
1

Variable Granularity Cache Coherence

L. Mummert and M. Satyanarayanan
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3891
flily,satyag@cs.cmu.edu

Abstract

Weak connectivity is characterized by slow or intermittent networks. Distributed file systems us-
ing weak connections must function in spite of limited bandwidth and frequent connectivity changes.
Callback-based cache coherence schemes were designed to minimize client-server communication, but
with an underlying assumption that the network is fast and reliable (i.e., a LAN). This paper presents
large granularity callbacks as a way to reduce the client-server communication necessary to maintain file
cache coherence. Large granularity callbacks trade off precision of invalidation for speed of validation
after connectivity changes.

1 Motivation

To function in a weakly connected environment, distributed file systems must cope with low bandwidth
and intermittence of network connections. In such an environment, reducing client-server communication
is critical for good performance. Caching reduces client-server communication considerably, however, the
network must be used to maintain cache coherence.

File systems such as NFS [7] and Sprite [5] validate cached data at file open time. File systems such as
AFS [3] and Coda [8] use callbacks to reduce client-server communication and thereby server load. When
a client caches a file from a server, the server promises to notify the client if the file changes. This is called a
callback promise, or just a callback. An invalidation message is called a callback break. If a client receives
a callback break for an object, it discards its copy of the object and refetches it when it is next referenced.
If a network or server failure occurs, the callback is dropped. In that case, the object is suspect; it may or
may not still be valid. The client must validate such an object with the server when it is next referenced.

The design of AFS assumed a LAN-based environment, in which failures are rare. In this environment
one would expect callbacks to be broken because of remote mutations rather than dropped because of
connectivity changes. In environments with mobile computers and wireless networks, connectivity changes
are frequent. This suggests the opposite – that servers will be contacted more often to validate objects that
are suspect than to refetch objects that are known to be stale. In the extreme case, clients may degenerate
to checking cached files on every open.

We propose to reduce the cost of validation by increasing the granularity of the operation. Consider
the following extreme example: suppose a client could request a single callback for the entire file system.
In addition to the objects it caches, it also caches a version number for the file system. The presence of a
file system callback is a strong statement – it means every cached object is valid. After a partition, a single
RPC with a small amount of data (a single version number) determines whether anything changed. If the
version number is current, all of the client’s cached data is still valid. Unfortunately, a callback break for
the file system isn’t very helpful – any cached object could be invalid.

This example has efficient validation but costly recovery from invalidation. Object callbacks are the other
extreme – invalidation is precise, but validation requires communication for every object. The granularity

Submitted for Publication 2

of the callback should balance the costs of validation and invalidation. Ideally, the granularity of callback
would be variable. We conjecture that large granularity callbacks would be useful for collections owned by
the primary user of a client, and collections that don’t change frequently or change en masse (e.g., system
binaries). Fine granularity callbacks would be appropriate for objects in shared areas or owned by other
users. Since access patterns and network conditions are dynamic, clients should adapt to the granularity
that will minimize client-server communication.

2 Detailed Design

In this section we present a design for large granularity callbacks in the Coda File System [8]. Coda is a
descendant of AFS that has high data availability as its main goal. Like AFS, it provides a single, shared,
location-transparent name space, and maintains cache coherence using callbacks. A user-level process
called Venus manages a file cache on the local disk of each client.

Below we discuss which granularities we support, how large granularity callbacks are established and
broken, and how Venus handles references to cached objects. We have a prototype implementation of this
design, and are awaiting usage experience.

2.1 Choice of Granularity

An obvious way to determine granularity is to exploit the hierarchical structure of the name space. However,
the same practical considerations that led to the use of low-level file identifiers in AFS limit the set of
granularities we can support in practice. For efficiency and scalability, the collection should have a concise,
unique identifier understood by both client and server. To implement renaming in the presence of callbacks,
the identifier must be unique across name bindings. These considerations preclude the use of pathname
prefixes to identify the units of validation.

The level of granularity we have chosen is the volume, which is the next larger convenient abstraction in
Coda after objects. A volume forms a partial subtree in the name space. Volumes are glued to the rest of the
name space at mount points, which are transparent to users, and may vary in size dynamically. Typically,
volumes are created for individual users or projects, so they contain collections of objects that are related.
They are represented by fixed-length identifiers known to both client and server, and the identifiers are
invariant across changes in mount points.

Volume callbacks (VCBs) may be maintained in addition to or instead of object callbacks. It is important
to allow a VCB to be a substitute for an object callback, to amortize the cost of validation over objects
cached from that volume.

2.2 Establishing VCBs

Since VCBs may be used instead of object callbacks, a pre-condition for establishing a VCB is that all cached
state from the volume must be valid. Therefore, this operation can be expensive. Venus must employ an
adaptive strategy, using volume callbacks only when conditions favor them. (The policy for doing this is
discussed in section 3.) Coda file servers maintain version stamps on volumes, which are updated whenever
an object in a volume is modified. To establish a VCB, Venus caches the version stamp for the volume.

2.3 Referencing Cached Objects

When a cached object f in volume V is referenced, a callback on f or a VCB on V constitutes proof that
f is valid. If neither callback is present, and conditions favor establishing a VCB, Venus will do so at this
point. If it has a version stamp for V , it checks if V has changed by presenting the server with its copy
of V ’s version stamp. If it matches the server’s version stamp for V; callback is established on V and f is

Submitted for Publication 3

deemed valid. Otherwise, Venus must validate all of the cached objects from V . If conditions do not favor
establishing a VCB, Venus will fetch f and establish a callback for it alone.

2.4 Breaking VCBs

When an object f in volume V changes, the servers send a callback break for f to all clients with callbacks
on f or V . Clients interpret the callback break for f as an implicit VCB break for V . Note that if the client
holds a callback on V; it will get a callback break even if f is not in its cache. This is necessary because
our design allows clients to hold any combination of volume and object callbacks. After a partition a client
may re-establish the callback on V (because it didn’t change), but not on any of the objects cached from
V: In this case, the server does not know which objects the client has cached, so it must be conservative
when f changes. It is not sufficient to merely send the identifier of f on the callback break for V and allow
the client to re-establish the VCB after discarding f (if cached), because other objects in V may change
between the time the volume callback is broken and the time the client attempts to re-establish it.

2.5 Persistence of VCBs

We treat volume callback breaks like object callback breaks, namely, once the callback is broken, the server
has no further obligation to the client for that object. An alternative is to allow the server to continue
sending callback breaks for the volume, listing on each message all of the identifiers of objects that have
changed. The client would receive this running commentary until it requests otherwise. This scheme has
the advantage that re-establishing volume callback would be relatively inexpensive. We have rejected this
approach because mutation traffic exhibits considerable temporal locality [2, 6]. If the object being changed
is cached, the client should drop volume callbacks until the mutation storm passes. If the object being
changed is not cached, the client should drop volume callbacks and use object callbacks instead.

3 Analysis

In this section we consider a simple calculation to obtain insight into the tradeoff between the costs of
validation and invalidation. This model will be used as a basis for Venus to determine when it would be
advantageous to use volume callbacks. Although we make a few simplifying assumptions, we believe the
model illustrates when volume callbacks will result in less communication between client and server.

For some volume V; let

f = the number of objects in V (f � 1)
c = the number of objects cached from V (1 � c � f)

p = the rate of connectivity changes (partitions) for V
m = the rate of mutations on objects in V from other clients
P = the probability of a mutation on an object in V from another client during a partition

Assume for tractability that mutations are made uniformly over objects in V 1. The probability of
partitioned mutations depends on m and the duration of the partition. For each of volume and object
callbacks, we count the number of RPCs required to keep the cache and server copies consistent over some
period of time t. The analysis is worst-case, i.e., after a mutation the mutated object is always referenced,
and after partitions the entire cache is referenced. This is not too severe a departure from reality, since
Coda’s hoard subsystem periodically references all cached objects in its database [4].

1Given that mutations are localized, m is not uniform over objects in V: This change affects only the analysis in section 3.1
since the probability that the modified object was cached is no longer c

f
.

Submitted for Publication 4

3.1 Object Callbacks

When a cached file is modified at another client, the server makes one RPC to break the callback, and the
client will make one RPC next time the file is referenced. After a partition, the client must contact the server
on the first reference to each cached object to ensure that the cached copy is still valid. The number of RPCs
over time t is then

RPCs(t) = callbacks on objects in the cache +

references after callbacks + references after partitions

= mt

�
c

f

�
+mt

�
c

f

�
+ ptc

= 2mt

�
c

f

�
+ ptc

3.2 Volume Callbacks

Suppose a client has volume callbacks only. If an object in the volume is modified remotely, the client
receives a callback break for that volume. To re-establish the VCB, the client must validate all cached state
from that volume. After a partition, the client sends the server its copy of V ’s volume version stamp. If
nothing has changed, then the cached copies of everything in V are valid. Otherwise, the client must recover
from the partition as in the object callback case, by validating each cached object on the next reference. The
number of RPCs over time t in this case is

RPCs(t) = callbacks on objects in the volume+ validating state after callback +

volume check after partitions+ references after partitions

= mt +mtc+ pt+ ptc � P

Volume callbacks are advantageous when

2mt

�
c

f

�
+ ptc > mt+mtc+ pt + ptc � P

p(c� c � P � 1) > m

�
1 + c� 2

�
c

f

��

p

m
>

1+ c� 2(c
f
)

c� c � P � 1

This inequality yields a few observations. First, p must be strictly greater than m to offset the cost of
recovering from a broken volume callback. This is the most important factor. Second, the more objects
cached from a volume, the lower the probability of false invalidation.

Now let us examine a few specific cases. First consider a volume owned by the primary user of a
wireless mobile computer. In this case, we expect p � m, and since m is nearly zero, P = 0. In this
case as long as the client has cached more than one file, volume callbacks will be a win. Second, consider
the volume of the primary user on a fully connected workstation. In this case, we expect p to be low, but

Submitted for Publication 5

non-zero because of server failures. If the user accesses his volume from only this client, we expect m to be
nearly zero. The amount of savings from volume callbacks will depend on the number of files cached from
the volume – the more, the better. Third, consider a system source volume. In this volume, m is non-zero
because it is shared by a group of developers who occasionally install new files. If accessed from a fully
connected client, p and m are likely to be close. Volume callbacks will be helpful only if a large percentage
of the volume’s files are cached.

3.3 Implementation Considerations

Most of the logic for volume callbacks is on the client. Venus must collect enough information on the
parameters above to determine when it should use volume callbacks. Venus can easily keep counts of c and
p. To estimate m, Venus can count the number of callbacks received per volume. The count may be an
underestimate if Venus has held only object callbacks, since it is not notified of changes elsewhere in the
volume. To establish volume callbacks Venus can require p > km, where k is supplied at start time, or set
with a reasonable default. Venus can obtain f from the server, or it can require a minimum on c. To estimate
the probability of partitioned mutations, Venus can simply count the number of times a volume validation
failed.

On the server, an additional callback table is needed for hosts holding volume callbacks. Since there are
many fewer volumes than objects, this is at most a small amount of additional state.

4 Related Work

For reasons quite different from ours, Wang and Anderson have recognized independently the value of
maintaining cache coherence at a large granularity [9]. They propose maintaining coherence on clusters
of files, such as subtrees. Their primary motivation is to reduce server state, rather than client-server
communication. There is no discussion in their paper of how the choice of granularity is made. To the best
of our knowledge no working implementation of this proposal exists yet [1].

5 Conclusions

In this paper we have introduced large granularity callbacks as a way to reduce the client-server commu-
nication necessary for cache coherence. We believe they will be beneficial in any environment in which
validations are frequent or expensive, and can be used in combination with other techniques such as batching
to improve performance. We have presented a design for volume callbacks in the Coda File System, and
analyzed factors affecting their performance. In our design, the client determines based on these factors
whether object or volume callbacks would be best for a particular volume, and adapts to the appropriate
level dynamically. We have implemented volume callbacks for the Coda File System, and expect to gain
direct experience with them in the coming months.

Submitted for Publication 6

References

[1] Thomas E. Anderson. Personal communication, October 1993.

[2] Rick Floyd. Short-Term File Reference Patterns in a UNIX Environment. Technical Report TR 177,
Department of Computer Science, University of Rochester, March 1986.

[3] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham, and Michael J. West. Scale and Performance in a Distributed File System. ACM Transac-
tions on Computer Systems, 6(1):51–81, February 1988.

[4] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda file system. In Proceedings
of 13th ACM Symposium on Operating Systems Principles, pages 213–25. Association for Computing
Machinery SIGOPS, October 1991.

[5] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in the Sprite Network File System. ACM
Transactions on Computer Systems, 6(1):134 – 154, February 1988.

[6] John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Mike Knupfer, and James G.
Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. In Proceedings of the Tenth
ACM Symposium on Operating Systems Principles, December 1985.

[7] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh, and Bob Lyon. Design and Imple-
mentation of the Sun Network File System. In USENIX Summer Conference Proceedings. USENIX
Association, June 1985.

[8] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siegel, and David C.
Steere. Coda: A Highly Available File System for a Distributed Workstation Environment. IEEE
Transactions on Computers, 39(4), April 1990.

[9] Randolph Y. Wang and Thomas E. Anderson. xFS: A Wide Area Mass Storage File System. In
Proceedings of the Fourth Workshop on Workstation Operation Systems, pages 71 – 78, October 1993.

