
Using Belief to Reason About Cache Coherence

L. Mummert, J.M. Wing, and M. Satyanarayanan
Carnegie Mellon University

Abstract

The notion of belief has been useful in reasoning about authen-
tication protocols. In this paper, we show how the notion of belief
can be applied to reasoning about cache coherence in a distributed
file system. To the best of our knowledge, this is the first formal
analysis of this problem. We used an extended subset of a logic of
authentication [4, 5] to help us analyze three cache coherence pro-
tocols: a validate-on-use protocol, an invalidation-based protocol,
and a new large granularity protocol for use in weakly connected
environments. In this paper, we present two runs from the large
granularity protocol. Using our variant of the logic of authentica-
tion, we were able to find flaws in the design of the large granularity
protocol. We found the notion of belief not only intuitively appeal-
ing for reasoning about our protocols, but also practical given the
optimistic nature of our system model.

1 Introduction

In their seminal work on a logic of authentication [4, 5] Burrows,
Abadi and Needham identify the central role played by belief in
reasoning about the correctness of authentication protocols. They
demonstrate the power of this reasoning by using it to identify
errors and inefficiencies in a number of published protocols, one of
which had been proposed as an international standard. The novel
contribution of our work is the application of the notion of belief to
a domain that has to our knowledge never been subjected to formal
analysis: cache coherence in a distributed file system.

Caching of data at clients plays an important role in meeting
the performance and scalability requirements of large distributed
systems [11, 19]. Caching has also been exploited to mask tempo-
rary failures of communication [12, 16]. The value of caching is
especially high when bandwidth and connectivity are at a premium.
This situation arises in mobile computing, where weak connectivity

This research has been supported by the Advanced Research Projects Agency
(Hanscom Air Force Base underContract F19628-93-C-0193,ARPA Order No. A700;
and the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, under grant number F33615-93-1-1330), IBM Corporation, Digital
Equipment Corporation, Intel Corporation, and Bellcore. The views and conclusion
expressed in this paper are those of the authors, and should not be interpreted as those
of the funding organizations or Carnegie Mellon University.

Authors’ addresses: School of Computer Science, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA, 15213-3891.
E-mail: flily,wing,satyag@cs.cmu.edu.

is the norm. A weak connection is characterized by low bandwidth
or intermittence.

The work describedin this paperarose from our efforts to exploit
weak connectivity in the Coda File System [21]. Since communica-
tion is expensive in weakly-connected environments, we sought to
keep the volume and frequency of client-server communication to a
minimum. This made our cache coherence protocol more complex
than earlier protocols developed for LAN environments. The need
to ensure the correctness of this more complex protocol led us to
explore techniques to reason systematically about it.

In our investigation, we realized that the notion of “belief” was
at the heart of our cache coherence protocols. Informally stated,
the correctness criterion for these protocols is as follows: If a
client believes that a cached file is valid then the server that is
the authority on that file had better believe that the file is valid.
This insight led us to explore the logic of authentication. That
logic allows one to focus on the beliefs of parties involved in an
authentication protocol, and the changes in those beliefs as the
parties communicate. Analogously, we need to reason about the
behavior of clients and servers in a distributed file system, and the
changes in their beliefs about cached data as they communicate.

As in the logic of authentication (henceforth referred to as the
“BAN logic”), we reason about the beliefs of “principals”; in our
systemthey are clients and servers. Our system model allows clients
to update data during network partitions, such as in disconnected
operation [16], when a client cannot contact any servers. Therefore,
a connected client may reference a file that it and the server both
believe to be valid, despite the possibility that the file is truly invalid
(in a global sense) because of an update the server has not yet
received. Determining global knowledge or “absolute truth” in this
model is impossible [10]. Fortunately, we do not want or need to.

Reasoning about cache coherence is in some ways simpler, but
in other ways more difficult, than reasoning about authentication.
For example, we do not have to worry about malicious intent. We
can also ignore replay attacks, since we can assume that dupli-
cate suppression is performed by the underlying communication
protocol. However, we cannot ignore two key characteristics of
distributed systems: failures and transmission delay. Indeed, for
these reasons we could not directly use the work in verifying cache
coherence for multiprocessors [6, 17].

In the rest of this paper, we describe how we extended a subset
of the BAN logic to help us analyze cache coherence protocols for
distributed file systems. We applied our logic to three different pro-
tocols: a validate-on-use protocol, an invalidation-based protocol,
and a new large granularity protocol for weak connectivity. Our
strategy consists of first defining the state space and state transi-
tions, then identifying all reachable states, and finally verifying that
all possible runs of the protocol are correct (i.e., maintain cache

coherence).
In the next three sections of this paper, we present our system

model, our logic, and a statement of the correctness criterion for
the cache coherence protocols. Then in Section 5, we describe
the large granularity protocol, the most complicated of the three
protocols that we have analyzed, and we present two of the fifteen
possible classes of runs of the protocol. We then discuss the effects
of failures and transmission delay on correctness. We close with a
discussion of related work and a summary of our conclusions.

2 System Model

We designate hosts as clients or servers of the file system. Clients
and servers communicate by sending messages to each other via
remote procedure call [2]; each request made by one party requires
a response from the other. To represent clientC sending a message
M to server S , we use this notation:

C ! S : M

Clients speak only to servers, not to other clients. We assume
the underlying communication protocol addresses end-to-end con-
cerns such as guaranteeing authenticity and eliminating duplicate
messages.

Exactly one repository, which could be one server or a group of
servers, is the authority for each file system object. In this paper, we
use the generic term “server” for a repository. A file system object
is any data contained by a server that may be cached at a client,
including files, portions of files, file attributes, or version numbers.
For now, it suffices to think of these objects as files; later in Section
5.1 they may also be version numbers.

The local state of a client, C , includes a set of cached data,
C:D, and a set of beliefs, C:B, about objects in its cache. The
local state of a server, S , includes a set of data objects, S:D, for
which it is considered the authority, and for each client C , a set of
beliefs, SC :B, that includes which objects are present in C’s cache
and their validity.

The global state of the system is a tuple of all clients’ and
servers’ local states, plus an agreement setACS , which determines
for each data object d whose authority is S and is cached at C ,
whether the server and client copies are equal. It is this state vari-
able that approximates global knowledge about the validity of all
files. It represents pairwise knowledge, which is attained between
connected pairs of clients and servers.

State transitions occur when a component of the global state
changes. For the most part, this is whenclients and serversexchange
messages. We discuss the types of messages they exchange in our
protocol in Section 5.

We reason about the presence or absence of file system objects
cached at clients and their validity. An object is valid if it is the
most recent copy in the system. Otherwise, it is invalid. Recency is
determined by a timestamp associated with the file. The timestamp
is replaced whenever the file is updated.

Since servers may not hear about updates immediately, validity
is global knowledge and cannot always be determined. However,
if C and S agree on an object, and S believes its copy is valid, then
C should be able to conclude that its cached copy is valid. If S
receives an update from a client other thanC , then regardless of the
global validity of the updated copy, S is justified in telling C that
its copy of the object is now invalid.

A run of a cache coherence protocol begins with an initial mes-
sage and ends with a final message. Each protocol has a predefined
set of initial and final messages. Failures can terminate runs; how-
ever, failures are detected by message timeouts. If a message times
out, the principal that sent the message considers it a final message.

However, if a client and server both believe a run is in progress,
then the run ends once both principals detect the failure. We give
an example of this in Section 5.4.

Before a run, a clientC considersall objects in its cache suspect;
that is, it neither believes an object d is valid, nor believes d is
invalid. During a run, C and S accumulate beliefs about d as a
result of exchanging messages. At the end of the run, C and S
discard their beliefs regarding the validity of d. After a run,C must
again consider all cached objects suspect because it cannot check if
they are valid, nor can S notify C that they are not.

3 Logic

Our logic is a subset of the BAN logic with a few extensions. Below,
P andQ are principals, which are either clients or servers. S refers
to a server and C refers to a client. We denote a message by X; a
file system object by d. The constructs we use are:

P believesX P behaves as if X is true.
P seesX from Q P receives messageX from Q.
P controls X P is an authority on X.

The notions of belief and control are taken directly from the
BAN logic. The statementP believesX is equivalent toX 2 P:B,
where P:B is the belief set for principal P . The sees construct is
derived from the BAN logic based on our assumptions about the
underlying communication mechanism.

The following constructs, extensions to the BAN logic, are for
reasoning about file system objects:

d 2 P P has a copy of d, i.e., d 2 P:D. The copy
held by P is denoted dP 1.

valid(dP) The value of d’s timestamp at P is greater
than or equal to the timestamp associated
with every other copy of d in the system.

Messages can contain the above two constructs and their nega-
tions. As in the BAN logic, a messageX can consist of formulae,
data, or both. For example, a message might contain a formula
about some object d such as valid(dC), or it might contain the
object itself (simply d). We classify messages further based on
their contents. For example, the various kinds of update requests
form one class of messages. We denote an update request involving
object d as update(d).

Belief sets can contain the above two constructs and their nega-
tions, as well as statements of the form P believesX .

The axioms in our logic are:

A1. 8d 2 C:D (C believes d 2 C)
A2. 8d 62 C:D (C believes d 62 C)
A3. P believesX) :(P believes :X)

The first two axioms simply state that client C is allowed to
believe what it knows about the contents of its cache.

The third axiom says belief sets must be internally consistent.
In the BAN logic, beliefs are stable, meaning that once a principal
holds a belief, it holds that belief for the duration of the protocol.
Thus during their protocols, belief sets only grow. In contrast, in
our system files may become invalid because of updates. Because
of this, beliefs about the validity of files may change. Axiom 3
guarantees at most one of X and:X appears in P ’s belief set. If a
new belief is derived during a run that contradicts a currently held
belief about d, the new belief supersedes the old one because it is
based on more recent information. Thus if C:B = fvalid(dC)g,

1AlthoughP is a parameter, we find using it as a subscript more readable.

and a message arrives invalidating dC , then C:B would become
f:valid(dC)g.

The converse of A3, :(P believesX)) (P believes :X),
does not hold. In other words, absence of belief is distinct from
belief of the opposite.

It may be the case that principal P has no beliefs regarding X ,
in other words it believes neither X nor :X. Since X 2 P:B

is equivalent to P believesX , then X 62 P:B is equivalent to
:(P believesX). Thus, for example, if valid(dP) does not appear
in P ’s belief set, then we can say:(P believes valid(dP)). Again,
this does not mean thatP believesdP is invalid, as explained above.

The inference rules in our logic are:

R1. The visibility rule says if a principal sees a message, it sees
its components. This rule is taken from the BAN logic.

P seesX;Y from Q

P seesX from Q;P sees Y from Q

R2. The messageinterpretation rule says if a principal sees a mes-
sage, it can believe that the sender believes what it said in the
message. This is derived from the BAN message meaning
and nonce-verification rules, and it follows from our assump-
tions about the underlying communication mechanism.

P seesX from Q

P believesQ believesX

R3. The jurisdiction rule, taken directly from the BAN logic, says
if P believes Q is an authority on X, then P may believe
whatever Q believes aboutX .

P believesQ controls X;P believesQ believesX

P believesX

R4. The update rule says observers of an update invalidate old
versions of the updated data. Below, C 0

6= C , and S is the
repository for d.

S believes valid(dC); S sees update(d) from C 0

S believes :valid(dC)

4 Goal of Cache Coherence

The goal of a cache coherence protocol is to ensure that no invalid
object is ever portrayed as being valid. That is, for all clientsC and
objects d,

if C believes valid(dC) then valid(dC)

In practice, we cannot achieve this ideal, because our system
model allows partitioned updates. Therefore the correctness crite-
rion we use is: for all clientsC , servers S , and objects d for which
S is the repository,

if C believes valid(dC) then S believes valid(dC)

Notice that the correctness criterion is defined on a per-object basis.
Unlike authentication, cache coherence is not a final system

state to be achieved after running the protocol, but an invariant
to be maintained while running it. To argue a cache coherence
protocol correct, our obligation is to prove the invariance of the
correctness criterion over each run of the protocol.

5 Protocol Analysis

We analyzed three different protocols: a validate-on-use protocol,
an invalidation-based protocol, and a new large granularity proto-
col for weak connectivity.

In these protocols, a client may send a server a fetch request
for new data, a validation of already cached data, or an update.
Servers may respond to fetch and validation requests with new data,
and an indication if already cached data is valid. In invalidation-
based protocols, update requests cause servers to send invalidation
messages to clients caching the updated data.

For example, in a validate-on-use protocol, the fetch and val-
idation messages are initial messages, and the response to these
messages is the final message. In such a protocol, runs are very
short, and servers keep no state about client caches. In invalidation-
based protocols, the client’s response to an invalidation message is
a final message. The response to a validation request is a final
message if it is negative (i.e., the file is not valid).

For these protocols, the following assumptions apply to all runs:

S1. 8d 2 S:D (S believes valid(dS))
S2. 8d 2 S:D d 2 C) (C believes S controls valid(dC))
S3. 8d 2 S:D d 2 C) (C believes S controls :valid(dC))

The first assumption states that a server believes all the data it
stores is valid. The last two assumptionssay a server is the authority
on the validity of data it stores.

In the rest of this section, we describe and analyze two runs of
the large granularity protocol2. The description includes a definition
of initial and final messages for the protocol.

5.1 Protocol Description

The cache coherence scheme used by the Coda file system is based
on callbacks. When a client caches a file, the server promises
that it will notify the client if the file changes. This is called a
callback promise, or just a callback. If the file is updated, the server
sends an invalidation message, called a callback break. If the file
is invalidated, the client discards it. If a failure occurs, the client
retains the file but considers it suspect. The client does not discard
the file, because it is cheaper to validate the file when the failure
is repaired than it is to re-fetch it. We assume for simplicity that a
client does not discard a file unless the file is invalidated. Of course,
in practice clients may discard files for other reasons, such as lack
of space.

The large granularity cache coherence protocol extends the
Coda scheme. To reduce client-server communication in failure-
prone environments, callbacks may be maintained on volumes in
addition to or instead of files. A volume is a collection of files form-
ing a partial subtree in the file name space [22]. A file is contained
in exactly one volume.

A callback on a volume constitutes proof that all cached files
in the volume are valid. To establish a volume callback, the client
caches the version number for the volume. The server increments
the volume version number whenever a file in that volume is up-
dated.

2A complete analysis of all three protocols appears in [18].

A run of this protocol concerns a file f , and optionally the
version number v from volume V containing f . Before requesting
v, the client must have at least one file in V in its cache, and all
cached files in V must be valid. This requirement ensures the files
at C correspond to the version number it receives.

A client may validate v just as it would a file. If it has both file
and volume state at the beginning of a run, it may validate them
in either order. If a client validates v successfully, it receives a
callback for the volume. No further communication is necessary to
read any file in the volume until the callback is broken or a failure
occurs.

The initial messages for this protocol are any one of the follow-
ing: a fetch for a file or a version number, or a validation for a file
or a version number.

The final messages for this protocol are: the client’s response
to an invalidation of a file or volume, and a failed validation of a
file or volume. Since a client can hold callbacks on both the file
and its volume, the run ends when the file is discarded or rendered
suspect. A failure or an invalidation for the file is sufficient to end
the run. An invalidation for the volume ends the run only if there
is no callback on the file.

Without loss of generality, we can analyze this cache coher-
ence protocol by considering one client, C , one server, S, one file,
f , and one volume, V , with version number v. Implicitly, the
system includes at least one other client to represent remote up-
dates. We can capture the system state as a tuple of four variables,
(C:D;C:B; S:B;A)3, where

� C:D ranges over ;; ffg; and ff; vg. This means if the
volume version number is cached then so is a file from that
volume.4

� A is the agreement set on the cached objects. It ranges over
the following values:

;; ffC = fSg; ffC 6= fSg; ffC = fS; vC = vSg

ffC = fS; vC 6= vSg; ffC 6= fS; vC 6= vSg

Note that because the volume version number is updated whenever
an object in the volume is updated, it is not possible for f to be
invalid and v to be valid at the same time.

A run of the protocol maps some initial state (C:Di; C:Bi;

S:Bi; Ai) to some final state (C:Df ; C:Bf ; S:Bf ;Af). The
state space is restricted in the following ways. For all states,
(C:D;C:B; S:B;A), in a run:

1. For each object d (f or v) in C:D, dC = dS or dC 6= dS
must be in A. This simply means if d is cached at C , dC
either matches the copy at S or it does not. If C:D = ; then
A = ;.

2. When an object is invalidated, the client must discard it. An
invalidation for the file is an implicit invalidation for the
volume. More precisely,

(fC 6= fS) 2 A) C:Df = ;

(vC 6= vS) 2 A) v 62 C:Df

3. At the end of a run, either d is not cached, or it is cached and
agrees with the server. This follows from 2 above, because
once the client discovers d is invalid it discards it. Thus
Af = ; or Af = fdC = dSg.

3We do not needS:D because our analysis includes only one server.
4We considera simplified model consisting of onlyf andv, even thoughin practice

it would take more than one file to make obtaining a volume callback worthwhile. We
discuss this in Section 6.

We classify runs by the initial and final cache contents of the
client (C:Di andC:Df) and by the initial agreement set (Ai)5. The
state transition diagram for a client is shown in Appendix A. This
diagram is for a single file; there is a separate, independent state ma-
chine for eachfile. Nodes are labeled with the contents of the client’s
cache. For each object in C:D i, the contents of the agreement set
determines which transition will be taken concerning that object.
For example, a run consisting of a cache miss on file f and ending
with a failure has initial system state (;; ff 62 Cg; ;; ;) and final
system state (ffg; ff 2 Cg; ;; ffC = fSg). This corresponds to
a path from the upper leftmost state to the middle rightmost state in
the state transition diagram. With this diagram, one can generate
all possible runs of the protocol.

In the next two sections, we analyze two runs: (1) a cache
miss with no failures, and (2) a successful validation followed by a
communication failure. The first lets us introduce our notation and
shows how we use the axioms and rules of our logic. The second
serves as an example of a validation and a failure. For both, we
assume initially that transmission of messages and failure detection
are instantaneous; we discuss how timing affects correctness in
Section 5.4.

We base our proof of invariance on either fC or vC , depending
on which callback, if any, is established first. It is never the case
that the client switches from depending on one type of callback to
another during the run. If the proof of invariance concerns vC ,
and fC is contained by the volume whose version number is v C ,
if C believes valid(vC) then it can be confident that valid(fC) as
well.

5.2 Cache miss, no failures

From the client’s viewpoint, this run correspondsto the topmost path
in the state transition diagram of Appendix A. The critical transi-
tions for the client are a fetch of f , and an invalidation of f . The ini-
tial and final system states for this run are both (;; ff 62 Cg; ;; ;).

The run proceeds as follows. A request involving f is issued
at C , however f is not present in C’s cache. C sends the initial
message to S requesting a copy of f . S records the fact that C is
caching f (f 2 C on S). This is the callback promise. When C
receives the response from S , it may use the data to service requests
for f until S tells it otherwise. Since no failures occur in this case,
eventually some other client updates f , renderingC’s copy invalid.
The server sends C an invalidation message (the callback break),
causing C to discard its copy of f . C sends the final message to
S indicating that it received the invalidation, and S discards its
callback promise on f for C .

In Figure 1, we show the evolution ofC’s and S’s beliefs as the
protocol runs. The diagram is read left to right, then top to bottom.
Time moves from top to bottom. Under the column named “C
believes ” we keep track of C:B, the set of client beliefs; similarly
for the column named “S believes .” We show the entire belief
set whenever an element of the belief set changes. For example, at
the beginning of the run, f is not in C’s cache. Using axiom 2, we
derive C believes f 62 C , shown at the top of the “C believes ”
column. The notation “[x]” means :(P believes x). We do not
use beliefs involving f 2 C in our proof, but we show them to
motivate why certain messages are being sent.

As we walk through this example, we show that the invariant
(rewriting the implication as a disjunction)

:(C believes valid(fC)) _ (S believes valid(fC))

5We do not need to considerA f because it will either be empty or indicate agree-
ment as stated in item 3 above.

C believes Message S believes Notes

f 62 C cache miss
C ! S : f 62 C request f

f 2 C; valid(fC) record callback promise
S ! C : f; valid(fC); f 2 C send f , callback status

f 2 C

S believes f 2 C
valid(fC)

...
C 0

! S : update(f) C 0 updates f
f 2 C;:valid(fC) C’s copy stale

S ! C : :valid(fC) callback break for fC
f 2 C
S believes f 2 C

:valid(fC) supersedes valid(fC)

f 62 C C discards f
[S believes f 2 C] C erases beliefs
[:valid(fC)]

C ! S : C responds to invalidation
[f 2 C;:valid(fC)] erase callback promise

Figure 1: Run Starting with a Cache Miss, Ending with an Invalidation

holds initially and is preserved across each step that changes the
beliefs about f ’s validity. Initially, there are no beliefs inC:B about
the validity of f , because f is not even in C’s cache. That means
valid(fC) 62 C:B, therefore :(C believes valid(fC)). Thus the
invariant is established.

The cache miss causes C to send the initial message (to S),
which does not change either belief set.

When S sends the second message, we derive S believes
valid(fS) using assumption S1 stated at the beginning of Section
5. In this message, S sends a copy of f to C . The copy is hence-
forth known as fC . Since fC = fS when S sends f , we can say
S believes valid(fC).

When C receives the second message, C sees f; valid(f C);
f 2 C from S . Using the visibility rule, we haveC sees valid(fC)
from S6. Using the message interpretation rule, we derive C

believes S believes valid(fC). Using the jurisdiction rule instan-
tiated with valid(fC), we conclude C believes valid(fC). But
since S believes valid(fC), the invariant still holds.

When the remote update to f occurs, S receives a message
containing an update request involving f from some clientC 0

6= C .
That is, S sees update(f) from C 0. Using the update rule, we have
S believes :valid(fC). S sendsC an invalidation messagefor fC .
If we assume the message arrives atC instantaneously, both parties
change their beliefs at the same instant and the invariant still holds.
Of course, the message does not arrive instantaneously. We discuss
that in Section 5.4.

When C receives the invalidation message, we have C sees
:valid(fC) from S . Using message interpretation, we have C
believes S believes :valid(fC). Using assumption S3 and the ju-
risdiction rule instantiated for:valid(fC), we concludeC believes
:valid(fC). This supersedes C believes valid(fC). Since be-
lief sets must be internally consistent (axiom A3), we know :(C
believes valid(fC)) and the invariant holds.

C discards f and responds to the invalidation message, ending

6In practice, it is not necessary for S to include valid(f C) in the response to a
fetch request. The client C simply assumes that data received from a server is valid.

the run. Since C no longer has a copy of f , clearly valid(fC) 62
C:B, and therefore :(C believes valid(fC)). Thus at the end of
the run, the invariant holds.

5.3 Volume validation, followed by failure

From the client’s viewpoint, this run corresponds to the path in
Appendix A from state (f; v) to (f;v) to (f; v). The critical
transitions for the client are the validation of v and detection
of a failure. The initial and final system states for this run are
(ff; vg; ff 2 C; v 2 Cg; ;; ffC = fS; vC = vSg).

When this run begins,C already has volume and file state in its
cache. C sends V ’s identifier and volume version number v to the
server to determine if anything in V has been updated. In this case,
the validation is successful (i.e., nothing has changed), so C may
assume all cached state from V is valid. In addition, C receives a
callback promise for V , meaning S will notify C if anything in V
changes. At this point C may consider all files in V valid, though
we show only f .

The run ends when a failure severs the connection between C
and S. Here we simply show the failure and its effect, assuming
it is detected instantly by both parties. In Section 5.4 we discuss
how failures are detected, and the impact of failure detection on
correctness.

This run is shown in Figure 2. As before, we walk through this
run showing the invariant holds initially and after each step that
changes either party’s beliefs about the validity of f . Initially C
cannot be certain of the validity of vC , so valid(vC) 62 C:B and
therefore :(C believes valid(vC)). Thus the invariant is estab-
lished.

C sends the validation request for v to S. Using assumption
S1, we obtain S believes valid(vS). Since vC = vS in this case,
we have S believes valid(vC), and the invariant still holds.

When C receives the response, we have C sees valid(v C)
from S. Using message interpretation we have C believes S
believes valid(vC). Using assumption S2 and the jurisdiction

C believes Message S believes

f 2 C; v 2 C

C ! S : v 2 C
v 2 C; valid(vC)

S ! C : v 2 C; valid(vC)
f 2 C; v 2 C

valid(vC)
S believes v 2 C

...

failure
f 2 C; v 2 C [v 2 C; valid(vC)]
[S believes v 2 C]
[valid(vC)]

Figure 2: Run Starting with a Validation, Ending with a Failure

rule, we have C believes valid(vC). Since S believes valid(vC)
the invariant holds.

When S detects the failure, it discards its beliefs aboutC . This
includes beliefs about which objectsC has cached, and the validity
of those objects. When C detects the failure, it discards its beliefs
about S , and the validity of objects in its cache. It retains beliefs
about the presence or absence of objects in its cache; these beliefs
are always derivable using the axioms, because they are based on
strictly local information.

5.4 Timing

Failures and transmission delay affect the correctness of our cache
coherence protocols. While a message from a server to client C is
in transit, C may believe, however briefly, that its copy of f is valid
when it is not. Thus, without assuming instantaneous transmission
of messages, the case analysis in section 5.2 is incorrect because
during the time it takes for the server’s invalidation message to be
received by the client, the client still believes the file is valid. While
transmission time is often assumed to be negligible in LAN-based
environments, this assumption is not valid in weakly connected
environments. However, the transmission time is bounded by the
timeout period used by the underlying communication protocol,
denoted by �. If a message is not acknowledged within � after it is
sent, the sender declares a failure. The timeout period is a system
parameter, and is usually on the order of a minute.

It also takes time for clients and servers to detect failures. Dur-
ing the interval between the occurrence of a failure and its detection,
it is possible for a client to use invalid data because the server was
unable to notify the client of updates. This interval, denoted by
� , defines a window of vulnerability for the protocol. To bound
the failure detection interval, clients and servers probe each other
periodically, and declare failures if messages time out. These probe
messages serve as final messages when failures occur.

Let � be the message timeout period as above, and let � be
the probe interval. Assume clients and servers use the same probe
interval, but do not necessarily probe each other at the same time.
Then the failure detection interval � = �+ � at most.

Our notion of correctness is bounded by � . We call a protocol
� -correct if the interval in which it does not meet the correctnesscri-
terion is at most � . In Coda � is composed of a probe interval of 10
minutes, and a message timeout of 15 seconds. A 0-correct protocol
obeys the correctness criterion strictly. Even a validate-on-use pro-
tocol, such as in early versions of the Andrew File System [20] and

Sprite [19], cannot achieve 0-correctness because of transmission
delay.

The timetable in Figure 3 shows the worst-case behavior of a
system whose failure detection interval is � . We begin in the middle
of a run, where C has f cached and a callback promise from S .
Both C and S believe fC is valid. Let tp be the latest time at
which C probes S successfully before the failure, and let t f be the
time at which the failure occurs. Eventually either C or S sends
a message and discovers the failure. If the principals detect the
failures through probes, C is still correct in believing that fC is
valid, even though the principals are likely to detect the failure at
different times.

The worst case occurs if another client updates f while C is
partitioned from S , but beforeC has detected the failure. S tries to
breakC’s callback on f at time ti but fails. This is a lost callback.
As far as S is concerned, the run is over, and it discards its beliefs
about C . However, the run is not over until C detects the failure.
Until then, C believes fC is valid when it is not. This interval is
largest when the failure and the update occur immediately after t p.
At time ti + �, when S gives up hope of ever reaching C with its
invalidation message,C is still blissfully ignorant of the status of f .
C does not discover a problem until it tries to contact S at tp+�. It
is not until tp + � that C declares failure and demotes f to suspect
status. Thus � is the longest period in which C can believe f is
valid when it is not.

6 Evaluation

Not surprisingly, formal analysis gave us a better understanding of
our protocol. Below we discuss more specifically how the analysis
helped to correct bugs in our design. We conclude this section with
a discussion of some of the simplifications we made to our model,
and how our definitions could be extended.

6.1 Benefits of Formal Analysis

When we first designed the large granularity protocol, we began
with an informal, narrative specification. This resulted in an under-
specified protocol. Initially we thought there were ten classes of
runs; after the formal analysis we realized there were fifteen. The
runs we missed fell into two categories. The first involves a loop-
ing behavior that can occur if a client holds both file and volume
callbacks. If the volume callback is broken, the run does not end

C believes Message S believes Notes

f 2 C; valid(fC) f 2 C; valid(fC)
S believes f 2 C

...
C ! S : probe tp; probe successful

...
failure tf ; C and S partitioned

...
C 0

! S : update(f) C 0 updates f
f 2 C;:valid(fC)

S ! C : :valid(fC) ti
[f 2 C;:valid(fC)] ti + �; S declares failure

...
C ! S : probe tp + �

tp + �+ � = tp + �;

C declares failure
f 2 C

[S believes f 2 C] C erases beliefs
[valid(fC)]

Figure 3: Worst Case Behavior During a Failure

because the file callback is still present. The file may still be used
without contacting the server. Unfortunately, the volume callback
may be re-established and broken ad infinitum until the file callback
is lost or broken. The loop is visible in the state transition diagram
of Appendix A, between states (f ; 0) and (f ;v). In practice, this
loop is avoidable by setting a policy at the client which determines
when to obtain a volume callback. While we realized that this
looping behavior could occur, we did not realize how pervasive the
behavior could be. It can occur in any state in which a file callback
is held, which happens in most runs.

The second category involves ordering: if both f and v are
present at the beginning of the run, they may be validated in either
order. This is depicted in the state transition diagram of Appendix
A, by having transitions for both f and v from the bottom leftmost
initial state. It is legitimate for f to be validated first if conditions
do not favor establishing a volume callback upon connection, for
example, because of a high rate of remote updates in the volume.
Different orders may result in different runs (e.g., if f is valid but
v is not).

While writing the proofs for the large granularity protocol, we
were pleasantly surprised that we could base the proof on whatever
piece of data for which the client established a callback first. That
is, either we reasoned about f being valid or v being valid. There
is one exception, which does not occur in our implementation. If a
client obtains a file callback while holding a volume callback, the
client could lose the volume callback and still continue the run. A
notion of hierarchy (i.e., x is “contained in” y) would help to switch
the proof from one data type to the other cleanly.

Formal analysis also helped in generating test cases, and early
in testing we uncovered a bug in the implementation that would not
have harmed the correctness of execution, but the efficiency. In the
implementation, the client’s volume state consists of two fields: the
version number, and the callback status. When a volume callback
was broken, the client cleared only the callback status field. This is
correct, because the client checks the callback status field to deter-
mine if the client has a callback on the volume. However, because

the volume version number was still present, the client attempted
to validate it with the server on reconnection. The validation was a
waste because it was doomed to fail.

6.2 Extensions

Our analysis is simplified in two respects. First, we consider only a
single f and v, even though in practice it would take more than one
file to make obtaining a volume callback worthwhile. Given our
simplified model, we must exclude the states where C:D = fvg
because there must be at least one file present to obtain a volume
callback. In practice, this value for C:D is permissible provided
there are other files in volume V cached at the client.

Second, although we allow a repository to consist of a group of
servers, our analysis ignores some of the practical aspects of repli-
cation. For example, if the client uses a replicated volume, it must
collate responses from multiple servers. One complication is that
the client may receive responses from only a subset of the servers
because of network partitions. A small change to the definition
of a run takes care of this problem. For a replicated service, the
run ends when the client detects a change in the number of servers
with which it is communicating. This definition is natural because
if the number shrinks, a callback may be lost from a server that
disappeared. If the number grows, a newly available server may
hold updated versions of cached data.

In addition to allowing us to reason about a replicated service
very naturally, the notion of a run could be extended in other ways.
For example, some systems incorporate expiration times in their
cache coherence mechanism [8]. We can address this by extending
the definition of a run such that when expiration occurs, the run
ends.

7 Related Work

Formal verification of cache coherence protocols in the hardware
domain has been done by MacMillan and Schwalbe for the Encore

Gigamax multiprocessor [17] and by Clarke and his colleagues [6]
for the IEEE Futurebus+ standard. In both cases flaws were found
during the processof verification. Becausethey were working in the
hardware domain, they were able to ignore two aspectsof distributed
systems that we cannot: failures and transmission delays. They also
have the additional advantage of working in a finite state space and
were able to do an exhaustive case analysis using symbolic model
checking techniques [7]. We could view our simplified model
(single server, single client, etc.) as a finite state machine, as
depicted in Appendix A, and thus complement our proof-theoretic
analysis with model checking.

Network communication protocols must cope with failures and
latency as we do. Formal specifications of these protocols (e.g.,
[3, 24]), written in languages such as LOTOS [13] and Estelle
[14], typically abstract away from state and highlight instead the
behavior of the communicating parties as interleavings of their
events. We not only have to accommodate possible failure and
timeout events, but we also need to reason explicitly about client
and server state, e.g., what files are cached. We found for our
work that our correctness condition is most naturally specified as a
state predicate to be shown invariant over a small, finite set of state
transitions rather than as a property of an infinite set of interleavings.

There is an abundanceof specificationlogics basedon first-order
predicate logic, set theory, and/or algebras, embodied in languages
like Z [23], VDM [15], and Larch [9], but they are more general
than we need. We could have easily defined our domain of dis-
course (clients, servers, RPC, faults, transmission delays, belief
and agreement sets, etc.) in terms of these more generic primitives,
but we intentionally chose a modal logic that would let us highlight
the essence of our correctness condition—belief.

Just as Bentley advocates inventing and using “little languages”
for special-purpose programming [1], we suggest that “little logics”
are appropriate for special-purpose reasoning. Our extended subset
of the BAN logic is just right for our purposes; it is specific enough
so that we do not need to define primitives such as belief from first
principles, but general enough so that one can apply it to different
kinds of protocols.

8 Conclusions

Designers of large distributed systems must cope with the the fact
that failures are the rule, not the exception. Ideally, these systems
shouldfunction despite them. This meansthat clients shouldoperate
with a certain amount of autonomy; when failures occur, there
should be mechanisms to allow clients to reduce their dependence
on servers. Optimistic approaches for data access, which allow
data access and updates during partitions, are ideal for this purpose
– they maintain a high degree of data availability, but at the expense
of global consistency. By its very nature, optimism is based on
belief, not on knowledge. Hence, we find belief a practical notion
for reasoning about correctness in distributed systems.

Using our extensions to a subset of the BAN logic we were
able to capture client and server behavior intuitively and succinctly.
Rather than define a new logic, we were fortunate to have a logic we
could apply to our domain. The notion of belief for reasoning about
cache coherence for file systems held intuitive appeal to us when
considering alternative formal approaches. The underlying state
machine model suffices for describing relevant local and global
state components, and critical state transitions. The pure state
machine approach would require encoding belief in terms of state
variables, and reasoning about those variables. Using belief allows
us to reason at a higher level of abstraction.

A little formalism goes a long way. We discovered serious
flaws in earlier designs of our protocol, and inefficiencies in its

implementation. By characterizing formally the classes of runs of
our protocol, we could easily check that we covered all cases that
we expect to encounter in practice.

Larger distributed systems will require more complex resource
management software to meet more demanding performance and
availability requirements. Judicious use of suitable formalism can
help increase our confidencein the correctness of the systems we
build.

9 Acknowledgements

We thank Martin Abadi and Mark Tuttle for their comments on our
extended abstract, and especially for their help in our understanding
some of the subtleties of the BAN logic.

References

[1] Jon Bentley. Programming Pearls: Little Languages. Com-
munications of the ACM, 29(8), August 1986.

[2] Andrew D. Birrell and Bruce J. Nelson. Implementing Remote
Procedure Calls. ACM Transactions on Computer Systems,
2(1):39–59, February 1984.

[3] G.v. Bochmann and C.A. Sunshine. Formal Methods in Com-
munication Protocol Design. IEEE Transactions on Commu-
nications, 28(4):624 – 631, April 1980.

[4] M. Burrows, M. Abadi, and R. Needham. A Logic of Authen-
tication. Technical Report 39, DEC Systems Research Center,
February 1989.

[5] Michael Burrows, Martin Abadi, and Roger Needham. A
Logic of Authentication. ACM Transactions on Computer
Systems, 8(1):18–36, February 1990.

[6] E. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. Long,
K. McMillan, and L. Ness. Verification of the Futurebus+
Cache Coherence Protocol. Technical Report CMU-CS-92-
206, Carnegie Mellon University School of Computer Sci-
ence, October 1992.

[7] E.M. Clarke, J.R. Burch, O. Brumberg, D.E. Long, and K.L.
McMillan. Automatic Verification of Sequential Circuit De-
sign. Phil. Trans. R. Soc. London, 339:105–120, 1992.

[8] Cary G. Gray and David R. Cheriton. Leases: An Efficient
Fault-Tolerant Mechanism for Distributed File Cache Consis-
tency. In The Twelfth ACM Symposium on Operating Systems
Principles, pages 202–210. ACM, December 1989.

[9] J.V. Guttag, J.J. Horning (eds.) with S.J. Garland, K.D. Jones,
A. Modet, and J.M. Wing. Larch: Languages and Tools for
Formal Specification. Springer-Verlag, 1993.

[10] J.Y. Halpern and Y. Moses. Knowledge and Common Knowl-
edge in a Distributed Environment. In Proceedings of the
Third ACM Symposium on Principles of Distributed Comput-
ing, pages 50 – 61, 1984.

[11] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan,Robert N. Sidebotham,
and Michael J. West. Scale and Performance in a Dis-
tributed File System. ACM Transactions on Computer Sys-
tems, 6(1):51–81, February 1988.

[12] L.B. Huston and P. Honeyman. Disconnected Operation for
AFS. In Proceedings of the USENIX Symposium on Mobile &
Location Independent Computing, pages 1 – 10, August 1993.

[13] Information Systems Processing – Open Systems Intercon-
nection – LOTOS – A Formal Description Technique based
on the Temporal Ordering of Observational Behavior. Tech-
nical Report ISO 8807, International Standards Organization,
1988.

[14] Information Systems Processing – Open Systems Intercon-
nection – Estelle – A Formal Description Technique Based on
an Extended State Transition Model. Technical Report ISO
9074, International Standards Organization, 1989.

[15] C.B. Jones. Systematic Software Development Using VDM.
Prentice-Hall International, 1986.

[16] James J. Kistler and M. Satyanarayanan. DisconnectedOpera-
tion in the Coda File System. ACM Transactionson Computer
Systems, 10(1), February 1992.

[17] K. McMillan and J. Schwalbe. Formal Verification of the
Encore Gigamax Cache Consistency Protocol. In Proceed-
ings of the 1991 International Symposium on Shared Memory
Multiprocessors, April 1991.

[18] Lily B. Mummert, Jeannette M. Wing, and M. Satya-
narayanan. Using Belief to Reason About Cache Coherence.
Carnegie Mellon University, School of Computer Science
Technical Report, in preparation.

[19] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching
in the Sprite Network File System. ACM Transactions on
Computer Systems, 6(1):134 – 154, February 1988.

[20] M. Satyanarayanan, John H. Howard, David A. Nichols,
Robert N. Sidebotham, Alfred Z. Spector, and Michael J. West.
The ITC Distributed File System: Principles and Design. In
Proceedings of the Tenth ACM Symposium on Operating Sys-
tems Principles, pages 35–50, December 1-4 1985.

[21] M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Steere. Coda: A
Highly Available File System for a Distributed Workstation
Environment. IEEE Transactions on Computers, 39(4), April
1990.

[22] R.N. Sidebotham. Volumes: The Andrew File System Data
Structuring Primitive. In European Unix User Group Con-
ference Proceedings, August 1986. Also available as Tech.
Rep. CMU-ITC-053, Carnegie Mellon University, Informa-
tion Technology Center.

[23] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-
Hall, 1989.

[24] A.J. Tocher. LOTOS and the Formal Specification of Commu-
nication Standards: An Example. In Formal Methods: Theory
and Practice. P.N. Scharbach, editor. CRC Press, Inc., 1989.

A Client State Transition Diagram

The client’s state transition diagram for a file and its containing vol-
ume is shown in Figure 4. The node labels combineC:D andC:B.
We denote the file by f and the volume version number by v. A “0”
means the object is not present in the cache. For example, the state
(f; 0)meansC:D = f and (f 2 C) 2 C:B. An object in boldface
means the client has a callback for the object (valid(dC) 2 C:B).
The states with no callbacks ((0; 0); (f; 0); (0; v); and (f; v)) are
either initial or final states. For each object in C:D, the agreement
setA determines the first state transition concerning that object. For
example, if C:D = f and A = fdC 6= dSg, when C references
the object its next transition will be a failed validation for f .

Looping is possible between states (f ; 0) and (f ;v). In theory,
a client could repeatedly obtain and lose the callback for v, while
it holds the callback for f . This is false sharing, and should be
avoided. In practice, a reasonable policy for obtaining volume
callbacks should prevent this.

There are two transitions that we do not show (or use), but could
be added as optimizations. Both are from the state (f;v). In this
state, all of the cached objects in V are valid. The first transition
would allow a client to obtain a file callback on f in case the volume
callback is broken ((f;v) to (f ;v)). The second transition is an
invalidation for f ((f;v) to (0;0)). If a client holds a volume
callback only, the server does not have any information on which
objects the client has cached. If object f is updated, the server
breaks the callback for v. If it sent the identifier of f instead, the
client would interpret the message as an invalidation for v as well
as f . If it has a copy of f , it would discard it. This is a small
optimization that will save a validation for f that is doomed to fail.

The diagram is simplified in that we do not show transitions
associated with error conditions, such as message timeouts.

0,0 0,0f,0

f,v

f, v

f,v

fetch f invalidate f

validate f failure

validate f

failed validation f

fetch v invalidate v

failed validation f
validate v

failed validation v

failure

failure

invalidate v

failure

invalidate f

Initial States Final States

invalidate f

failed validation v

validate v

f, 0

f,v

f, 0

f,v

Figure 4: Client State Transitions

This is the state transition diagram for the client for a file-volume pair (f; v). A “0” means the object (f or v) is not present in the cache. An
object in boldface means the client has a callback for the object.

