
Removing Bottlenecks in Distributed Filesystems:
Coda & InterMezzo as examples

Peter J. Braam Philip A. Nelson

Carnegie Mellon University &
Western Washington University

braam@cs.cmu.edu
phil@cs.wwu.edu

http://www.coda.cs.cmu.edu/

ABSTRACT

Is it possible for a distributed filesystem to perform
at the same speed as local disk filesystems, at least
in important cases? This paper is trying to answer
this question for traditional client-server distributed
filesystems, not for distributed filesystems exploit-
ing very fast networks and disk striping techniques.
We claim the answer is ”yes”. Systems such as
AFS, Sprite, Coda, Arla and DFS showed what can
be achieved by eliminating much RPC traffic, while
NFS showed how aggressive kernel optimizations
can help. Performance analysis of Coda and NFS
shows that in order to achieve local disk performance
on read traffic the kernel needs more autonomy. In
Coda this leads to satisfactory results, both in micro
benchmarks and in a http server benchmark.

For read/write traffic performance is worse. Many
operations lead to synchronous RPCs, but a new
write-back caching model can permit a client to pro-
ceed without server interference and will eliminate
most of the remaining RPC traffic. Coda can profit
from this, but it does not solve the performance prob-
lems entirely. AFS and Coda maintain client caches
with much the same functionality as a local disk
filesystem, but these caches do not enjoy the superb
performance and robustness of local filesystems like
ext2. Secondly, working synchronously with a heavy
weight cache manager costs Coda much in perfor-
mance.

A journalling filesystem client that acts as a fil-

ter driver for a local filesystem and enjoys callbacks
vis a vis the cache manager, can address both points.
This design is being explored in the experimental In-
terMezzo file system.

1 Introduction

During1 the last few years we have seen spectac-
ular development in freely available distributed
file systems. Good quality NFS comes with all
free Unices; Samba is an almost fully featured
alternative to the Windows NT SMB server; the
ARLA project has built clients and servers com-
patible with AFS and Coda, with advanced fea-
tures such as server replication and disconnected
operation, is now available on several platforms.
NetAtalk and a variety of software based on
NCP offer file service over AppleTalk and IPX.
Several other filesystems exist. Linux rapidly
supported all these systems and, perhaps due to

1This research was supported by the Air Force Ma-
teriel Command (AFMC) under DARPA contract number
F19628-96-C-0061. Additional support was provided by
Intel and Novell. The views and conclusions contained in
here are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either express or implied, of AFMC, DARPA, In-
tel, Novell, Carnegie Mellon University, Western Wash-
ington University or the U.S. Government.



its supportive kernel development environment,
Linux played a vital role in these projects.

Despite these generous offerings, many com-
plaints are heard. The complaints concern ev-
ery single aspect of these systems: security, sta-
bility, protocol quality, portability, usability, ad-
ministrability and performance. Indeed, in com-
parison with a well engineered Linux distribu-
tion on a standalone workstation, network file
systems function poorly.

This paper2 will take a close look at client per-
formance problems and combine desirable ex-
isting features and some new ideas. The the-
sis is that dramatic performance improvements
are still possible. The design exploits obvious
principles: limit the number of RPC’s to a mini-
mum, don’t use cache managers synchronously,
exploit the local disk file systems for a persistent
cache. The question is how to put the pieces to-
gether and retain good semantics.

We will support our case partly with micro
benchmarks and partly with analysis of existing
systems. We are focusing on use of a client in
a network file system as a software repository, a
WWW page repository for a HTTP server run-
ning on the client and as a general purpose home
directory. The picture which emerges is that a
client must be able to proceed largely by itself,
mostly in the kernel and exploit local filesys-
tems.

Other uses will raise issues not discussed
here, particularly when very large files or heavy
write/write sharing is needed, such as for a
databases.

2Acknowledgements The write-back caching proto-
col was designed jointly with Lily Mummert, who par-
tially implemented it in Coda. Jan Harkes helped with
performance evaluations. Michael Callahan, Jan Harkes
and Mahadev Satyanarayanan generously shared time to
discuss the approaches described here.

2 Overview of our conclu-
sions

When looking at read-only use of a filesystem
the crucial issues are to get good performance
upon first access to the data, and to aggressively
cache data in order to highly optimize subse-
quent access to the same data.

Network file systems have been implemented
in a variety of ways. Some, like NFS and Sprite,
have all client and all server code in the kernel.
Samba is a good example of a user level file
server, communicating with kernel based Win-
dows or Unix SMB client code. AFS and Coda
have a user level file servers and Coda relies on
a user level cache manager on the client. See
figure 1 for an overview.

There are different ways in which a network
filesystem can do client side caching. Sprite and
SMB have virtual memory caches, NFS has only
minimal caching. AFS and Coda have a persis-
tent client cache and focus on optimizing subse-
quent access. A call back scheme can be added
to the cache, allowing subsequent access to be
served from the cache, without contacting the
server, until the server has broken the callback.
We will show that the latter construction seems
advantageous, but it doesn’t solve all problems.

When evaluating Coda it appears that even
with a warm cache the cache manager can be
much slower than the local file system. We pro-
pose here to implement a second callback rela-
tionship between the kernel and the cache man-
ager, so that the cache manager is generally not
involved in processing, and calls are serviced
from the kernel directly. We show that for read-
only access we get local disk performance at no
cost to the sharing semantics.

During read-write use we meet several bottle-
necks. Clearly modifcations need to be made on
the server as well as on cached data on the client.
The network is involved, often in a synchronous



Network File System
System Call Handling

User
Appl.

virtual
file

system

NFS

Coda

SMBFS

user level

kernel

Coda Cache
Manager

Coda File Server

NFS server

Samba File Server

N
et

w
o

rk
in

g

virtual
file

system

user level

kernel

Kernel KernelNetwork

Client System with
NFS/Coda/Samba

file systems

N
et

w
o

rk
in

g
Server System with

Kernel Level NFS Server
Samba and Coda server

Figure 1: System Call Handling in Network File Systems

way which has disastrous consequences for per-
formance. Here write-back caching is needed.
When modifications begin a write-back permit
is obtained by the client for a set of files. This
guarantees that the client will - temporarily - be
the only writer. The modifications are logged
and shipped to the server asynchronously. We
can demonstrate that Coda performs much better
with write-back caching than without. However,
these improvements still leave a very significant
performance gap with the Ext2 local filesystem,
which we proceed to analyze.

On a Coda client, the cache manager is in-
volved, again often synchronous with applica-
tion activity. Here again experiments show that
one faces serious overhead. It also appears
that the local filesystem can be much more ef-
ficient than the file systems implemented by
cache managers.

To get past these problems we propose that

the client kernel module for a network file sys-
tem acts as a filter driver for a local filesys-
tem. The filter intercepts cache misses and jour-
nals modifications. It communicates with cache
manager when needed, that is, when a cache
miss needs to be serviced or when a page of the
journal is ready for post processing by the cache
manager. The filter driver’s journal of opera-
tions is transferred to the cache manager page
by page, asynchronous with the modifying ap-
plication.

Coda cannot easily exploit the local filesys-
tem and act as a filter driver, hence we are build-
ing a new experimental filesystem named In-
terMezzo to demonstrate the performance gain
from filtering and journalling at the kernel level.
A summary of InterMezzo’s design appears
here, as well as some preliminary evaluations of
its performance.



3 Methods to keep data con-
sistent

The inherent uncertainty in a network file sys-
tem is that a file may change on the server. Re-
peated access to the same data is very frequent
and several paths have been explored to allow
this to happen efficiently. The first one is to
guess: if access to data falls within a short pe-
riod of the previous access, the client assumes
that the data is still valid. This is used by NFS
and leads to remarkably good results or failures
depending on the perspective. Sprite and SMB
avoid repeated fetching by granting a client an
oplock or callback for data cached in VM. (Call-
backs were first introduced in AFS.) However,
upon reboots or disconnections from the net, all
cache data is lost without a persistent cache.

AFS, DFS and Coda have a persistent cache.
(Microsoft’s IntelliMirror also has a persistent
cache, but the details of its functioning are not
known to the author.) A crucial difference be-
tween these AFS based caches and the ones used
in NFS, SMB and Sprite are that entire directo-
ries are cached on the clients, thereby eliminat-
ing the need of lookup remote procedure calls.
During connected operation, the server grants
the client a callback, lease or oplock when it
first caches data. In this case the server will no-
tify the client before the data is changed on the
server, thereby invalidating the cached data on
the client. The client can re-use the data without
contacting the server until it receives a callback
revocation, and is guaranteed that it will never
see stale data. If the callback rpc from server to
client fails, the client is declared disconnected.

The price of the callback scheme is that
the server must maintain state in virtual mem-
ory about what clients hold what callbacks.
AFS/ARLA, DFS, Coda, Sprite, SMB and nu-
merous other systems have a callback scheme.

To maintain a persistent cache valid across

reconnections/reboots, a second mechanism
named validation is needed. Data is kept on
the client with a precise version stamp and only
the version stamp needs to be checked with
the server to validate the data; hence the ver-
sion stamp uniquely defines the data, and it is
changed upon every close of a file after writes
and after modifying directory operations. Upon
reconnecting a client will validate the contents
of its cache through comparing version stamps
held on both servers and clients. In Coda the
first comparison is done at the level of volumes
or filesets, if those succeed, all cached files in the
volume are consistent with those on the server.
If they fail the version stamp of individual files
in the cache must be compared with those on the
server. This mechanism is present in AFS.

Version stamps are extremely desirable meta-
data for network file systems, but must be main-
tained as persistent objects on client and servers.
Presently they are not part of the metadata of
disk filesystems, and this - as well as other con-
siderations involving e.g. volumes and access
control lists - have led systems like AFS and
Coda to use their own file system formats to in-
corporate this metadata.

Coda with replicated servers faces one further
problem: clients must keep the version vector
identical across multiple servers. If the RPC
connections do not fail nothing new is needed.
However, to cope with failures it is very advan-
tageous to add a version array to the version
stamps. A version array consists of an integer
for every server in a replication group. Upon re-
ceiving a modifying operation from the client,
server i increases the i-th component of the ver-
sion array. The client finally informs server i
of the increases in the version array reported by
the other servers, thereby allowing all version
arrays to be come equal. In the case of server
failures the version arrays allow for comparison
of versions and the system can automatically se-



lect the latest version of a file in most cases.

4 Kernel Level Callbacks

The purpose of this section is to show how
a filesystem client can be implemented to de-
liver read-only access to files at almost the same
speed as when a local disk filesystem is used, af-
ter the files have been fetched once. One could
call this a warm client cache, but care has to
be taken, since the client cache can have a per-
sistent component (such as for AFS and Coda)
as well as a kernel based volatile cache. Hence
caches can be ”warm” in more than one way.

We will compare having a scheme with call-
backs and without (respectively Coda and NFS),
and compare each to the disk file system (Ext2).
The test below shows the result of ls -lR
dir > /dev/null / where dir contains a
tree of approximately 1,500 files and 300 direc-
tories. We compared NFS, Coda and Ext2. 3

Table 1 presents the results. In the first row,
all caches are cold: this means that the server
has not seen disk access to this data (other than
through the boot sequence) and for ext2 no disk
access to the files happened since boot. The
Coda persistent cache is also empty on the first
run. On the second run all caches are warm,
eliminating all network traffic for Coda and all
disk traffic for ext2 and Coda.

Clearly callbacks can do a lot of good in this
situation. Coda makes no remote procedure
calls to the server on subsequent runs (assuming
that other clients do not modify the tree, causing
callbacks to be broken by the server). However,
it is still troublesome that Coda is running at half
the speed of of Ext2. What is going on?

First of all when ls -lR is running the ls
program engages basically in the following op-
erations. It opens directories, does getdents to

3We are using a kernel level Linux NFS server.

get the entries and calls stat to get the detailed
file attributes. In Coda the getdents operations
never leave the kernel, and with the dcache - the
directory name cache - in Linux 2.2 the stat calls
can be serviced from the cache, in almost pre-
cisely the same way for Coda as for ext2. The
trouble lies with the opendir calls and the asso-
ciated closes.

NFS Coda Ext2
First run 7.9sec 9.71sec 4.0sec
Subsequent runs 10.4sec 0.5sec 0.26sec

Table 1: Comparing Ext2, Coda and NFS on ls
-lR. Client was P266/80MB ram/IDE disk, server
a PII 266/128MB ram/fast SCSI disks. All caches
were cold in first run, all caches were warm in sub-
sequent runs. (We do not understand why NFS was
consistently slower on the second run.)

Coda (like Arla) utilizes a user level cache
manager. From an engineering perspective this
is important, since it dramatically enhances
portability. This design implies that an appli-
cation which accesses files in a Coda filesystem
through system calls will be serviced by the ker-
nel in an unusual way. The kernel communicates
the request to the cache manager and awaits a
reply from the cache manager before servicing
the application. This does not apply to all sys-
tem calls, for example read, getdents and stat
are (mostly) exempt, but as of Coda 5.0 open,
close (as well as all modifying operations except
write) always go to the cache manager. Servic-
ing a system call gives rise to a context switch
when the cache manager needs to run.

It is disconcerting that Coda with a warm
cache spends twice as long as the local file
system. Further profiling reveals that 50% of
Coda’s ls -lR execution is spent on the 300
open and 300 close calls. Since this makes for
600 out of approximately 4,500 system calls,
this is a typical bottleneck. A separate analy-



sis of open, close calls reveals that they take 50
times longer for files in Coda than in ext2, each
with a warm cache.

The way forward is clear. The kernel must be
enabled to open and close files without interac-
tion with the cache manager. To ensure consis-
tency we use a callback mechanism once again:
the kernel data structures needed for opening
and closing the file (for Coda this is the device
and inode number of the cached copy of the file)
need to remain available and will be invalidated
by the cache manager in two cases. First a server
may send a call back revocation if the file or
directory changed on the server, secondly, the
client cache may be getting full and the file may
need to be purged from the cache. In each case
the cache manager invalidates the kernel cache.

Coda can easily be modified to honour this
protocol with the cache manager and a prelim-
inary implementation shows no loss of perfor-
mance over the local ext2 filesystem. The ex-
perimental InterMezzo Filesystem (to be dis-
cussed later) was engineered from the ground up
to maintain this relation with its cache manager
and similarly shows local disk performance.

Many other things can be deduced from Table
1. First there appears to be no significant ad-
vantage of the kernel level NFS server over the
user level Coda server. However, the NFS and
Coda protocols are very different, so this com-
parison may not be very useful. Secondly while
the cache manager is expensive when all caches
are warm, its impact on performance appears to
be much smaller than that of having to take data
off the disk or over the network.

In the context of a non-persistent cache, this
protocol has already been explored before by
VaxClusters [12] Sprite [8], Spritely-NFS [7]
and SMB [6]. In AFS-3 [2] and DFS/DCE the
entire cache manager was moved into the kernel,
so one may expect that these systems to have
good performance. However, experiments can-

not confirm this. A warm cache comparison of
the ls -lR test on NetBSD’s FFS and AFS
running on NetBSD 1.3 reveals that AFS lags
a factor 4-8 over the local file system. (The
NetBSD FFS appears to be 10 times slower on
this test than Linux Ext2. Likely this is due
to the integrated buffer cache and VM system
in Linux, or synchronous updating of atimes in
NetBSD.)

An application that requires read-only perfor-
mance is a WWW server. Storing a WWW site
on a Coda client provides automatic mirroring
of the site, thus performance of web servers is an
issue. We ran the WebStone-2.04 WWW server
benchmark in two tests. First, having the WWW
site stored on a local Ext2 file system and then
with the files on a Coda file system. Tests were
made with 1 to 10 simulteanous clients, each
getting files as fast as the server would deliver
the pages. Each test ran for 10 minutes with the
majority of files being retreived from the WWW
server in the size range of 500 bytes to 50K
bytes. A total of 5 different files were used in the
test and thus testing repetitive reading by multi-
ple processes. We used Apache for the WWW
server. It was configured to have a maximum
of 20 processes all reading pages as requested
by the clients. Clients and severs all ran on the
same machine eliminating traffic on the network
for the http requests. Table 2 gives a summary
of the tests in connections per second and by to-
tal megabytes per second served by each test,
and shows that excellent read performance can
be achieved.

4WebStone-2.0 was distributed by Silicon Graphics,
Inc.



Local file system Coda file system
Number Conn/s Throughput Conn/s Throughput
of clients Mbytes/s Mbytes/s

1 127.25 19.07 116.72 18.41
2 235.90 35.74 218.21 34.66
3 299.27 45.40 269.12 40.04
4 340.83 52.22 298.18 43.40
5 365.58 56.66 316.00 46.74
6 389.04 59.40 311.77 47.44
7 398.81 58.99 337.48 51.93
8 395.69 60.20 340.21 51.21
9 392.88 60.93 334.52 52.23
10 404.57 59.52 330.24 52.08

Figure 2: Comparing WWW Server performance with files on Coda and Ext2.

5 Write-back caching in the
cache manager

We will now turn our attention to modifying op-
erations. The Unix I/O models describe the se-
mantics of simultaneous reading from and writ-
ing to a single file. The BSD FFS similarly
shaped the thinking about writing data to sta-
ble store to guarantee recovery of filesystems af-
ter unexpected crashes of the system. Network
filesystems took these two as an initial target for
distributed systems.

In the Unix I/O model, write/write sharing
states that two write operations are mutually
atomic and that the results of writing are im-
mediately visible to readers, i.e. the results are
similar to the use of shared memory. Much of
the thinking in distributed file systems has aimed
at having such semantics in the distributed case
too. AFS and Coda pioneered different seman-
tics, namely that the visibility to other worksta-
tions is at the granularity of closes of the file,
instead of the granularity of individual writes.
This means that a modified version of a file be-
comes visible to other clients after the file is

closed5. For many situations this more suit-
able than write/write sharing, but when using
databases in a distributed filesystem write/write
sharing is a must.

The BSD FFS tradition for recoverability had
a similar impact on distributed file systems. FFS
guarantees that modifications to metadata are
flushed to the disk before the system call returns
which made the changes. Distributed filesys-
tems once more tried to follow this. Of course
the overhead of making a remote procedure call
and a disk flush for every modifying operation
is enormous. NFS v3 allows a server to post-
pone the flush. AFS and Coda during normal
operation make RPC’s to the server for every
modifying operation. Figure 3 shows the rela-
tive performance between NFS, Coda and Ext2.
We see that write back caching dramatically im-
proves Coda’s performance, bringing it close to
NFS. However, ext2 is still well ahead.

Coda also allows for disconnected operation.

5In Coda, if two clients hold open a file simultaneously
for writing, the last close doesn’t overwrite the first, but
creates a conflict, which allows the user to select one of
the versions or perform a merge.



NFS Coda Coda with WB caching Ext2
create/close/unlink 1.68sec 89.6sec 6.0sec 0.25sec
mkdir/rmdir 2.4sec 70.2sec 4.5sec 0.27sec

Figure 3: Comparing Coda/NFS and Ext2 on 1000 elementary modifying operations - (create x ; close x ;
unlink x) and ( mkdir x ; rmdir x)

During disconnected operation Coda serves data
from its cache to the extent it is available. It
makes modifications to its cache and writes a
modification log. Upon reconnection, the ver-
sion stamps of objects are verified and the log
is shipped to the server for re-integration. Coda
also has special behavior when the connection
to the servers is weak, i.e. of low bandwidth. In
that case it serves cache misses by fetching data
from the server, but still makes modifications lo-
cally while maintaining the client modification
log, called the CML. When the CML reaches
a specified age or size, it is transferred to the
server. This process is called trickle reintegra-
tion [Mummert, 1996]. An important aspect of
the CML is that it can be optimized. Many files
live a short life and are then removed, others are
saved multiple times in a short interval. This can
be detected by scanning the CML and many op-
erations never need to be sent to the server.

This mechanism can form the basis of write-
back caching. The only problem is that other
clients no longer have a guarantee of seeing con-
sistent data. However, this stumbling block can
be overcome.

Coda’s write-back caching scheme builds on
the trickle re-integration. When the client makes
a modifying operation it will request a write-
back permit from the server. Before granting
this permit, the server breaks all callbacks at
other clients for the fileset in question. Further
modifying operations can now be written in the
CML which is transferred to the server asyn-
chronously. Before another client, say client2,
can get access to the data the server needs to re-

voke the permit and ask the client which is writ-
ing back to reintegrate all its changes as fast as
possible. Client2 will validate the files it still has
in its cache and fetch the modified objects.

It is clear that this scheme will not function
well in all situations. For example, if there are
very many clients sharing a volume, and if the
modifications to be made just affect a few files,
it will be disastrous to grant a write-back per-
mit, since the overhead of breaking all the call-
backs and subsequent validation will be enor-
mous. However, for a users home directory to
be shared by a few machines, this might work re-
ally well. Sprite’s delayed writing mechanisms
were implemented much earlier and bear great
similarity to Coda’s, but are VM based.

This scheme has partially been implemented
in Coda at present and we can see some of
the performance gains we achieve by logging
the modifications, vs writing them to the server.
Figures 3 and 4 give some of the results. Note
that Coda with write back caching is still far be-
hind ext2. The difference with Ext2 is what we
will address next.

It is interesting to note that the comparison
between Coda with WB caching and NetBSD’s
FFS is much more favorable for Coda: it merely
lags a factor of 2, vs. 25 over ext2. Clearly the
synchronous behavior of FFS comes into play.

Upon further investigation, is not so hard to
understand why Coda is so slow when working
connected. It appears that at present the servers
perform many more RVM transactions than is
necessary, and it is not unrealistic to expect up
to one order of magnitude of improvements by



NFS Coda Coda with WB caching Disk FS AFS
Linux 88 sec 320sec 47.1sec 1.55sec
NetBSD 312sec 43.0sec 54sec 132sec

Figure 4: Unpacking tar archive. 1500 files, 300 directories. Client P400/128MB ram/ide disks. Servers as
in table 1.

relatively simple code cleanup.

6 Write-back caching in the
kernel: InterMezzo

How can we make modifications to a network
filesystem at approximately the same speed as
they can be made in the local filesystem? Look-
ing at Table 3 we see that a Coda client running
with write-back caching performs much worse
than the local ext2 filesystem. Two possibilities
for this big performance difference exist: first
the synchronous operation with the cache man-
ager during modifications is worrisome, since
we saw its overhead already during the read-
only discussion. Secondly it can be confirmed
with easy experiments that Coda’s Data struc-
tures cache is much slower in its implementation
of directory operations than the local filesystem.
This can be seen by comparing it with Inter-
Mezzo which we do below.

Clearly it would be useful if the local disk file
system could be used as a persistent cache for
a network file system. This is heavily inspired
by so called Filter Drivers used in Windows NT
[11], but goes back much further to so called
stackable file systems, developed at SunSoft [9]
and UCLA [10]. The InterMezzo Filesystem is
an experiment to see if we can exploit the local
ext2 filesystem as a cache, in conjunction with
a cache manager. We envisage that InterMezzo
will have version stamps, callbacks and write-
back permits and a file protocol similar to Coda.
However, the client is implemented very differ-

ently and has a different kernel cache manager
protocol, which cannot be easily added to Coda.

InterMezzo’s cache manager is called lento
and the kernel filesystem module presto. Lento
maintains all metadata which cannot be re-
trieved from ext2, such as version stamps, vol-
ume information and access control lists. All
other metadata is part of an unmodified ext2
filesystem. Presto filters the operations on the
ext2 filesystem: both before and after the ext2
file system operations run, presto executes its
own routines which update volatile kernel state
associated with the operation. Let’s look at a
few examples.

During read-only operation lookup opera-
tions, to find a name in a directory, and open op-
erations on files and directories are among the
most important to intercept. When a lookup
operation reaches presto, it checks if it holds
a kernel level callback on the ext2 directory.
If it does, the operation proceeds by doing an
ext2 lookup. If not, presto contacts lento syn-
chronously, and lento either grants a callback
because it knows that the cache is up to date, or
it fetches fresh object from the server. A similar
construction takes place upon opening files and
directories. When files are opened their data is
fetched. When a file changes on the server the
callback is broken and lento can invalidate the
data.

Even during read-only use post-processing
operations are needed. When Lento installs a
fresh directory it is important that the after it is
installed it is flagged with a callback, and here
we see the post processing. Presto makes a dis-



Figure 5: InterMezzo Client Design

tinction between calls from lento and from other
applications, and lento’s calls to presto module
are filtered differently. 6.

InterMezzo will initially operate at the
open/close granularity of Coda. Before a mod-
ifying operation is started, a write-back permit
will be obtained by presto, which asks lento,
which in turn obtains it from the server. Presto
will now allocate a page of memory and start
logging all modifying operations, i.e. close, se-
tattr, create, mkdir, link, symlink, delete, and
rmdir in it. When the page is full, a new one
is allocated, and the full page will be given to
lento asynchronously. When the server revokes
the write-back permit, lento can request all out-
standing changes from the kernel, perform log
optimizations on the operations and send them
to the server.

6In order to achieve full consistency we also install
methods for the dcache to intercept and validate data that
would have been given out by the kernel without asking
the ext2 filesystem.

We evaluated the performance of InterMezzo
for the sequence of rmdir/mkdir operations used
above. The results are displayed in Table 5.

The factor of two lag over ext2 is easly ex-
plained, given that both the mkdir/rmdir process
as well as the cache manager are contending
for the CPU. Clearly a lot of engineering would
be needed to turn this experiment into a viable
filesystem, but initial results are promising.

7 Summary

In this paper we have evaluated the performance
of a client in a distributed filesystem. We ana-
lyzed cache consistency and write-back caching
for performance enhancements. We showed that
local disk performance can be achieved in Coda
for read-only traffic, using kernel level call-
backs. On read-write traffic two levels of im-
provements are needed. First cache managers
should use write-back caching vis a vis the file



NFS Coda Coda with WB caching InterMezzo Ext2 NetBSD
2.5sec 75sec 4.5sec 0.5sec 0.25sec 10sec

Figure 6: Mkdir/Rmdir Micro Benchmarks. All tests on Linux except last one. Servers as in table 1.

servers, and we demonstrated the benefits of this
in Coda. These improvements still leave a large
gap with local disk file systems and we suggest a
mechanism for bridging this gap. We combine a
filter driver working with ext2 with a write back
cache for the kernel vis a vis the cache manager.

8 References

1. M. Satyanarayanan, J. J. Kistler, P. Kumar,
M. E Okasaki, E.H. Siegel, D.C. Steere,
Coda: a highly available file system for a
distributed workstation environment, IEEE
Transactions on Computers, Vol. 39, No.
4, April 1990.

2. Howard, J.H., An Overview of the Andrew
File System, Proceedings of the USENIX
Winter Technical Conference Feb. 1988,
Dallas, TX.

3. Mummert, L.B., Ebling, M.R., Satya-
narayanan, Exploiting Weak Connectivity
for Mobile File Access , M. Proceedings
of the 15th ACM Symposium on Operat-
ing Systems Principles, Dec. 1995, Copper
Mountain Resort, CO.

4. Kistler, J.J., Satyanarayanan, M., Discon-
nected Operation in the Coda File System,
ACM Transactions on Computer Systems
Feb. 1992, Vol. 10, No. 1, pp. 3-25.

5. Kumar, P., Satyanarayanan, M., Log-Based
Directory Resolution in the Coda File Sys-
tem. Proceedings of the Second Inter-
national Conference on Parallel and Dis-

tributed Information Systems Jan. 1993,
San Diego, CA, pp. 202-213.

6. John D. Blair, Samba: Integrating Unix
and Windows, Specialized Systems Con-
sultants Inc, Seattle, 1998.

7. V. Srinivasan, Jeffrey C. Mogul, Spritely
NFS: Implementation and Performance of
Cache-Consistency Protocols, Com-
paq Western Research Laboratory,
Research Report 89/5, May 1989,
http://www.research.digital.com/wrl/
techreports/abstracts/89.5.html.

8. Michael N. Nelson, Brent B. Welch, John
B. Ousterhout, Caching in the Sprite Net-
work File System, Transactions on Com-
puter Systems, 6 (1): 134-154, February
1988.

9. Rosenthal, D.S.H., Evolving the Vnode
Interface, Proceedings of the Summer
1990 USENIX Technical Conference, June
1990, pp. 107-118.

10. Heidemann, J.S., Popek, G.J., File-System
Development with Stackable Layers, ACM
Transactions on Computer Systems, Vol
12, No 1, Feb 1994, pp. 58-89.

11. Nagar, Rajeev, Windows NT File System
Internals: A developers guide, O’Reilly
and Associates, 1997.

12. Kirby McCoy, Vms File System Internals,
Digital Press, 1990.


