolve Resolve diverging replicas of an object
ViceRepair Manually resolve an object
ViceSetVV Set the version vector of an object
ViceAllocFids Allocate a range of fids
ViceValidateAttrs Fetch attributes for an object, batch validate objects, establish

callbacks for all valid objects
ViceGetVolVS Return the version stamp of a volume, establish a callback for it
ViceValidateVols Validate the version stamp of a volume
ViceReintegrate Merge disconnected updates
ViceOpenReintHandle Return a handle for a pre-reintegration file transfer
ViceQueryReintHandle Get the status of a pre-reintegration file transfer
ViceSendReintFragment Transfer part of a file for an upcoming reintegration
ViceCloseReintHandle Reintegrate already-transferred file data

Table B.6: Vice Interface

This table shows the Coda client-to-server RPC interface currently used by Venus. In
the descriptions above, “object” refers to a file, directory, or symbolic link. Calls from
ViceValidateAttrs onwards were added since the original implementation. In addition,
many original calls, in particular updates, have changed since then.

210 APPENDIX B. CODA INTERNALS

Thread Name Number Description

Vice worker variable process Vice file server requests

Resolution worker 2 process resolution requests from other servers

Volutil worker 2 process volume utility requests

Probe daemon 1 determine if a client is reachable, topology
management

Resolution probe daemon 1 determine if a server is reachable, topology
management

Smon daemon 1 send data to Mond data collection facility

Check daemon 1 check for shutdown and salvage requests

COP pending manager 1 maintain list of updates pending COP2
messages

Lock queue manager 1 detect deadlock on volume locks

Fcon worker 2 service requests for failure emulation package

Socket listener 1 process, dispatch incoming RPC2 packets

SFTP listener 1 process, dispatch incoming SFTP packets

I/O Manager 1 manage I/O for LWPs

Table B.7: File Server Thread Types

This table describes the function of file server LWPs. All threads except the last three are created
by the server; the remainder are created by the RPC2 run-time library.

The Vice file server exports the Vice interface, shown in Table B.6. Like Venus, the file server
is a multi-threaded user-level process. File server threads are summarized in Table B.7. The
Vice worker threads service file system requests from Venii. The resolution workers service
requests from other servers on the resolution subsystem. The volutil workers service volume
administration requests, such as backup, and also provide some debugging support. A set of
daemons performs periodic housekeeping tasks, such as failure detection for clients (Vice) and
servers (resolution), deadlock detection, and data collection. The Fcon and RPC threads are as
in Venus.

B.2. SERVER STRUCTURE 211

icreate(device, near inode, volume, vnode, unique, dataversion)

iopen(device, inode, flags)

iread(device, inode, parentvol, offset, buffer, size)
iwrite(device, inode, parentvol, offset, buffer, size)

iinc(device, inode, parentvol)
idec(device, inode, parentvol)

Table B.8: Server Inode Interface

This table shows the interface used by the Vice file server to store and manage file data. These
calls are extensions to the UNIX API that export kernel inode management routines.

The icreate call creates a file on device device and returns its inode number. The near inode
field is a placement argument that is not used. The remaining arguments are written to spare
fields in the inode.

The iopen call opens the file at device, inode for reading and/or writing, as specified by flags,
and returns a file descriptor for it. Once the file descriptor is returned, the file may be closed as
usual with the close system call.

The iread and iwrite calls attempt to read or write size bytes from the file at device, inode,
starting at offset offset, and placing the data in buffer. The parentvol argument is used as a sanity
check for the inode. The return value is the number of bytes read or written.

The iinc and idec calls increment or decrement the link count on the file at device, inode.
The parentvol argument is used as a sanity check for the inode. The return value is an error
code.

212 APPENDIX B. CODA INTERNALS

B.2.1.1 Object Representation

Like Venus, the server stores persistent data using a combination of RVM and local UNIX files.
File and volume meta-data, contents of directories and symbolic links, and resolution logs are
stored in RVM. File contents are stored in local UNIX container files. To avoid overhead
from pathname translation, container files are not named in any directory. The server accesses
container files directly by inode through a set of system call extensions, shown in Table B.8.2

The inode number is stored in the server’s status descriptor for the file, much like the container
file mechanism in Venus.

The server must guarantee permanence of updates when a transaction commits.3 Since
container files are stored in the UNIX file system, the server has additional recovery mechanisms
to augment those provided by RVM. If an update changes file data, the new data is stored in
another container file or shadow inode. If the transaction aborts, the server removes the shadow;
otherwise, the server installs the shadow as the new file and removes the old container file. If
the server crashes, updates to container files may not have been written to disk. The server
recovers by salvaging the container files at startup.4 If a container file does not exist, the server
creates one and marks the object in conflict, and if a container file is not referenced by any
object the server garbage collects it. In this way the server ensures that the container files and
RVM state are mutually consistent.

B.2.1.2 Request Processing

Server processing of Vice RPCs for most operations is as follows. Processing begins when a
Vice worker thread receives a request from a client.

1. Validate parameters. The worker thread performs sanity checks on the request. It
begins by verifying that the request came from a known client. In the case of a replicated
operation, it verifies that the VSG number corresponds to a volume it stores. It then
performs request-specific checks.

2. Get objects. In this step, the worker thread looks up or creates objects necessary for the
request, and performs volume and object locking as appropriate.

3. Check semantics. Semantic checks fall into three categories: concurrency control,
integrity checks, and protection checks. For concurrency control, the server verifies that

2The inode system call extensions are not necessary for functionality, only for performance. The objects could
be stored in a UNIX directory just like Venus container files.

3Unlike Venus, the server does not use no-flush transactions.
4Since container files are not named in any directory, servers run a special version of the fsck utility that does

not garbage collect them.

B.2. SERVER STRUCTURE 213

the object version information sent by the client matches its current state. The integrity
check ensures that the operation is sound, for example, for an unlink request the target
object must not be a directory. The protection check verifies that the user responsible for
the request has the rights to perform it. The integrity and protection checks are essentially
those performed by Venus, but because clients may be subverted the server must also
perform them.

4. Perform operation. In this step, the worker thread breaks callbacks, performs bulk
transfer of data, and sets output parameters for the RPC as appropriate.

5. Put objects. The worker thread updates relevant objects transactionally, and releases
object and volume locks. In case of an error, it discards any changes made during the
course of the request.

B.2.2 Authentication Server

The authentication server provides the means for establishing secure RPC connections between
clients and servers. A user authenticates to Coda by running the clog program and typing in a
password. The login programestablishes a secure connection to the authentication server, which
maintains a database of user and password information. If the user authenticates successfully,
the authentication server returns a pair of tokens valid for 25 hours. Then clog passes them to
Venus. Venus uses these tokens to create secure connections to servers on behalf of that user.
An unauthenticated user may access Coda objects; in that case the connections between Venus
and the servers are unauthenticated, and the user has access rights of the “anonymous system
user”.

B.2.3 Update System

Certain system databases, such as the password database and the volume location database,
are replicated on many servers and change relatively slowly. The update system keeps these
databases consistent between servers. The SCM runs an update server; all other servers run
update clients. Modifications to the database are permitted only at the SCM. Update clients
poll the SCM to detect and install new versions of system databases.

214 APPENDIX B. CODA INTERNALS

Bibliography

[1] ACCETTA, M., BARON, R. V., BOLOSKY, W., GOLUB, D. B., RASHID, R. F., TEVANIAN,
JR., A., AND YOUNG, M. W. Mach: A New Kernel Foundation for UNIX Development.
In Proceedings of the Summer 1986 USENIX Conference (Atlanta, GA, July 1986),
pp. 93–113.

[2] AIRSOFT, INC., CUPERTINO, CA. AirSoft AirAccess 2.0: Mobile Networking Software,
June 1994.

[3] APM LIMITED, UK. The ANSA Reference Manual Release 01.00, March 1989.

[4] AUSTEIN, R. Synchronization Operations for Disconnected IMAP4 Clients. Work in
Progress.

[5] BACHMANN, D., HONEYMAN, P., AND HUSTON, L. The Rx Hex. In Proceedings of the
First IEEE Workshop on Services in Distributed and Networked Environments (Prague,
Czech Republic, June 1994), pp. 66–74. Also available as technical report 93-8, Center
for InformationTechnology Integration (CITI), University of Michigan, November 1993.

[6] BAKER, M. G., HARTMANN, J. H., KUPFER, M. D., SHIRRIFF, K. W., AND OUSTERHOUT,
J. K. Measurement of a Distributed File System. In Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles (October 1991), pp. 198–212.

[7] BAKER, M. G., ZHAO, X., CHESHIRE, S., AND STONE, J. Supporting Mobility in
MosquitoNet. In Proceedings of the 1996 USENIX Technical Conference (San Diego,
CA, January 1996), USENIX Association, pp. 127 – 139.

[8] BECK, M., BÖHME, H., DZIADZKA, M., KUNITZ, U., MAGNUS, R., AND VERWORNER, D.
LINUX Kernel Internals. Addison Wesley Longman Limited, Harlow, England, 1996.

[9] BERNERS-LEE, T., CAILLIAU, R., LUOTONEN, A., NIELSEN, H. F., AND SECRET, A. The
World-Wide Web. Communications of the ACM 37, 8 (August 1994), 76–82.

215

216 BIBLIOGRAPHY

[10] BIRRELL, A., AND NELSON, B. Implementing Remote Procedure Calls. ACM Transac-
tions on Computer Systems 2, 1 (February 1984), 39–59.

[11] BIRRELL, A. D., AND NELSON, B. J. Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems 2, 1 (February 1984), 39–59.

[12] BOLOT, J.-C. End-to-End Packet Delay and Loss Behavior in the Internet. In Proceedings
of the SIGCOMM ’93 Conference on Communications Architectures, Protocols, and
Applications (San Francisco, CA, September 1993), pp. 289–298.

[13] BOZMAN, G., GHANNAD, H., AND WEINBERGER, E. A Trace-Driven Study of CMS File
References. IBM Journal of Research and Development 35, 5–6 (September–November
1991), 815–28.

[14] BRADEN, R. Requirements for Internet Hosts – Communication Layers. In Internet
Requests for Comments, R. Braden, Ed., RFC 1122. SRI International, Menlo Park, CA,
October 1989.

[15] BRADEN, R., CLARK, D., AND SHENKER, S. Integrated Services in the Internet Architec-
ture: an Overview. In Internet Requests for Comments, RFC 1633. Network Working
Group, July 1994.

[16] BURROWS, M. Efficient Data Sharing. PhD thesis, University of Cambridge, December
1988.

[17] BURROWS, M., ABADI, M., AND NEEDHAM, R. A Logic of Authentication. Tech. Rep. 39,
DEC Systems Research Center, February 1989.

[18] BURROWS, M., ABADI, M., AND NEEDHAM, R. A Logic of Authentication. ACM
Transactions on Computer Systems 8, 1 (February 1990), 18–36.

[19] CLARK, D. D., SHENKER, S., AND ZHANG, L. Supporting Real-Time Applications in an
Integrated Services Packet Network: Architecture and Mechanism. In Proceedings of the
SIGCOMM ’92 Conference on Communications Architectures and Protocols (Baltimore,
MD, August 1992).

[20] CLARK, D. D., AND TENNENHOUSE, D. L. Architectural Considerations for a New Gener-
ation of Protocols. In Proceedings of the SIGCOMM ’90 Conference on Communications
Architectures and Protocols (Philadelphia, PA, September 1990).

[21] CLARKE, E., GRUMBERG, O., HIRAISHI, H., JHA, S., LONG, D., MCMILLAN, K., AND

NESS, L. Verification of the Futurebus+ Cache Coherence Protocol. Tech. Rep. CMU-
CS-92-206, Carnegie Mellon University School of Computer Science, October 1992.

BIBLIOGRAPHY 217

[22] CORNSWEET, T. N. Visual Perception. Academic Press, 1971.

[23] COULSON, G., BLAIR, G. S., AND ROBIN, P. Micro-kernel support for continuous media
in distributed systems. Computer Networks and ISDN Systems 26, 10 (July 1994),
1323–1341.

[24] COWAN, C., CEN, S., WALPOLE, J., AND PU, C. Adaptive Methods for Distributed Video
Presentation. ACM Computing Surveys 27, 4 (December 1995), 580–583.

[25] CRISPIN, M. R. Internet Message Access Protocol - Version 4 Rev. 1. Work in Progress.

[26] CRISPIN, M. R. Distributed Electronic Mail Models in IMAP4. In Internet Requests for
Comments, RFC 1733. Network Working Group, December 1994.

[27] CROWCROFT, J., WANG, Z., SMITH, A., AND ADAMS, J. A Rough Comparison of the IETF
and ATM Service Models. IEEE Network 9, 6 (November/December 1995), 12–16.

[28] DATE, C. J. An Introduction to Database Systems, vol. II. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1983.

[29] DAVIDSON, S. B. Optimism and Concurrency in Partitioned Distributed Database Sys-
tems. ACM Transactions on Database Systems 9, 3 (September 1984), 456–481.

[30] DAVIES, N., BLAIR, G. S., CHEVERST, K., AND FRIDAY, A. A Network Emulator to Support
the Development of Adaptive Applications. In Proceedings of the Second USENIX
Symposium on Mobile & Location-Independent Computing (Ann Arbor, Michigan, April
1995), USENIX Association, pp. 47–55.

[31] DEERING, S. Host Extensions for IP Multicasting. In Internet Requests for Comments,
RFC 1112. Network Working Group, Stanford, CA, August 1989.

[32] DOMINACH, R. F. Design reviews at a distance. IEEE Spectrum 31, 6 (June 1994),
39–40.

[33] DOWNING, A. R., GREENBERG, I. B., AND PEHA, J. M. OSCAR: A System for Weak-
Consistency Replication. In Proceedings of the Workshop on Management of Replicated
Data (Houston, Texas, November 1990), IEEE Computer Society Technical Committee
on Operating Systems and Application Environments (TCOS), pp. 26–30.

[34] DRUSCHEL, P., AND PETERSON, L. L. Fbufs: A High-Bandwidth Cross-Domain Transfer
Facility. In Proceedings of the Fourteenth ACM Symposium on Operating Systems
Principles (Asheville, NC, December 1993), pp. 189–202.

218 BIBLIOGRAPHY

[35] EBLING, M. Evaluating and Improving the Effectiveness of Caching for Availability.
PhD thesis, Department of Computer Science, Carnegie Mellon University, 1997 (in
preparation).

[36] EBLING, M. R. Evaluating and Improving the Effectiveness of Hoarding. Thesis proposal,
Carnegie Mellon University, April 1993.

[37] ECKHARDT, D., AND STEENKISTE, P. Measurement and Analysis of the Error Character-
istics of an In-Building Wireless Network. In Proceedings of the ACM SIGCOMM ’96
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (Stanford University, CA, August 1996), pp. 243–254.

[38] FERRARI, D., BANERJEA, A., AND ZHANG, H. Network support for multimedia: A
discussion of the Tenet Approach. Computer Networks and ISDN Systems 26, 10 (July
1994), 1267–1280.

[39] FLOYD, R. Short-Term File Reference Patterns in a UNIX Environment. Tech. Rep. TR
177, Department of Computer Science, University of Rochester, March 1986.

[40] FORMAN, G. H., AND ZAHORJAN, J. The Challenges of Mobile Computing. IEEE
Computer 27, 4 (April 1994).

[41] FULTON, J., AND KANTARJIEV, C. K. An Update on Low Bandwidth X (LBX). Tech.
Rep. CSL-93-2, Xerox Palo Alto Research Center, February 1993.

[42] GOLUB, D., DEAN, R., FORIN, A., AND RASHID, R. UNIX as an Application Program.
In USENIX Summer Conference Proceedings (Anaheim, CA, June 1990), USENIX
Association.

[43] GRAY, C. G., AND CHERITON, D. R. Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency. In The Twelfth ACM Symposium on Operating
Systems Principles (Dec. 1989), ACM, pp. 202–210.

[44] GRAY, T. Message Access Protocols and Paradigms. Networks and Distributed Comput-
ing, University of Washington, http://www.imap.org/imap.vs.pop.html,
September 1995.

[45] GUY, R. G., HEIDEMANN, J. S., MAK, W., PAGE, T. W., POPEK, G. J., AND ROTHMEIER,
D. Implementation of the Ficus Replicated File System. In USENIX Summer Conference
Proceedings (Anaheim, CA, June 1990), USENIX Association, pp. 63–71.

[46] HEIDEMANN, J. S., PAGE, T. W., GUY, R. S., AND POPEK, G. J. Primarily Discon-
nected Operation: Experiences with Ficus. In Second Workshop on the Management of

BIBLIOGRAPHY 219

Replicated Data (Monterey, CA, November 1992), IEEE Computer Society Technical
Committee on Operating Systems, pp. 2–5.

[47] HISGEN, A., BIRRELL, A., MANN, T., SCHROEDER, M., AND SWART, G. Availability
and Consistency Tradeoffs in the Echo Distributed File System. In Proceedings of the
Second Workshop on Workstation Operating Systems (September 1989), pp. 49 – 53.

[48] HONEYMAN, P., AND HUSTON, L. Communications and Consistency in Mobile File
Systems. IEEE Personal Communications 2, 6 (December 1995), 44–48.

[49] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A., SATYANARAYANAN,
M., SIDEBOTHAM, R. N., AND WEST, M. J. Scale and Performance in a Distributed File
System. ACM Transactions on Computer Systems 6, 1 (February 1988), 51–81.

[50] HUSTON, L. B., AND HONEYMAN, P. Disconnected Operation for AFS. In Proceedings
of the USENIX Symposium on Mobile & Location-Independent Computing (Cambridge,
Massachusetts, August 1993), USENIX Association, pp. 1–10.

[51] HUSTON, L. B., AND HONEYMAN, P. Partially Connected Operation. In Proceedings of
the Second USENIX Symposium on Mobile & Location-Independent Computing (Ann
Arbor, Michigan, April 1995), USENIX Association, pp. 91–97.

[52] JACOBSON, V. Congestion Avoidance and Control. In Proceedings of the SIGCOMM
’88 Symposium on Communications Architectures and Protocols (Stanford, CA, August
1988), pp. 314–329.

[53] JACOBSON, V. Compressing TCP/IP Headers for Low-Speed Serial Links. In Internet
Requests for Comments, RFC 1144. SRI International, Menlo Park, CA, February 1990.

[54] JACOBSON, V., BRADEN, R., AND BORMAN, D. TCP Extensions for High Performance.
In Internet Requests for Comments, RFC 1323. SRI International, Menlo Park, CA, May
1992.

[55] JAIN, R. The Art of Computer Systems Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation, and Modeling. John Wiley & Sons, Inc., New
York, NY, 1991.

[56] JOHNSON, D. B., AND MALTZ, D. A. Protocols for Adaptive Wireless and Mobile
Networking. IEEE Personal Communications 3, 1 (February 1996), 34 – 42.

[57] KARN, P., AND PARTRIDGE, C. Improving Round-Trip Time Estimates In Reliable
Transport Protocols. ACM Transactions on Computer Systems 9, 4 (November 1991),
364–373.

220 BIBLIOGRAPHY

[58] KATZ, R. H. Adaptation and Mobility in Wireless Information Systems. IEEE Personal
Communications 1, 1 (1994).

[59] KAWELL JR., L., BECKHARDT, S., HALVORSEN, T., OZZIE, R., AND GREIF, I. Replicated
Document Management in a Group Communication System. In Groupware: Software for
Computer-Supported Cooperative Work. IEEE Computer Society Press, Los Alamitos,
CA, 1992, pp. 226–235.

[60] KAY, J., AND PASQUALE, J. The Importance of Non-Data Touching Processing Over-
heads in TCP/IP. In Proceedings of the SIGCOMM ’93 Conference on Communica-
tions Architectures, Protocols, and Applications (San Francisco, CA, September 1993),
pp. 259–268.

[61] KING, A. Inside Windows 95. Microsoft Press, Redmond, Washington, 1994.

[62] KISTLER, J. J. Disconnected Operation in a Distributed File System. PhD thesis, School
of Computer Science, Carnegie Mellon University, April 1993.

[63] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected Operation in the Coda File
System. ACM Transactions on Computer Systems 10, 1 (February 1992), 3 – 25.

[64] KLEIMAN, S. R. Vnodes: An Architecture for Multiple File System Types in Sun
UNIX. In USENIX Summer Conference Proceedings (Atlanta, GA, June 1986), USENIX
Association, pp. 238 – 247.

[65] KLEINPASTE, K., STEENKISTE, P., AND ZILL, B. Software Support for Outboard Buffering
and Checksumming. In Proceedings of the SIGCOMM ’95 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (Cambridge,
MA, August 1995), pp. 87–98.

[66] KUMAR, P. Mitigating the Effects of Optimistic Replication in a Distributed File System.
PhD thesis, School of Computer Science, Carnegie Mellon University, December 1994.

[67] KUMAR, P., AND SATYANARAYANAN, M. Log-Based Directory Resolution in the Coda
File System. In Proceedings of the Second International Conference on Parallel and Dis-
tributed Information Systems (January 1993), pp. 202 – 213. Also available as technical
report CMU-CS-91-164, School of Computer Science, Carnegie Mellon University.

[68] KUMAR, P., AND SATYANARAYANAN, M. Flexible and Safe Resolution of File Conflicts.
In Proceedings of 1995 USENIX Conference (New Orleans, LA, January 1995), USENIX
Association.

[69] LAMPSON, B. W. Hints for Computer System Design. In Proceedings of the Ninth ACM
Symposium on Operating Systems Principles (Bretton Woods, NH, October 1983).

BIBLIOGRAPHY 221

[70] LEFFLER, S. J., MCKUSICK, M. K., KARELS, M. J., AND QUARTERMAN, J. S. The Design
and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley Publishing
Company, Reading, Massachusetts, 1989.

[71] LILIEN, L. Quasi-Partitioning: A New Paradigm for Transaction Execution in Partitioned
Distributed Database Systems. In Proceedings of the Fifth International Conference on
Data Engineering (Los Angeles, CA, February 6-10 1989), pp. 546–553.

[72] LU, Q. Improving Data Consistency for Mobile File Access Using Isolation-Only Trans-
actions. PhD thesis, School of Computer Science, Carnegie Mellon University, May
1996.

[73] LU, Q., AND SATYANARAYANAN, M. Improving Data Consistency in Mobile Computing
Using Isolation-Only Transactions. In Proceedings of the Fifth Workshop on Hot Topics
in Operating Systems (Orcas Island, WA, May 1995).

[74] MANN, T., BIRRELL, A., HISGEN, A., JERIAN, C., AND SWART, G. A Coherent Distributed
File Cache with Directory Write-Behind. ACM Transactions on Computer Systems 12,
2 (May 1994).

[75] MASHBURN, H. M., AND SATYANARAYANAN, M. RVM – Recoverable Virtual Memory.
School of Computer Science, Carnegie Mellon University, June 1994.

[76] MCMILLAN, K., AND SCHWALBE, J. Formal Verification of the Encore Gigamax Cache
Consistency Protocol. In Proceedings of the 1991 International Symposium on Shared
Memory Multiprocessors (April 1991).

[77] MERCER, C. W., ZELENKA, J., AND RAJKUMAR, R. On Predictable Operating System Pro-
tocol Processing. Tech. Rep. CMU-CS-94-165, School of Computer Science, Carnegie
Mellon University, May 1994.

[78] MEYERS, J. G., AND ROSE, M. T. Post Office Protocol - Version 3. In Internet Requests
for Comments, RFC 1939. Network Working Group, May 1996.

[79] MILLS, D. L. Internet Delay Experiments. In Internet Requests for Comments, RFC 889.
SRI International, Menlo Park, CA, December 1983.

[80] MOELLER, M. Lotus Opens cc:Mail to Pagers. PC Week 11, 35 (September 1994), 39.

[81] MOGUL, J. C. Efficient Use of Workstations for Passive Monitoring of Local Area
Networks. In Proceedings of the SIGCOMM ’90 Symposium on Communications Archi-
tectures and Protocols (Philadelphia, PA, September 1990), pp. 253–263.

222 BIBLIOGRAPHY

[82] MORRIS, J. H., SATYANARAYANAN, M., CONNER, M. H., HOWARD, J. H., ROSENTHAL,
D. S., AND SMITH, F. D. Andrew: A Distributed Personal Computing Environment.
Communications of the ACM 29, 3 (March 1986).

[83] MULLENDER, S. Interprocess Communication. In Distributed Systems, S. Mullender, Ed.,
second ed. Addison-Wesley Publishing Company, Reading, MA, 1993, ch. 9, pp. 217–
250.

[84] MUMMERT, L., AND SATYANARAYANAN, M. Large Granularity Cache Coherence for
Intermittent Connectivity. In USENIX Summer Conference Proceedings (Boston, MA,
June 1994), USENIX Association, pp. 279 – 289.

[85] MUMMERT, L., AND SATYANARAYANAN, M. Variable Granularity Cache Coherence.
Operating Systems Review 28, 1 (January 1994).

[86] MUMMERT, L., AND SATYANARAYANAN, M. Long Term Distributed File Reference
Tracing: Implementation and Experience. Software: Practice and Experience 26, 6
(June 1996), 705–736. Also available as technical report CMU-CS-94-213, School of
Computer Science, Carnegie Mellon University, November 1994.

[87] NANCE, B. File Transfer on Steroids. Byte 20, 2 (February 1995), 129–130.

[88] NEEDHAM, R., AND SCHROEDER, M. Using Encryption for Authentication in Large
Networks of Computers. Communications of the ACM 21, 12 (December 1978), 993 –
998.

[89] NELSON, M. N., WELCH, B. B., AND OUSTERHOUT, J. K. Caching in the Sprite Network
File System. ACM Transactions on Computer Systems 6, 1 (February 1988), 134 – 154.

[90] NOBLE, B. D., PRICE, M., AND SATYANARAYANAN, M. A Programming Interface for
Application-Aware Adaptation in Mobile Computing. In Proceedings of the Second
USENIX Symposium on Mobile and Location-Independent Computing (Ann Arbor, MI,
April 1995), pp. 57 – 66. Also available in Computing Systems, the journal of the
USENIX Association, Volume 8, Number 4, Fall 1995.

[91] NOBLE, B. D., AND SATYANARAYANAN, M. An Empirical Study of a Highly Available File
System. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement
and Modeling of Computer Systems (Nashville, TN, May 1994), pp. 138 – 149.

[92] NOVELL CORPORATION. NetWare User Manual, 1993.

[93] OFFICE OF COMPUTING & COMMUNICATIONS, UNIVERSITY OF WASHINGTON. Pine In-
formation Center. http://www.cac.washington.edu:1180/pine/.

BIBLIOGRAPHY 223

[94] OUSTERHOUT, J. K. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[95] OUSTERHOUT, J. K., COSTA, H. D., HARRISON, D., KUNZE, J. A., KNUPFER, M., AND

THOMPSON, J. G. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In
Proceedings of the Tenth ACM Symposium on Operating Systems Principles (Orcas
Island, Washington, December 1985), pp. 15 – 24.

[96] PETERSON, J. L., AND SILBERSCHATZ, A. Operating System Concepts. Addison-Wesley
Publishing Company, Reading, Massachusetts, 1983.

[97] POPEK, G., WALKER, B., CHOW, J., EDWARDS, D., KLINE, C., RUDISIN, G., AND THIEL, G.
LOCUS: A Network Transparent, High Reliability Distributed System. In Proceedings
of the Eighth Symposium on Operating System Principles (Pacific Grove, CA, December
1981).

[98] POSTEL, J. User Datagram Protocol. In Internet Requests for Comments, RFC 768. SRI
International, Menlo Park, CA, August 1980.

[99] POSTEL, J. Transmission Control Protocol. In Internet Requests for Comments, RFC
793. SRI International, Menlo Park, CA, September 1981.

[100] POSTEL, J., AND REYNOLDS, J. File Transfer Protocol. In Internet Requests for Comments,
RFC 959. Network Working Group, Information Sciences Institute, October 1985.

[101] POSTEL, J. B. Simple Mail Transfer Protocol. In Internet Requests for Comments, RFC
821. Information Sciences Institute, Univeristy of Southern California, Marina del Rey,
CA, August 1982.

[102] PRUSKER, F. J., AND WOBBER, E. P. The Siphon: Managing Distant Replicated Repos-
itories. In Proceedings of the Workshop on Management of Replicated Data (Houston,
Texas, November 1990), IEEE Computer Society Technical Committee on Operating
Systems and Application Environments (TCOS), pp. 44 – 47.

[103] QUALCOMM INCORPORATED. Eudora Macintosh User Manual, 1996.

[104] RANGANATHAN, M., ACHARYA, A., SHARMA, S., AND SALTZ, J. Network-aware Mobile
Programs. Tech. Rep. CS-TR-3659, Department of Computer Science, University of
Maryland, June 1996. To appear in the Proceedings of the 1997 USENIX Techical
Conference.

[105] REICHARD, K., AND JOHNSON, E. F. Broadway: Sound And X On The Net. Unix Review
14, 7 (June 1996), 69–70.

224 BIBLIOGRAPHY

[106] RODEHEFFER, T. L., AND SCHROEDER, M. D. Automatic reconfiguration in Autonet.
In Proceedings of 13th ACM Symposium on Operating Systems Principles (Asilomar,
Pacific Grove, CA, October 1991), Association for Computing Machinery SIGOPS,
pp. 183–97.

[107] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end Arguments in System
Design. ACM Transactions on Computer Systems 2, 4 (November 1984), 277–288.

[108] SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LYON, B. Design and
Implementation of the Sun Network File System. In USENIX Summer Conference
Proceedings (June 1985), USENIX Association.

[109] SANGHI, D., AGARWALA, A. K., GUDMUNDSSON, O., AND JAIN, B. N. Experimental
Assessment of End-to-end Behavior on Internet. In Proceedings of the IEEE INFO-
COM ’93 Conference on Computer Communications (San Francisco, CA, March 1993),
pp. 867–874.

[110] SATYANARAYANAN, M. Integrating Security in a Large Distributed System. ACM
Transactions on Computer Systems 7, 3 (August 1989), 247 – 280.

[111] SATYANARAYANAN, M. RPC2 User Guide and Reference Manual. School of Computer
Science, Carnegie Mellon University, Pittsburgh PA 15213, October 1991.

[112] SATYANARAYANAN, M. Fundamental Challenges in Mobile Computing. In Proceedings
of the Fifteenth ACM Symposium on Principles of Distributed Computing (Philadelphia,
PA, May 1996). Also available as technical report CMU-CS-96-111, School of Computer
Science, Carnegie Mellon University, February 1996.

[113] SATYANARAYANAN, M., HOWARD, J. H., NICHOLS, D. A., SIDEBOTHAM, R. N., SPECTOR,
A. Z., AND WEST, M. J. The ITC Distributed File System: Principles and Design.
In Proceedings of the Tenth ACM Symposium on Operating Systems Principles (Orcas
Island, Washington, December 1985), pp. 35–50.

[114] SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P., OKASAKI, M. E., SIEGEL, E. H., AND

STEERE, D. C. Coda: A Highly Available File System for a Distributed Workstation
Environment. IEEE Transactions on Computers 39, 4 (April 1990), 447 – 459.

[115] SATYANARAYANAN, M., KISTLER, J. J., MUMMERT, L. B., EBLING, M. R., KUMAR, P.,
AND LU, Q. Experience with Disconnected Operation in a Mobile Environment. In
Proceedings of the USENIX Symposium on Mobile & Location Independent Computing
(Cambridge, Massachusetts, August 1993), pp. 11 – 28.

BIBLIOGRAPHY 225

[116] SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P., STEERE, D. C., AND KISTLER,
J. J. Lightweight Recoverable Virtual Memory. ACM Transactions on Computer Systems
12, 1 (February 1994), 33 – 57. Corrigendum: 12, (2), 165–172 (1994).

[117] SATYANARAYANAN, M., AND SIEGEL, E. H. Parallel Communication in a Large Dis-
tributed Environment. IEEE Transactions on Computers 39, 3 (March 1990).

[118] SHARMA, R., AND KESHAV, S. Signaling and Operating System Support for Native-Mode
ATM Applications. In Proceedings of the SIGCOMM ’94 Conference on Communica-
tions Architectures, Protocols, and Applications (London, UK, August/September 1994),
pp. 149–157.

[119] SHENG, S., CHANDRAKASAN, A., AND BRODERSEN, R. A Portable Multimedia Terminal.
IEEE Communications Magazine 30, 12 (December 1992).

[120] SHENKER, S., ZHANG, L., AND CLARK, D. D. Dynamics of a Congestion Control
Algorithm. Computer Communications Review 20, 5 (October 1990), 30–39.

[121] SIDEBOTHAM, R. N. Volumes: The Andrew File System Data Structuring Primitive. In
European Unix User Group Conference Proceedings (August 1986). Also available as
Technical Report CMU-ITC-053, Carnegie Mellon University, Information Technology
Center.

[122] STEERE, D., AND SATYANARAYANAN, M. Using Dynamic Sets to Overcome High I/O
Latencies During Search. In Proceedings of the Fifth Workshop on Hot Topics in
Operating Systems (Orcas Island, WA, May 1995).

[123] STEERE, D. C., KISTLER, J. J., AND SATYANARAYANAN, M. Efficient User-Level Cache
File Management on the Sun Vnode Interface. In USENIX Summer Conference Pro-
ceedings (Anaheim, CA, June 1990), USENIX Association, pp. 325 – 331.

[124] STINSON, C. Running Microsoft Windows 95. Microsoft Press, Redmond, Washington,
1995.

[125] TANENBAUM, A. S. Computer Networks, 2nd ed. Prentice Hall, Englewood Cliffs, NJ,
1989.

[126] TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS, A. J., SPREITZER, M. J., AND

HAUSER, C. H. Managing Update Conflicts in Bayou, a Weakly Connected Replicated
Storage System. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles (Copper Mountain Resort, CO, December 1995), pp. 172–183.

226 BIBLIOGRAPHY

[127] WANG, R. Y., AND ANDERSON, T. E. xFS: A Wide Area Mass Storage File System. In
Proceedings of the Fourth Workshop on Workstation Operating Systems (Napa, Califor-
nia, October 1993), pp. 71 – 78.

[128] WEISER, M. The Computer for the Twenty-First Century. Scientific American 265, 3
(September 1991), 94 – 104.

[129] WELLING, G., AND BADRINATH, B. R. A Framework for Environment Aware Mobile
Applications. Department of Computer Science, Rutgers University. Submitted for
publication, 1996.

[130] ZHANG, L., DEERING, S., ESTRIN, D., SHENKER, S., AND ZAPPALA, D. RSVP: A New
Resource ReSerVation Protocol. IEEE Network 7, 5 (September 1993), 8 – 18.

[131] ZHANG, L., SHENKER, S., AND CLARK, D. D. Observations on the Dynamics of a
Congestion Control Algorithm: The Effects of Two-Way Traffic. In Proceedings of the
SIGCOMM ’91 Symposium on Communications Architectures and Protocols (Zurich,
Switzerland, September 1991), pp. 133–147.

