A Casefor Dynamic Setsin Operating Systems

David Steere M. Satyanarayanan

November 30, 1994
CMU-CS-94-216

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Recent trends have exposed three key problems in today’s operating systems. The first is the emergence of 1/0O
latency as the dominant factor in the performance of many applications. The second is the need to cope with mobile
communication environments where bandwidth and latency may be highly variable. The third is the importance

of search activity to locating files of interest in a distributed system. In this paper we describe a single unifying
abstraction calledynamic sets which can offer substantial benefits in the solution of these problems. These benefits
include greater opportunityin the I/O subsystem to aggressively exploit prefetching and parallelism, as well as support
for associative naming to complement the hierarchical naming in typical file systems. This paper motivates dynamic
sets, presents the design of a system that embodies this abstraction, and evaluates a prototype implementation of the
system via measurements and an analytical model.

This research was supported by the Air Force Materiel Command (AFMC) and ARPA under contract number F196828-
93-C-0193. Additional support was provided by the IBM Corporation, Digital Equipment Corporation, and Intel Corporation.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of AFMC, ARPA, IBM, DEC, or Intel.

Keywords: Search, Browsing, Mobile Computing, Distributed Systems, File Systems, Prefetching, Performance,
Latency, Modeling, Dynamic Sets

1. Introduction

In this paper we consider the problem of high latencies during search or browsing in a large scale distributed data
repository such as AFS[13] or the World Wide Web (WWW)[1]. To solve the problem, we identify a new operating
system abstraction callelynamic sets. The essence of the abstractiontie explicit grouping of sets of file accesses

and the communication of this grouping by applications to the operating system. We demonstrate that this simple
abstraction can have powerful performance implications across a spectrum of common scenarios.

Dynamic sets can be used to reduce the aggregate I/O latency of a group of related requests. For example, they can be
used to cope with the increasing mismatch between CPU and disk speeds in high-performance computing systems. As
another example, dynamic sets allow mobile clients to overlap processing of data with its access over low-bandwidth
wireless links. As a third example, the explicit identification of associativity provided by dynamic sets can partially
compensate for the lack of temporal locality in contexts such as search.

To obtain early validation of the potential benefits of dynamic sets, we have built a simple user-level prototype. The
prototype exhibits significant performance improvements, although it is limited in scope. For example, on a suite of
test programs modelling overlap of data processing with network transmission, dynamic sets reduce total elapsed time
by almost a factor of four at 9600 baud. The benefits are, of course, highly dependent on the specific applications and
system parameters, but the use of dynamic sets did not hurt performance in any of the cases we considered.

We have also developed an analytical performance model, and confirmed its accuracy by comparing model predictions
with measurements of the prototype. The model is valuable in helping us understand the interplay of factors such as
network latencies and the amount of client data processing in determining performance. It also enables us to better
predict the behavior a full implementation currently under development will exhibit.

We begin the paper with a more detailed rationale for dynamic sets. Next we describe the design for our realization of
dynamic sets, then, in Section 4, we describe our prototype implementation. Section 5 derives a performance model
for dynamic sets, establishes its validity, and discusses the efficacy of sets in several different arenas. We conclude
with a description of work in progress, and a comparison of our work with other related research.

2. Motivation

To understand the value of dynamic sets, consider searching for data on a Unix-like file system. Although the file
system interface was not explicitly designed for efficient search, it is frequently called upon to support many types of
search. For instance, searching a collection of source files for a variable declaration is an everyday occurrence. More
recently, the advent of browsing systems such as NCSA Mosaic enabled the construction of hypertext documents
embodying numerous file system objects. In these and other similar examples, the caching embodied in most file
system implementations is ineffective at masking 1/O latencies — there is very little temporal locality to exploit.

Consider the execution of the simple commagdep foo *. c, in a typical Unix system. The wildcard " is
expanded by the shell, and the application programep” is given a sequence of filenames matching the pattern
“*_c¢". Each file is successively opened, read in its entirety while searching for occurrencksadf ‘and then

closed. Although the precise identity of files needed is determined once the wildcard expansion has been performed,
this information cannot be exploited by the operating system to prefetch the files from a disk or over the network.
Further, the order of file opens is fixed at wildcard expansion time although searching those files in a different order
would still preserve the semantics of the command. This means that the operating system cannot reduce the overall
elapsed time for the command by reordering requests to exploit differences in the I/O latencies for different files.

Of coursegr ep involves so little processing that there is little to be gained by overlapping processing with 1/0. But
the reduction in total latency due to reordering of file opens can still be significant if there is parallelism within the
I/O subsystem. More importantly, the above example is only a representative of a common Unix programming idiom.
One could envision a similar scenario using a query-by-image-content search program [8] or an interactive search

program accessing a collection of images stored as Unix files. In those cases, the processing or user think times will
be large enough that overlapping them with file access will substantially reduce overall latency.

These examples reveal two distinct limitations of current Unix systems. First, knowledge of related file accesses is
lost to lower levels of the system even when it is evident to higher levels of the system. Second, an ordering of such
file accesses is imposed too early in their handling. Dynamic sets address both these limitations. The set abstraction
allows applications to identify a related group of file accesses and allows this grouping to be exposed to lower levels
of the system without imposing an unnecessary ordering.

A secondary benefit of dynamic sets is that they allow the superior scaling characteristics of hierarchical naming to
be seamlessly combined with the convenient search capability of associative naming. For instance, suppose MIT
and CMU maintain databases indexing their computer science technical reports stored in wordd~&ideuser of

dynamic sets might browse for a report on some topic by using grep to search through reports returned by a query run
on the databases. In syntax presented below, such a query would looklik@“" di stri but ed systens"
"lafs/{mt,cmu}/tr-db/\sel ect nane fromreports where author |ike "david"\'".

The databases used in the above example effectively serve as “navigational databases” to better focus search in a large
subtree of files. A forerunner of this idea was embodied in the Semantic File System (SFS)[4]. WAIS, gopher, and
various welspiders serve a similar purpose for the WWW. We will discuss the relationship between dynamic sets and
these systems in Section 7.

3. Designof SETS

A proper realization of dynamic sets must posses the following characteristics. First, the set mechanism must be
lightweight to minimize unnecessary overhead. Second, the semantics should be strong enough to satisfy application
requirements, but not be overly restrictive on system design. Third, the set interface should be easy to use, while
allowing applications to cleanly inform lower levels of future accesses. This section describes the design of an
instantiation of dynamic sets on a Unix platform. For clarity, the realization will be called “SETS”, while the
abstraction will continue to be “sets”.

A set is a dynamically created collection of objects. “Dynamic” means a set is not persistent, as it need only exist
as long as the application that created it. Preserving the results longer can not only consume resources (sets can be
big), but adds no useful function to the system. We posit that searchers are interested in timely information; e.g. a
user wishing to examine today’s weather in a number of cities would not be satisfied if presented with the data that
was obtained when he ran the search the previous week. If a user wishes to create a permanent copy of a set he could
create a copy using standard file system tools.

The mutability of sets and objects raises two important issues: “What is the proper definition of set membership?”
and “How current do the members of the set need to be?”. These questions have been answered in the context
of distributed databases (e.g. read-only transaction[3]), but we feel that these solutions are not appropriate to the
large scale distributed systems such as WWW or AFS[14]. For one, many types of data do not need such strong
guarantees[2, 5], and two, the target systems do not provide the mechanisms necessary for these strong guarantees.

In addition, long running queries (due to large, physically dispersed data repositories) are likely in a system that spans
the Internet. Maintaining tight consistency is either too restrictive (e.g. limiting partitioned access) or imposes too
high a performance penalty (e.g. distributed locking). We believe that although some applications require strong
consistency, users of many other applications are willing to trade these guarantees for better performance. For this
reason, SETS provides a much weaker promise, captured in these two assertions.

1. Every object in the set satisfied the query at some point during its run.
2. Once an object is in the set, it will remain in the set.

Although these may seem like weak promises, they strike a balance between the needs of scalability and availability,
and the need to offer useful semantics. An earlier paper sketches the space of weak consistency in this context, and
contains a more detailed discussion of these issues[15].

3.1. SETSInterface

The operations in the SETS interface are presented in Figure 1. This subsection discusses the four most important
operationsset Open, setlterate, setDi gest,andset C ose. The remainder are standard set operations
and will not be discussed further.

Basic set Handl e setOpen(char *setPathname);

Set error Code setClose(setHandle set);

Functions| fi | eDesc setlterate(setHandle set, int flags);

error Code setDigest(setHandle set, char *buf, int count);
Auxiliary | set Handl e setUnion(setHandle setl, setHandle set2, int flags)
Set set Handl e setlntersect(setHandle setl, setHandle set?, int flags);
Functions| err or Code setRewindlterator(setHandle set);
error Code setRewindDigest(setHandle set);

i nt setSize(setHandle set);

bool setM ember (setHandle set, char *elem);
error Code setApply(setHandle set, void (*f)());

Table 1: SETS system call interface

Sets are created by callirget Open with a set pathname (using syntax explained in Section 3.2), and receiving

a handle for the open set in return. The system expands the set pathname to obtain a list of names of individual
objects in the set. SETS is free to determine the aggressiveness with which this expansion should be performed. In
particular,set Open does not require that any expansion be completed before the call returns. The system may also
fetch individual objects in the set at this time, but is not required to deseb.Cl ose terminates use of a set handle,
allowing the system to free any resources used by the corresponding set.

SETS provides two ways of examining the contents of an open set to allow both brogsstrig (gest) and iteration
(setlterate). set Di gest assumes thata summary of the objects is sufficient to guide selection, and so can avoid
the cost of obtaining the members’ dateset | t er at e assumes that the data of all the objects is of interest, and
fetches each in turn. The distinction between these operations is similar to the difference between hairamg "

using the names or attributes to select a file vs runnimg’p f oo *. ¢” and choosing a file based on the results.

set Di gest isverylightweight, presenting only summary information aboutthe members. The nature of the summary
is dependent on the type of the members. For Unixfiles, the name of the file is retusedBygest , while animage

object summary might be a lower resolution/thumbnail presentation of the image. A special vaiueoofCode is

returned to indicate that the set has not yet been fully expanded. Upon seeing this condition, applications know that
future calls toset Di gest on this set may return addition values. This is valuable to interactive applications that
cannot afford to wait for the set to be fully expanded.

set | t er at e is used when accessing the contents of individual members. Each call to the iterator returns a standard
Unix file descriptor for a previously unprocessed member, so a member must be at least partially fetched before it can
be returned byget | t er at e. But its use allows the system to more confidently allocate resources for prefetching
the member, since it is a stronger hint of future access to that member than thesesebbfyest .

The following pseudo code is typical of the way standard Unix applications sughegs would use SETS.

handl e = set Open(argv[1]);

while (fd = setlterate(handle)) {
process(fd);
cl ose(fd);

set G ose(handl e) ;

The command is invoked with the names of sets to process. Each set is opened and the members are produced using
set |t erate. The routingpr ocess() performs the application specific function, in the casgroép reading the

file sequentially and searching for a specific string. When processing is complete, the member is closed, and upon
termination of the iterator, the set is closed. As one can see, it is quite possible to modify existing applications to use
sets with little or no knowledge of the details of the application.

3.2. Naming

When a set is opened, the application supplies a pathname specifying the names of the objects in the set. SETS defines
three types of set specifications, an example of each being given in Figure 1. Firsexpiiai specification, a user
enumerates the members of the set, either using full names or pattern matching. 8gmeesmcific specifications

are special strings that can be evaluated by servers that export a particular type of data, such as a database or the
WWW. Third, executable specifications are binaries that return a list of the names of files to be put in a set. This

class of set specification raises many issues, such as security and heterogeneity, which are not addressed in this paper.
It is important to note that SETS only provides naming support, and does not supply executable binaries nor the
type-specific services (e.g. databases). Because many Unix users are already familiaragithwilecard notation,

we have extended this notation to include all three forms of set specification.

As seen in Figure 1, a pathname in the extended syntax can have a set specification in any component. The portion of
the pathname after a specification treats the set members as directories. For iristaded,{cru, mi t }/ st af f

looks for a subdirectory of coda/ cnu and/ coda/ ni t namedst af f . If no such directory exists, the resulting

set is the empty-set. As another example, a type-specific query applied to an object of the wrong type will also return
the empty-set. A normal Unix name is just a special case of a set name that refers to only one object.

Explicit: / coda/ usr/dcs/*src*/*.c

Type-specific: /coda/ {cmu, mi t }/ staff/\sel ect home where nane |ike "%lavi d% \

Executable: / coda/ sour ces/ %ryMakeDepend foo. c%

Because many Unix users are already familiar withabé wildcard notation, we extended this syntax to support set specification.
Explicit specifications use standard csh notatiofype specific specifications have 3 portions: the prefix identifies the object on
which the query will be run (such as a database), and is terminated by thg firte' query is delimited by¥. .. \"; and the suffix
which will be appended to the query’s resulBxecutable specificationsare similar to type specific; the prefix is the name of the
working directory in which the binary will be run, and the “%” delimits the command used to invoke the binary.

Figure 1: Examples of the three types of names supported by SETS.

4. Prototypelmplementation

To gain an understanding of the performance implications of SETS, we have built a prototype based on a simplistic
distributed file system. The prototype is a library that exports the set abstraction to applications. The file system
consists of a client library and a singly threaded user-level server which exports remote procedure calls (RPCs) to
open, read, write, and close files local to the machine on which the server is running. The client parses pathnames
of the form/ <ser v>/ <l ocal - fi | e>, redirecting I/O requests on the file to the server on machg®r v>. No

4

caching is done by the client library, although a file may be preread after it has been opened depending on the current
activity of the client and set library. Caching at the server is limited to Unix’s disk block buffer cache.

The prototype supports tHe } csh notation, and SQL queries as shown in example 2 in Figure 1. Any component can
contain a query, although meaningless queries (such as an SQL query run on the file system root) may return the empty-
set. The experiments discussed in Section 5.2 use pathis{lder v1, serv2, serv3}/tnp/file{l, 2, 3, 4}.

The application used in the experiments is a prototypical search program. It processes all the members of a set,
sequentially reading data from a file and spending a parameterized amount of time processing each byte read. The
application has one thread, but the number of threads in the SETS library is specified at run-time. As in a time-sharing
environment, if the application uses the CPU for more than a predetermined limit (roughly 10 msec), it is interrupted
and other threads are allowed to run. To prevent SETS from blocking the application’s forward progress, the SETS
threads run at a lower priority than the client thread.

4.1. Limitationsof the Prototype

Several implementation decisions were orthogonal to the design of SETS, yet had negative impact on the prototype’s
performance. These solutions were chosen to ease the implementation, but they also added unnecessary inefficiencies
which detracted from the benefit of using dynamic sets. The kernel implementation of SETS currently in progress
should avoid these costs.

First is the use off-the-shelf user-level thread and RPC packages([11]), which introduce inefficiencies that restrict the
achievable parallelism. The threads package provides non preemptive coroutines, and so can only schedule a thread
when the currently active thread explicitly yields. This means the entire application (and client library) are suspended
when any thread makes a system call (such as a read from a socket). Additionally, the RPC package has higher
client CPU overheads than a streamlined kernel implementation. This loss of parallelism has significant impact when
network latencies are are low. Larger network response times tend to hide this effect.

Second, we chose to transfer data via arguments to RPCs, which limits our maximum transfer size to 3K. This means
the prototype pays a substantial amount of overhead per byte. Although this effect is lower for a small file, it has a
clear impact as the size of the file grows. Predictions of the performangé6fs under other conditions, such as

whole file caching (as in Coda[12]) or large block transfer (as in AFS[6]), are presented in Figure 5.

Third, the prototype uses simplistic resource scheduling. Forinstance, contention for the CPU is managed by the thread
package, and does not take contention for other resources (data, sockets) into account. Additionally, the prototype
aggressively prefetches without regard to client activity. So a client demand read can be blocked by a preread for
some other file on the same server. These prefetch policies will be one of the interesting issues explored in the kernel
implementation of SETS.

5. Performance Model

This section presents a linear model of the aggregate latency to fetch a group of objects. The model focuses on the
chief advantage of dynamic sets: the exploitation of available parallelism in common data storage systems. This
parallelism takes two forms: overlapping CPU and I/O activity, and overlapping I/O through independent channels.
Comparisons between the model predictions and experiments on the prototype are presented below and confirm the
model to be accurate to within 10%.

To simplify the model, we assume thatthere is no contention between the acquiring of data and processing of other data,
and that communication to independent servers will not interfere with each other. The advantage to this assumption
is that it greatly simplifies our model;without it we would need to use a queueing network. The disadvantage is that

such contention may reduce the benefit of using SETS, and by ignoring it the model may overestimate the benefit of

sets. However, the graphs below show that the model underestimates the benefit in almost every case, and given the
relative accuracy of our predictions, the assumption seems reasonable.

In this section, we distinguish betweétt’ R/ AL, the time to fetch and process a set of elements serially (as it is
normally done on today’s systems), ad'7'S, the time taken using dynamic sets. The predictions and experimental
results are presented as ratios betwgéiR/ AL andSE£7T'S, both to bring focus to the key point of the study, as well
as to reduce the impact of the prototype’s inefficiencies on the results.

5.1. Derivation of Model

The model consists of a number of equations describing the various costs involved in fetching and processing the
members of a set. The main parameters, listed below, allow the model to describe a wide variety of scenarios, some
of which are discussed in Section 5.3. Other parameters used in the modeD:gCost) are implementation
dependent, and are presented in the next section.

s The number of independent servers storing members of the set.

band The network throughput (bps). All routes to servers have the same bandwidth.
n The number of objects in the set. Members are evenly distributed across the servers.
size The size of the files. All the files in a set are the same size.

think The amount of processing/byte, either from the application or the user.

In boththeSERIAL andSET'S cases, three kinds of work get done: opening a filgef:C'ost), reading from a file
(ReadCost), and processing datahink). The first two are RPCs; the basic cost of an RPC is described in equation
(1). ServCost is the amount of processing on the server (different time®femCost and ReadCost). Nullis the

round trip time for an RPC with no arguments and for whitlrvC'ost = 0. These two terms comprise the latency

of an RPC. The last term is the bandwidth, whB8ng es is the amount of data transferréd;.d is a model parameter,
andSlope is a constant factor containing the percentage of achievable bandwidth and various conversions (such as 8
bits/byte).

Slope

RPCCost = Null—i—Seer’ost—i—b

x Bytes (1)
and

Equation (2) shows the amount of work done to process an open file. In the prototype, an open returns one buffer of
data, and a read triggers a preread of the next buffer. Thus processing and reading of a file’s data can be overlapped,
saving the application the lesser of the two costBeads represents the number of RPCs required to read the file, and

is a function of the size of the read buffer, how much data is read at open time, and the manner in which end-of-file is
detected.

Work = wmax(size X think,nReads x ReadCost) 2

The equation folS £ RI AL is fairly simple, the only overlap occurs from prereading the data in an open file. The
cost forS E'1'S is constrained as follows: before data can be processed it must be read; before a file can be processed,
it must be opened. The read pipeline is started by the open fetching a buffer; the open pipeline is started by opening

6

the first member. However, every time an RPC is made,1 other RPCs can happen in paralidh particular, this
means each RPC delay can be overlapped with the processing of the resuytewibus RPCs. The last term in (5)
represents the cost to drain the pipeline.

Serial = n x (OpenCost + Work) (3)
end = ((n—1)mods)+1 4
Sets = OpenCost + DT max(s x Work, OpenCost) + end x Work (5)

The chief benefit of using dynamic sets is summarized in the second term of equation (5); effectipelys can be

done at once. In addition, if the client is sufficiently CPU intensive (lafgek), network costs can be completely

hidden behind client processing. We conjecture that in the future the amount of processing between demand fetches
will continue to be high, due to both sophisticated applications (e.g. pattern matching, signal processing), and the
reliance of flow control on human actions (such as “clicking” for the next element) by some applications. Both the
model and the prototype show that these effects can be additive.

5.2. Validation of M odel

The model was validated by comparing its predictions with the results of experiments on the prototype. Three
experiments were run to show the accuracy of the model along different dimensions: varying the size ofithe set (

the size of the filess¢ze¢) in the set, and the bandwidthu(.d). The graphs in Figure 2 and Figure 3(a) present both

the predicted (curves) and observed (points) results for the three sets of experiments, while the tables in the appendix
present the means (and variance) of the observed results. A note of caution: in order to make details of the curves
visible, the scale of the y-axis changes from graph to graph, although the scale of the x-axis remains the same.

The experiments were run on 5 Decstation 5000/200s (1 client/4 servers) connected by 10base?2 Ethernet, running the
Mach 2.6 operating system. The data files were uniformly distributed over the servers, and resided on the servers’ local
disks. The data sets were small enough to fit into the servers’ buffer caches (with the excepiian-6f100000),

and the experiments were run on warm server buffer caches. Each data point is the mean of 10 trials; no effort was
made to restrict use of the network nor the machines during the experiments. Times were obtained via a hardware
cycle counter which our measurements show to be accurate to 50 microseconds.

To obtain the RPC parameters used by the model in the previous section, we timed round trip delays to open a file and
read one buffer; successive calls increased the size of the buffer from 0 bytes to 3000 bytes. The parameters obtained
are: Null = 5.1 msec,Slope = 8221 (unitless)ServCost = 8.3 msec for opens, antlervCost = 6.4 msec for

reads. With these numbers, our network delivers roughly 4 Mbps end-to-end.

Low bandwidth connections were emulated by a delay mechanism in the low levels of the RPC package. This
mechanism multiplies the size of the packet and the desired bits per second to determine the time the packet should be
delayed before being sent. Successive packets to the same machine will be additionally delayed behind earlier packets,
although packets to different machines will not affect one another. Although this mechanism is an adequate predictor
of actual networks[7], we suspect it added some error to our results. In particular, the delay mechanism uses the client
CPU, increasing the contention for it, and reducing the amount of attainable parallelism. An effect of this contention
can be seen in the discrepancy between the model and experimental results in Figure 3(a). For smallepualdies of

the amount of CPU required to delay packets is higher, and the observed discrepancy is larger. Unfortunately, it is too
difficult to experimentally prove that the error for these curves is entirely due to the use of this mechanism.

Examining the graphs in Figures 2, and 3(a), one can see that the model closely predicts the benefit of sets over several
dimensions. In fact, the average magnitude of the error is 96% (1.2). The high variance is due to three data

1This stems from our assumption that sufficient network bandwidth is available; see Section 5.3.1

7

—~4.0 - —~4.0 - -
(,’_7 - — n =232, Predicted (,’_7 size = 1000, Predicted
u + n=232, Observed u « size =1000, Observed
2 - n =64, Predicted 2 ----- size = 10000, Predicted
x3.5 v n = 64, Observed xr35 * size = 10000, Observed
u -— n =16, Predicted u -— size = 100000, Predicted
-:; Y * n =16, Observed g ¢ size = 100000, Observed
Q = H Q
e | n =4, Predicted e |
% 3.0 n =4, Observed % 3.0
¥
2.5

201

1.5

10 20 30 40 50 60 70 80 90 100 0 10 2

1.0 . :
0 30 40 50 60

70
Think time (usec/byte) Think time (usec/byte)
(a) Predicted and observed benefitiaf7'S vsn (b) Predicted and observed benefitof 7S vs size

80 90 100

These graphs presents the results of two experiments on the prototype. The lines show the model predictions, and the points
the measurements of the prototype over Etherbetd =~ 4Mbps), and in both cases = 4 . The high error atsize =
1000Q¢hink = 0) and ize = 10000Q¢hink = 0) in (a) and at{ = 64,think = 0) in (b) is mostly due to the model’s
restrictingS E'T'S aggressive prereading of data.

Figure 2: Two dimensions along which the model was validated.

points, without which the average and variance would be 7.3% and 3.9 respectively. The three data points occur at
(size = 100000think = 0), (size = 1000Qthink = 0), and(n = 64,think = 0). The error in all three is largely

due to the fact that our model uses a simplified prefetching strategy which is more restrictive than the prototype’s.
A more exact (but complicated) model presented in Appendix 1 significantly reduces the error of these three points,
yielding average error magnitude of 8.786£ 5.6).

Each curve can show potentially three distinct phases (as exemplified byrthe= 64 Kbps curve in Figure 3(a)).
Initially the curve is flat, since processing time is completely subsumed by I/O costs. Next, a small benefit is gained
by further overlapping processing with open costs. Finally, the effective benefit of sets drops off, asymptotically
approaching D as processing costs become the dominant factoredror = 9600 bps, only the first phase is seen;

the cost of processing never exceeds the cost of reading a bufferoior= 2 Mbps and higher, processing costs
overwhelm open costs before they overwhelm read costs, thus skipping the second phase.

It should be noted that even in the worst caseg,/'S does provide a benefit (although the percentage benefit is
small). The reduced benefit is due to the decreased contribution of 1/O to overall perform&ics; reduces 1/0
costs significantly in all the cases we examined. Thus even in the bad cadeskiis human processing time, the
savings froms £7'S will be very noticeable because the latency is directly visible to the user.

5.3. Model Extensions

We now use the model to predict the benefit from using dynamic sets in several different situations. The first subsection
extends the model slightly to predict the performance of dynamic sets when run on a mobile client connected to the
network by a single low bandwidth link, such as a cellular modem. The following subsection then explores the impact

—~6.01 —~3.51
4 band = 9600, Predicted 2 —— WeakBand = 9600
wol + band = 9600, Observed e | WeakBand = 64000
2 ssp | band = 64000, Predicted g -— WeakBand = 2000000
x * band = 64000, Observed (2
us.0r — band = 2000000, Predicted £ 3.01
-:; o band = 2000000, Observed S —
245 L @ \
m P

4.0f 2.5

o . . ° ° \
350
* . \
3.0f 200\
R .
25l \
% .
\ \
2.0 \ 15 N .
157 ~o ~———
~..__ o P T T T e
______________ o
1.0 * : ; ; : ; : : : ’ 1.0 : ; ; : ; : : : ’
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Think time (usec/byte) Think time (msec/byte)

(a) Predicted and observed benefitsdf7'S vsband (b) Predicted benefit of £7'S over weak connections

Graph (a) presents both the predicted (lines) and observed (points) benefit fronS#&ing for various values oband, with
n = 40,s = 4, andsize = 1000 bytes. We conjecture that a large portion of the difference between the predicted and obseryed
benefit for 9600 and 64000 bps is due to the use of a slow-network emulator. Graph (b) presents predidibisfaver a weak
link having bandwidths of 960@400Q or 2000000 bps respectively, and whilind = 4 Mbps,s = 4,n = 40, andsize = 1000
bytes. The curve foweak Band = 2000000 bps has the same shape the onfeifed = 2000000 bps in (a) because the influence
of the weak link is overcome by other costs.

Figure 3: Performance benefit §£7'S for high latency or weakly connected clients

that a whole-file or large-block caching strategy would have on the performance of dynamic sets.

5.3.1. Weakly connected mobilehosts

A common scenario in the future will be a client connected over a weak (low bandwidth or lossy) link to the Internet,
and then over various Internet routes to servers (see Figure 4). Forthese clients, a significant portion of communication
costs will be transmission over the weak link, and since all communication must use the link serially this may have
drastic effects on the benefit of dynamic sets.

Our original model is extended to include this scenario by adding a pararfiéte% Band, which is the bandwidth

of the weak link. Since the weak link is an independent component, the cost of using it can be considered separately
from the other costs. Equation (6) definésak Link to be the total time that data is being transferred over the weak

link.

Slope

WeakLink = nx sizeq b

(6)

Equations (7) and (8) show the costs fof R/ AL andS E7'S over the weak link. In the former case, the cost of the
weak link is added to the other costs since the files are processed serially. In the latter case, the use of the client CPU
can be overlapped with the use of the weak link, which in turn can be overlapped with use skttvers. Unlike the

9

WeakBand band Serverl
CIient—CC(— Bridg Server?

Server3

This picture shows a weakly connected mobile client connected over a wireless link to a set of server. The portion of the netwotk to
the left of thebridgeis characterized bif/ ea k Band, while the portion to the right is characterizeddaynd.

Figure 4: Example of a weakly connected mobile host.

model in Section 5.1, the client starts the pipe by sending off the first mesSage«p is the client protocol overhead
to send a message), drives the weak link at full utilization until the set is exhausted, and finishes up by processing the
last buffer (F'inish is think multiplied by the amount of data in the last buffer).

Serial = n x (OpenCost + Work) + Weak Link @)
Sets Startup + max(Weak Link, max(n x Work, L OpenCost)) + Finish (8)
s

The graph in Figure 3(b) shows the predictions of this model. The graphmuse40, size = 1000,s = 4, and

band = 2 Mbps. The curves present the behavior for three different weak link bandwidths. WHaéBand =
2000000, the behavior is similar to that presented in Section 5.2 because communication is a small part of the overall
cost. In the other two cases, different behavior is predicted. Both have a rising cost, since the weak link contributes
the largest part of the latency. Singé/7'S can effectively overlap both client and server processing with weak link
transmission, it does not pay a cost for client processing, and thus the positive slope. This is an important result, as we
conjecture resource poor mobile clients connected over weak radio or telephone links will be common in the future.

5.3.2. Impact of cache block size

The benefit froms £7'S is maximized when a balance is achieved between the work done to open set members and
work done to process them. To understand this effect, we used the model to predict performance as the buffer size
is increased from O to 100KB. The low end corresponds to demand fetch of data, while the high end corresponds to
whole-file prefetch. The graphs in Figure 5 present the benefit vs the transfer buffer size, each graph using the same
model parameters as the data pointsk = 0, s = 4, n = 40) and (hink = 100, s = 4, n = 40) from Figure 2(b).

For reasons of brevity, the intermediate valueshafik are not shown. As expected, the benefit of sets is reduced as

the influence ofhink increases and diminishes the influence of 1/0O on overall performance. (Note that the scale of
the y-axis is not the same for the two graphs.)

Each curve shows that maximum performance is obtained when the amount of work to fetch data is split between the
open and the read phases. For small files that is equivalent to whole-file transfer. For large files, however, the high cost
of fetching the file at open can delay the application. This is an example of where the fetching policy of the system
can greatly affect overall performance. We hope to explore these issues, and to develop policies to allow systems to
correctly adapt their strategy to current operation load.

10

20071 — size = 1000 7 L2 — size = 1000
)] e size = 10000 e] size = 10000
855 — size = 100000 2 — size = 100000
))
= 5.01 e
o 21157
[} \ [}
M5 rrrrrrerrereereereeseseciicieciiiscisiinns g)
/T~
4.0 /
35[,/ 1.1
/
3.0 K
/
25
g 1.05}
2.0 e
S
: 550 AL L LR L L EEREEIIES
15p - e
—_ - - T
1.0 . ; ; ’ - : 3 y y ' 1.0—=—" y ’ . y : . - y '
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Size of Transfer Buffer (KB) Size of Transfer Buffer (KB)
(a) benefit vs bufsizéhink = 0 msec/byte (b) benefit vs bufsizéink = 100 msec/byte
These graphs show that the benefit of dynamic sets is partly dependent on the choice of prefetching strategy. The X-axis shows the
maximum amount of data that can be transfered at a time, while the Y-axis shows the behEfit 6f Lower X values correspond
to demand fetching pages; higher values correspond to large chunk or whole file caching. As can be seen, maximum performance is
obtained when the correct balance between fetching at open and pre-fetching data is obtained. In bath-grphs= 40, and
band = 4 Mbps. Note that the scale of the y-axis is not the same for the two graphs.

Figure 5: Predicted effect of the size of the unit of transfer on the benefit of SETS
6. Work in Progress

The initial results are sufficiently promising that we are currently implementing a refined and more complete version of
SETS in several versions of Unix (Mach 2.6, NETBSD, Linux) and integrating it with several types of storage systems
(Coda, Informix databases, WWW). To achieve maximal performance, we have added the interface in Figure 1 to the
system API, placing SETS inside the kernel in close proximity with the name resolution code. With this design choice,
we should be able to achieve tight integration with multiple lower level file systems, allowing a set to span different
systems.

At the time of this writing, a user of SETS can wsh wildcard notation, Informix SQL queries, or a subset of WWW
URLSs to specify queries. URLs that name HTML documents are treated as queries by parsing the HTML document,
identifying all links to other documents, and creating a set to hold those documents. With this, a user of SETS can use
Lycos’, the WebCrawlet;, or other WWW indexing tools to search for WWW documents, and enjoy the benefits of
dynamic sets when examining the results.

With this full implementation of SETS, we hope to explore many issues that were raised by the prototype. First,
how well can dynamic sets be integrated with an existing distributed file system? How will caching and dynamic
sets interact in practice? Second, how difficult will it be for an implementation to achieve substantial improvement
via dynamic adaptability? Third, what techniques can be exploited to increase support for mobile, weakly connected
clients? Finally, how will dynamic sets perform when exposed to a real user community? Many issues of the effects of

2http://lycos.cs.cmu.edu/cgi-bin/pursuit

Shttp://www.biotech.washington.edu/WebCrawler/WebQuery.html

11

competition for and consumption of resources can only be explored when a system is supporting real user workloads.

7. Related Work

The problem of locating information in a distributed systems has received alot of attention over the past decade. There
are two aspects to this problem: locating the information that satisfies a query and fetching the information for the
application. The former is the domain of Information Retrieval (Salton and McGill[10] is a good introductory text).

One reason so many researchers have focused on this aspect of the problem is that until now, the cost to locate the
information subsumed the cost to fetch it. The rise of wide area systems and mobile clients, however, changes this
picture because of the high latency to access remote data. Our work focuses on the second aspect of search and
assumes the existence of reasonable indexes, and so can leverage the results of others.

There are a number of recent systems that can benefit from our techniques. The most popular of these is the WWW[1],
a hypertext document that spans the Internet. As mentioned in Section 6, we are developing a system that treats URLs
as queries, treating the documents pointed to by links in an HTML file as members of the result set. We hope the
benefit of dynamic sets can then be made apparent to users of the Web.

Another example is the Semantic File System (SFS)[4], which attempts to provide automatic indexing of information

in a file system by creating an index at a server, and updating it as files are created or modified. The SFS extends
the traditional Unix pathname mechanism to support conjunctive queries over a space of name-value attribute pairs.
Dynamic sets has a very different focus: that of reducing the latency seen by a client. As such, the SFS does not
attempt to address the primary issues focused on here. However, one could easily envision adding dynamic sets to
SFS, thus merging the benefits of both systems.

As a method for prefetching, dynamic sets are similar in nature to Transparent Informed Prefetching (TIP)[9]. In fact,
dynamic sets and TIP were both inspired from the same basic problem, and dynamic sets can be thought of as a very
strong form of TIP-style hints. The use of sets allows the system to prefetch, lazily fetch, and/or reorder the fetching
of objects in the set, whereas TIP hints are limited to prefetching. However, TIP hints can be used to specify how a file
will (probably) be read (e.g. stride width), whereas dynamic sets only inform the system that an object will (probably)

be accessed. TIP and SETS could easily be integrated; for instance one could envision using TIP to specify read access
patterns while iterating on a set.

8. Conclusion

The current status of our work provides preliminary confirmation of the feasibility and potential benefits of imple-
menting dynamic sets in a Unix environment. Although our prototype is limited in many ways, it is realistic enough

to give us first-hand experience in the use of dynamic sets. Our understanding of the performance benefits of dynamic
sets is confirmed by the validation of our model with respect to the prototype. The more refined implementation of
SETS currently under way will allow us to realize the full potential of dynamic sets.

As discussed earlier in the paper, search in various forms is an increasingly important activity in computing systems.
Currentfile system mechanisms perform poorlyin the absence of temporal locality, which is typical of search scenarios.
We believe that dynamic sets will substantially improve the performance and functionality of search in distributed
environments, including ones involving mobile clients.

References

[1] T. Berners-Lee, R Cailliau, A. Luotonen, H.F. Nielsen, and A. Secret. The world wide @@hmunications of
the ACM, 37(8), August 1994.

12

[2] A.D. Birrell, R. Levin, R.M. Needham, and M.D. Schroeder. Grapevine: An exercise in distributed computing.
Communications of the ACM, 25(4), April 1982.

[3] H. Garcia-Molina and G. Wiederhold. Read-only transactions in a distributed datah@ke Transactions on
Database Systems, 7(2), June 1982.

[4] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O'Toole, Jr. Semantic file systemBrolreedings of the
13th ACM Symposium on Operating Systems Principles, October 1991.

[5] R. Golding. A weak-consistency architecture for distributed information servieasputing Systems, 5(4), Fall
1992.

[6] M. Kazar, B. Leverett, W. Anderson, V. Apostolides, B. Bottos, S. Chutani, C. Everhart, A. Mason, S. Tu, and
E. Zayas. Decorum file system architectural overviewSlmmer Usenix Conference Proceedings, Anaheim,
CA, 1990.

[7] L. Mummertand M. Satyanarayanan. Large granularity cache coherence for intermittent connectButymbn
Usenix Conference Proceedings, Boston, 1994.

[8] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, and C. Faloutsos. The QBIC
project: Querying images by content using color, texture, and shape. Technical Report RJ 9203 (81511), IBM
Research Division, 1993.

[9] R. H. Patterson and G. A. Gibson. Exposing I/O concurrency with informed prefetchimyotsedings of the
3rd International Conference on Parallel and Distributed | nformation Systems, Austin, TX, September 1994.

[10] G. Salton and M. McGillIntroduction to Modern Information Retrieval. McGraw-Hill, 1983.

[11] M. SatyanarayanarRPC2 User Guide and Reference Manual. School of Computer Science, Carnegie Mellon
University, October 1991.

[12] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere. Coda: A highly available file
system for a distributed workstation environmdBEE Transactions on Computers, 39(4), April 1990.

[13] M. Spasojevic and M. Satyanarayanan. A usage profile and evaluation of a wide-area distributed file system. In
Winter Usenix Conference Proceedings, San Francisco, CA, 1994.

[14] D. Steere, M. Satyanarayanan, and J. Wing. Dynamic sets for seafetacaedings of the 13th ACM Symposium
on Principles of Distributed Computing, August 1994.

[15] J. Wing and D. Steere. Specifying weak sets. Technical Report CMU-CS-94-194, School of Computer Science,
Carnegie Mellon University, September 1994.

13

A Extending model to allow aggressive read-caching

As mentioned in Section 5.1, the model presented earlier does not capture the full advarstagesof Since it can
open a file before the file is requested by the applicatidii]'S can also start prereading the file if network bandwidth
is available. Unfortunately, this adds substantial complexity to the model, and only reduces the errokintian

low. There are two reasons why it does not help morehask grows. First, the client spends more time thinking,
allowing more of the reading to be done in the simple prereading sche& 8f AL, and thus reducing the benefit

of SET'S. Second, I/O is a smaller percentage of overall performance, thus reducing the potential benefit of sets.

The new model allows the set mechanism to preread an openfile if a server is not being used. For, @y éiléime;

is the amount of time the network has been unused since that file was opened. Equation (9) defines this to be the
difference between the time to process the bytes in files 1 thrjugtid the time to open filéand to open and fully

read files 1 through— 1 ats servers. The symbel connotes subtraction over natural numbers, i.e. if network time
exceeds processing timByecl'ime; is defined to be 0.

- OpenCost + (i — 1) x (OpenCost + nReads x ReadCost)

FreeTime; = 1 X size x think —

(9)

S

The time to process a fildi(ork;) is redefined to allow some of the read work to be performed during the free time.
Equation (10) shows that some number of reads may have been done before the application first examines the file, and
this reduces the number of reads that have to be done during the processing of the file.

Freelime;

ki =] think, ds —
Wor max(size X think, (nReads {ReadCOSt

J) x ReadCost) (10)

Equation (11), like equation (5) in the simpler model, has three terms: the cost to start the pipeline, the cost of a pass
through the pipe times the number of passes, and the cost to drain the pipe (processthértesnbers). Here we

use summation instead of multiplication, since the cost of each term can change over timeS /St /. cannot

read a file before it opens it, the equation for it remains unchanged from (3).

I.% -1 (i+1)xs end
Sets = OpenCost + max(Z Work;, OpenCost) + Z Work; (11)
=0 j=ixs+1 j=1

The overall effect of this change on the accuracy of the model is to lower the average error from 9.580fwiith?)

to 8.7% (withe = 5.6). In particular, the error at the three most troublesome data points for the last model was
substantially reduced (from 67% to at most 27%), and at only one data point was the error larger than 20%. We
conjecture that the remaining error is the result of ignoring the contention; a queueing model would probably reduce
the error further, but we feel the effort would not be commensurate with the greater accuracy.

14

B Experimental Data

Table 2, Table 3, and Table 4 present the raw data corresponding to the data points in the graphs in Figure 3(a),
Figure 2(a), and Figure 2(b). Three experiments are presented: the first shows the effect of bandwidth, the second
shows the effect of set size, and the third shows the effect of file sizes on the cost of processing a set of objects. Each
number is the mean of 10 trials (with standard deviations in parentheses). All trials were run on warm caches. The
numbers forS £ RIAL represent the elapsed time to fetch and process a set of elements serially, as would be done

today on a typical Unix system. The numbers f0r7'S are the elapsed time to fetch the same set of objects using
dynamic sets.

The experiments were run on the prototype described in Section 4 using 5 Decstation 5000/200s (1 client/4 servers)
connected by 10base?2 Ethernet, running the Mach 2.6 operating system. The data files were uniformly distributed
over the servers, and resided on the servers’ local disks. The data sets were small enough to fit into the servers’ buffer
caches (with the exception efze = 100000). To reflect the costs that real users would see, no effort was made to
restrict use of the network nor the machines during the experiments. Times were obtained via a hardware cycle counter
which our measurements show to be accurate to 50 microseconds.

Think time (msec/byte)

band 0 25 50 75 100
9600 SERIAL | 44920.337.3) | 45773.4129.5) | 46887.585.5) | 48175.0252.1) | 49045.372.8)
SETS | 11726.6279.1) | 11954.7214.0) | 12114.1(84.7) | 12706.2324.1) | 12960.9240.6)
64000 SERIAL 6281.3(19.8) 7490.6(10.4) 8473.4(85.3) 9428.1(92.2) 10612.516.8)
SETS 1523.4(22.4) 1759.4(66.4) 2595.3(23.7) 3585.9(29.9) 4648.4(97.1)
2000000 SERIAL 1100.0¢42.6) 2123.4(13.0) 3143.8(46.8) 4154.7(37.9) 5176.6(59.3)
SETS 414.1(16.0) 1425.0(6.3) 2460.9(51.5) 3493.8(67.5) 4504.7(50.4)

Table 2: Average Elapsed time to process a set for 3 valuasnaf.

Table 2 shows how the increasing cost of network communication affects the cost to process a set of objects. Each
number shows the cost to fetch and process a set of 40 objects stored on 4 servers, where each object is 1000 bytes

long. The numbers were obtained using a slow-network emulator which has been shown to be an adequate predictor
of actual networks[7].

Think time (msec/byte)

n 0 25 50 75 100

4 SERIAL 111.0(4.7) 221.9(6.3) 332.8(10.0) 426.6(7.2) 528.1(9.4)
SETS 59.4(6.3) 157.8(4.7) 262.5(6.3) 360.9(4.7) 462.5(7.7)

16 | SERIAL 460.9(12.6) 860.9(13.0) 1275.0(26.3) 1665.6(15.9) 2073.4(28.0)
SETS 167.2(7.2) 587.5(31.4) 984.4(9.9) 1390.6(12.1) 1832.8(58.1)

64 | SERIAL | 2196.9(665.2) 3562.5(29.7) 5151.6(35.0) 6857.8(110.1) 8690.6(684.8)
SETS | 679.7(17.5) 2320.3(18.8) 3960.9(51.5) 5607.8(74.4) 7373.4(387.9)
232 | SERIAL | 9120.3(236.3) | 14728.2(172.1) | 21120.4794.2) | 26681.3298.4) | 32864.0(573.7)
SETS | 3260.9(573.3) | 9206.3(257.3) 15090.7(96.0) | 21131.3(237.4) | 27640.51085.0)

Table 3: Average Elapsed time to process set increasing size of set

Table 3 shows how the number of objects in the set affects the cost to process a set of objects. Each number shows the
cost to fetch and process a set of 1000 byte objects stored on 4 servers, across an Ethernet (ours can effectively deliver
data at 4 Mbps). Note how the increase irink decreases the relative benefit of sets. This is due to the increasing
importance of processing time to total elapsed time; dynamic sets can only reduce 1/O costs.

Table 4 shows how the size of the objects in the set affects the cost to process a set of objects. Each number shows the
cost to fetch and process a set of 40 objects stored on 4 servers across an Ethernet (ours can effectively deliver data

15

Think time (msec/byte)

size 0 25 50 75 100
1000 SERIAL 1315.6(62.8) 2396.9(96.9) 3342.2(43.3) 4386.0(124.4) 5961.0(1109.7)
SETS 489.1(7.2) 1510.9(25.2) 2515.6(23.2) 3548.5(35.3) 4632.8(179.4)

10000 | SERIAL 3490.6(33.7) 12845.4(366.4) 23100.1(343.5) 33128.2(556.5) 43209.5305.4)
SETS 1542.2(7.2) 11637.5248.2) 21847.0271.3) 31857.9309.2) 42012.6(468.8)
100000 SERIAL | 32348.5877.5) | 121810.81370.0) | 228832.33836.0) | 323741.13260.5) | 431325.38410.4)
SETS | 18665.7152.0) | 119126.31649.0) | 225519.18904.0) | 323006.54891.8) | 425243.86351.4)

Table 4: Average Elapsed time to process set increasing size of members

at 4 Mbps). The effective benefit of SETS was limited by the prototype’s transfer buffer size of 4KB. Section 5.3.2
argues that this implementation choice can substantially affect the achievable benefit from using dynamic sets.

16

