
Carnegie Mellon University has developed an exciting file system.
Mr. Braam, one of the developers, tells us all about it.

by Peter J. Braam

T he Coda distributed file system is a state-of-the-art
experimental file system developed in the group of
M. Satyanarayanan at Carnegie Mellon University

(CMU). Numerous people contributed to Coda, which now
incorporates many features not found in other systems

1. Mobile Computing:
• disconnected operation for mobile clients
• reintegration of data from disconnected clients
• bandwidth adaptation

2. Failure Resilience:
• read/write replication servers
• resolution of server/server conflicts
• handles network failures which partition the servers
• handles disconnection of client’s client

3. Performance and scalability:
• client-side persistent caching of files, directories

and attributes for high performance
• write-back caching

4. Security:
• Kerberos-like authentication
* access control lists (ACLs)

5. Well defined semantics of sharing

6. Freely available source code

Distributed File Systems
A distributed file system stores files on one or more

computers called servers and makes them accessible to
other computers called clients, where they appear as normal. -.

since it can disable all clients from accessing crucial infor-
mation. The Coda project has paid attention to many of
these issues and implemented them as a research prototype.

Coda was originally implemented on Mach 2.6 and has
recently been ported to Linux, NetBSD and FreeBSD.
Michael Callahan ported a large portion of Coda to
Windows 95, and we are studying Windows NT to under-
stand the feasibility of porting Coda to NT Currently, our
efforts are on ports and on making the system more robust.
A few new features arc being implemented (write-back
caching and cells for cxample), and in several areas, compo-
nents of Coda are being reorganized. We have already
received very generous help from users on the Net, and we
hope that this will continue. Perhaps Coda can become a
popular, widely used and freely available distributed file sys-
tem.

Coda on a Client
If Coda is running on a client, which we shall take to be a

Linux workstation, typing m o u n t will show a file system-of
type “Coda’‘-mounted under /coda. All the files, which any
of the servers may provide to the client, are available under
this directory, and all clients see the same name space. A
client connects to “Coda” and not to individual servers,
which come into play invisibly. This is quite different from
mounting NFS file systems which is done on a per server,
per export basis. In the most common Windows systems
(Novell and Microsoft’s CIFS) as well as with Appleshare

files. There are several advantages to using file sewers: the
files are more widely available since many computcrs can
access the servers, and sharing the files from a single loca-
tion is easier than distributing copies of files to individual
clients. Backups and safety of the information are easier to
arrange since only the servers need to be backed up. The
servers can provide large storage space, which might be
costly or impractical to supply to every client. The useful-
ncss of a distributed file system becomes clear when consid-
ering a group of employees sharing documents; however,
more is possible. For example, sharing application software
is an equally good candidate, In both cases, system adminis-
tration becomes easier.

There are many problems facing the design of a
distributed file system. Transporting many files over
can easily create sluggish performance and latency; network
bottlenecks and server overload can rcsult. The security of
data is another important issue: how can we be sure that a
client is really authorized to have access to information and
how can wc prevent data being sniffed off the network? Twc
further problems facing the design are related to failures.
Often, client computers are more reliable than the network
connecting them, and network failures can render a client
useless. Similarly, a server failure can be very unpleasant,

LINUX JOURNAL c JUNE I998

Figure 2. Servers Control Security (Illustration by
Gaich Muramatsu)

on the Macintosh, files are also mounted per volume. Yet
the global name space is not new. The Andrew file system,
Coda’s predecessor, pioneered the idea and stored all files
under /afs. Similarly, the distributed file system DFS/DCE
from OSF mounts its files under one directov. Microsoft’s
new distributed file system (dfs) provides glue to put all
sewer shares in a single file tree, similar to the glue provid-
ed by auto-mount daemons and yellow pages on UNIX.
Why is a single mount point advantageous? It means that all
clients can be configured identically, and users will always
see the same file tree. For large installations this is essential.
With NFS, the client needs an up-to-date list of servers and
their exported directories in /etc/fstab, while in Coda a
client merely needs to know where to find the Coda root
directory /coda. When new servers or shares arc added, the
client will discover these automatically in the coda tree.

When the kernel passes the open request t” Venus for
the first time, Venus fetches the entire file from the
servers, using remote procedure calls to reach the servers.
It then stores the file as a container file in the cache area
(currently /usr/coda/venus.cache/). The file is now an ordi-
nary file on the local disk, and read/write operations t” the
file do not reach Venus but are (almost) entirely handled
by the local file systcm (EXT2 for Linux). Coda read/write
operations take place at the same speed as those to local
files. If the file is opened a second time, it will not be
fetched from the servers again, but the local copy will be
available for use immediately. Directory files (remember,
a directory is just a file) as well as all the attributes (own-
ership, permissions and size) are all cached by Venus, and
Venus allows operations to proceed without contacting the
server if the files are present in the cache. If the file has
been modified and it is closed, Venus updates the servers
by sending the new file. Other operations which modify
the file system, such as making directories, removing files
or directories and creating or removing (symbolic) links
arc propagated to the servers also.

To understand how Coda can operate when the network
connections to the server have been severed, let’s analyze a
simple file system operation. Suppose we type:

cat /coda/tmp/foo

to display the contents of a Coda file. What actually hap-
pens? The cat program will make a few system calls in rela-
tion to the file, A system call is an operation through which
a program asks the kernel for service.
For example, when opening the file
the kernel will want to do a lookup
operation to find the inode of the file
and return a file handle associated
with the file to the program. The
inode contains the information to
access the data in the file and is used
by the kernel; the file handle is for the
opening program The open call
enters the virtual file system (VFS) in
the kernel, and when it is realized
that the request is for a file in the
/coda file system, it is handed to the
Coda file system module in the ker-
nel. Coda is a fairly minimalistic file-

So we see that Coda caches all the information it needs
on the client, and only informs the server of updates made
to the file system. Studies have confirmed that modifica-
tions are quite rare compared to “read only” access t”
files, hence we have gone a long way towards eliminating
client-server communication. These mechanisms to
aggressively cache data were implemented in AFS and
DFS, but most other systems have more rudimentary

Figure 3. Client/Venus/Vice

JUNE 1998 LINUX JOURNAL

system module: it keeps a cache of recently answered
requests from the VFS, but otherwise passes the request
on to the Coda cache manager, called Venus. Venus will
check the client disk cache for tmp/foo and in case of a
cache miss, it contacts the servers to ask for tmp/foo.
When the file has been located, Venus responds to the
kernel, which in turn returns the calling program from the
system call. Schematically wc have the image shown in
Figure 3.

The figure shows how a uscr program asks for service
from the kernel through a system call. The kernel passes it
up to Venus, by allowing Venus to read the request from
the character device /dev/cfsO. Venus tries t” answer the.._
request, by looking in its cache, asking servers or possibly
by declaring disconnection and servicing it in disconnected
mode, Disconnected mode kicks in when there is no net-
work connection t” any server which has the files.
Typically this happens for laptops when taken off the net-
work “r during network failures. If servers fail, disconnect-
ed operation can also come into action.

Figure 4. Hoarded Files are “sticky” in the cache.
(Illustration by Gaich Muramatsu)

caching. We will see later how Coda keeps files consistent,
but first pursue what else one needs to support disconnect-
ed operation.

From Caching to Disconnected Operation
The origin of disconnected operation in Coda lies in one

of the original research aims of the project: to provide a file
system with resilience to nehvork failures. AFS, which sup-
ported thousands of clients in the late 80s on the CMU
campus, had become so large that network outages and
server failures occurred somewhere almost every day. This
was a nuisance. Coda also turned out to be a well-timed
effort because of the rapid advent of mobile clients (viz. lap-
tops). Coda’s support for failing networks and servers equal-
ly applied to mobile clients.

We saw in the previous section that Coda caches all
information needed to provide access to the data. When
updates to the file system are made, these need to be propa-
gated to the server. In normal connected mode, such
updates are propagated synchronously to the server, i.e.,
when the update is complete on the client it has also been
made on the server. If a server is unavailable or if the net-
work connections between client and server fail, such an
operation will incur a time-out error and fail. Sometimes,
nothing can be done. For example, trying to fetch a file,
which is not in the cache, from the sewers is impossible
without a network connection. In such cases, the error must
be reported to the calling program. However, often the
time-out can be handled gracefully as follows.

To support disconnected computers or to operate in the
presencc of network failures, Venus will not report failure(s)
to the user when an update incurs a time-out. Instead,
Venus realizes that the server(s) in question are unavailable
and that the update should be logged on the client. During
disconnection, all updates are stored in the CML, the client
modification log, which is frequently flushed to disk. The
user doesn’t notice anything when Coda switches to discon-
nected mode. Upon reconnection to the servers, Venus will
reintegrate the CML it asks the server to replay the file sys-
tem updates on the server, thereby bringing the server up to
date. Additionally the CML is optimized-for example, it
cancels out if a file is first created and then removed.

There are two other issues of pro-
found importance to disconnected
operation. First, there is the concept of
hoarding files. Since Venus cannot
serve a cache miss during a disconec-
iion, it would bc nice if it kept impor-
tant files in the cache up to date, by
frequently asking the server to send
the latest updates. Such important files
are in the user’s hoard database which
can be automatically constructed by
“spying” on the user’s file access.
Updating the hoarded files is called a
hoard walk. In practice, our laptops
hoard enormous amounts of system
software, such as the Xl I Window
System binaries and libraries, or Wabi
and Microsoft Office. Since a file is a
file, legacy applications run just fine.

The second issue is that during reintegration it may
appear that during the disconnection another client has mod-
ified the file too and has shipped it to the server This is
called a local/global conflict (viz. Client/Servcr) which needs
repair. Repairs can sometimes be done automatically by
application-specific resolvers (which know that one client
inscrting an appointment into a calendar file for Monday and
another client inserting one for Tuesday have not created an
irresolvable conflict). Sometimes, but quite infrequently,
human intervention is needed to repair the conflict.

On Friday one leaves the office with a good deal of source
code hoarded on the laptop. After hacking in one’s mountain
cabin, the harsh return to the office on Monday (10 days later
of course) starts with a u-integration of the updates made
during the weekend. Mobile computing is born.

Volumes, Servers and Server Replication
In most network file systems, the servers enjoy a standard

file structure and export a directory to clients. Such a directo-
ry of files on the server can be mounted on the client and is
called a network share in Windows jargon and a network file
system in the UNIX world. For most of these systems it is not
practical to mount further distributed volumes inside the
already mounted network volumes. Extreme care and
thought goes into the server layout of partitions, directories
and shares. Coda’s (and AFS’s) organization differs substan-
tially.

Files on Coda servers arc not stored in traditional file sys-
tems. Partitions on the Coda server workstations can be made
available to the file server. These partitions will contain files
which are grouped into volumes. Each volume has a directory
structure like a file system, i.e., a root directory for the vol-
umc and a tree below it. A volume is on the whole much
smaller than a partition, but much larger than a single direc-
tory and is a logical unit of files. For example, a user’s home
directov would normally be a single Coda volume and simi-
larly the Coda sources would reside in a single volume.
Typically a single server would have some hundreds of vol-
umes, perhaps with an average size approximately 1OMB. A
volume is a manageable amount of file data which is a very
natural unit from the perspective of system administration
and has proven to be quite flexible.

Coda holds volume and directory information, access con-
trol lists and file attribute information in raw partitions.
These are accessed through a log-based recoverable virtual
memory package (RVM) for speed and consistency. Only file

Figure 5. Failure Resilience Methods

L
Figure 6. AVSG vs. VSG (Illustration by

Gaich Muramatsu)

data resides in the files in server partitions. RVM has built-in
support for transactions-this means that in case of a server
crash, the system can be restored to a consistent state without
much effort.

A volume has a name and an ID, and it is possible to
mount a volume anywhere under /coda. For example, to
mount the volume u.braam on /coda/usr/braam, issue the
command:

Coda does not allow mount points to be existing directories;
instead, it will create a new directory as part of the mount
process. This eliminates the confusion that can arise in
mounting UNIX file systems on top of existing directories.
While it seems quite similar to the Macintosh and Windows
traditions of creating a "network drive and volumes”, the cru-

difference is that the mount point is invisible to the
client: it appears as an ordinary directory under /coda. A sin-
gle volume enjoys the privilege of being the root volume; it is
the volume which is mounted on /coda at startup time.

Coda identifies a file by a triple of 32-bit integers called a

JUNE I998 LINUX JOURNAL

Fid: it consists of a VolumeId, a VnodeId and a Uniquifier.
The VolumeId identifies the volume in which the file resides.
The VnodeId is the “inode” number of the file, and the
uniquifiers are needed for resolution. The Fid is unique in a
cluster of Coda servers.

Coda has read/write replication servers, i.e., a group of
servers can hand out file data to clients, and generally
updates are made to all servers in this group. The advantage
of this is higher availability of data: if one server fails, others
take over without a client noticing the failure. Volumes can
be stored on a group of servers called the VSG (Volume
Storage Group).

A distributed file system stores
files on one or more computers
called servers and makes them
accessible to other computers
called clients.

For replicated volumes, the VolumeId is a replicated
VolumeId. The replicated volume ID brings together a
Volume Storage Group and a local volume on each of the
members.

l The VSG is a list of servers which hold a copy of the
replicated volume.

l The local volume for each server defines a partition
and local volume ID holding the files and meta-data on
that server

When Venus wishes to access an object on the servers, it
first needs to find the VolumeInfo for the volume containing
the file. This information contains the list of servers and the
local volume IDs on each server by which the volume is
known. For files, the communication with the servers in a
VSG is “read-one, write-many”; that is, read the file from a
single server in the VSG and propagate updates to all of the
available VSG members, the AVSG. Coda can employ multi-
cast RPCs, and hence the write-many updates are not a
severe performance penalty.

The overhead of first having to fetch volume information
is deceptive too. While there is a onetime lookup for volume
information, subsequent file access enjoys much shorter path
traversals, since the root of the volume is much nearer than is
common in mounting large directories.

Server replication’ like disconnected operation, has two
cousins who need introduction: resolution and repair. Some
servers in the VSG can become partitioned from others
through network or server failures. In this case, the AVSG
for certain objects will be strictly smaller than the VSG.
Updates cannot be propagated to all servers, but only to the
members of the AVSG, thereby introducing global (viz. serv-
er/server) conflicts.

Before fetching an object or its attributes, Venus will
request the version stamps from all available servers. If it
detects that some servers do not have the latest copy of files,
it initiates a resolution process which tries to automatically
resolve the differences. If this fails, a user must repair manu-
ally. The resolution, though initiated by the client, is handled

entirely by the servers.
Replication servers and resolution are marvelous. We

have suffered disk failures from time to time in some of our
servers. To repair the server, all that needs to be done is to
put in a new drive and tell Coda: resolve it. The resolution
system brings the new disk up to date with respect to other
servers.

Coda in Action
Coda is in constant active use at CMU. Several dozen

clients use it for development work (of Coda), as a general
purpose file system and for specific disconnected applica-
tions. The following two scenarios have exploited the features
of Coda very successfully. We have purchased a number of
licenses for Wabi and Windows software. Wabi allows people
to run MS PowerPoint. We have stored Wabi and Windows
3.1 including MS Office in Coda and it is shared by our
clients. Of course .ini files with preferences are particular to a
given user, but most libraries and applications are not.
Through hoarding we continue to use the software on discon-
nected laptop computers for presentations. This is frequently
done at conferences.

Over the years of its use we have not lost user data.
Sometimes disks in our servers have failed, but since all of
our volumes are replicated, we replaced the disk with an
empty one and asked the resolution mechanism to update the
repaired server. All one needs to do for this is to type
1S -1R in the affected file tree when the new disk is in
place. The absence of the file on the repaired server will be
noticed, and resolution will transport the files from the good
servers to the newly repaired one.

There are a number of compelling future applications
where Coda could provide significant benefits. _

FTP mirror sites should be Coda clients. As an exam-
ple’ let’s take ftp.redhat.com, which has many mirrors.
Each mirror activates a Perl script, which walks the
entire tree at Red Hat to see what has been updated
and fetches it-regardless of whether it is needed at
the mirror. Contrast this with Red Hat storing their ftp
area in Coda. Mirror sites should all become Coda
clients too, but only Red Hat would have write permis-
sion. When Red Hat updates a package, the Coda
servers notify the mirror sites that the file has changed.
The mirror sites will fetch this package, but only the
next time someone tries to fetch this package.

WWW replication servers should be Coda clients.
Many ISPs are struggling with a few WWW replication
servers. They have too much access to use just a single
http server. Using NFS to share the documents to be
served has proven problematic due to performance
problems, so manual copying of files to the individual
servers is frequently done. Coda could come to the res-
cue since each server could be a Coda client and hold
the data in its cache. This provides access at local disk
speeds. Combine this with clients of the ISP who
update their web information off-line and we have a
good application for mobile clients too.

Network computers could exploit Coda as a cache to
dramatically improve performance. Updates to the net-
work computer would automatically be made as they
become available on servers, and for the most part the
computer would operate without network traffic, even
after restarts.

50 LINUX JOURNAL 1 JUNE 1998

Our current efforts are mostly to
improve the quality of Coda. The
rough edges, which inevitably come
with research systems, are slowly
being smoothed out. Write-back
caching will be added in order for
Coda to operate much faster. The dis-
connected operation is an extreme
form of write-back caching, and WC

are leveraging these mechanisms for
write-back caching during connected
operation. Kerberos support is being
added. The networking protocols sup-
porting Coda are making this easily
possible. We would like to have cells
which will allow clients to connect to
more than a single Coda cluster
simultaneously. Further ports will
hopefully allow many systems to use
Coda.

Getting Coda
Coda is available by FTP from

ftp.coda.cs.cmu.edu. You will find
RPM packages for Linux as well as tar
files of the source. Kernel support for
Coda will come with the Linux 2.2
kernels. On the WWW site
http://www.coda.cs.cmu.edu/, you will
find additional resources such as mail-
ing lists, manuals and research
papers.

Peter adores his
wife Anne, and
together they love
Alaska with its
mountains, wildlife
and a halfway
acceptable popula-

tion density. Nothing is better
than having a moose on their
porch there, or camping on a
not too scary glacier. Until
March 1997 Peter was a faculty
member in the Mathematical
institute at Oxford. In the sum-
mer of 1995 Peter became presi-
dent of Stelias Computing Inc.
which assembled the InfoMagic
Workgroup Server. Dabblings in
Mach and the GNU Hurd
evolved into porting Coda to
Linux. E-mails about this with
Satya, the visionary leader of the
Coda and Odyssey projects, led
to a visit to Carnegie Mellon
University in late 1996 and
eventually to him joining the
Computer Science faculty. He is
now leading the Coda project.
He can be reached at
braam@cs.cmu.edu.

