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SynRGen, a synthetic file reference generator operating at the system call

level, is capable of modeling a wide variety of usage environments. It

achieves realism through trace-inspired rrricromdek and flexlbdity by com-

bining these micromodels stochastically. A micromodel is a parameterized

piece of code that captures the dlstinctwe signature of an apphcatlon. We

have used SynRGen extensively for stress testing the Coda File System

We have SISOperformed a controlled experiment that demonstrates SynR-

Gen’s abdity to closely emulate real users – w]thm 20% of many key system

variables In this paper we present the rationale, detaded design, and eval-

uation of SynRGen, and mention Its applic~bility to broader uses such as

performance evaluation

1 Introduction

Transforming a file system from an initial prototype into a fully de-

ployed system is a process fraught with hazard. Many insidious bugs

will only be triggered under heavy loads and extended usage. But

fear of serious failures, involving loss of data and lengthy downtime,
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deters many potential users. How, then, can implementors hope to

increase the robustness of their system?

SynRGen is our solution to this problem. Configuration files,

describing the behavior of real users and the characteristics of their

data, are used by SynRGen to construct programs called syrrthetic

users. When executed, a synthetic user generates references em-

ulating the modeled users. By stress testing with a wide variety

of synthetic users, an experimental system can be brought to an

acceptable level of robustness.

SynRGen’s usefulness extends well beyond stress testing. Since

synthetic users can be parameterized and since the generated work-

load is reproducible, they can be used as the basis of a family

of benchmarks for performance evaluation Further, the logistical

and privacy problems inherent in exporting reference traces can be

avoided by exporting a synthetic user representative of those traces.

Most importantly, SynRGen allows a system to be subjected to hy-

pothetical or anticipated usage scenarios. For example, one may

wish to study the behavior of a file system when the extent of write-

sharing, the degree of locality or the distribution of file sizes differs

substantially from that of any currently available environment.

We have used SynRGen extensively in the development of

the Coda File System[l 6]. Our experience confirms that it is an

invaluable tool for file system development. We have also shown

that the synthetic users produced by SynRGen can closely emulate

the impact of real users on system resources. Specifically, our

experiments indicate that SynRGen can emulate a group of users

in an editidebug cycle within 20% of key system variables such as

network load and server CPU usage

Our description of SynRGen begins with a discussion of the pr-

imary factors that influenced its design. We then describe its archi-

tecture and implementation. The results of a controlled experiment

exploring SynRGen’s ability to emulate real users are presented in

Section 4. We conclude the paper with a discussion of potential

refinements and a survey of related work.
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2.1

Design Rationale

Combining Realism with Flexibility

The dominant design consideration for SynRGen was our need to

characterize a wide variety of usage environments, including aspects

such as the physical characteristics of files, the behavior of users

and programs, and the scale of the system. In building SynRGen,

we had to carefully balance the degree of realism achieved with the

amount of flexibility possible.

Realism can be viewed as the measure of correspondence along

a number of dimensions[6]. The dimensions of interest may vary

considerably. For example, in one experiment the only variable of

interest may be server CPU utilization. In contrast, a more detailed

experiment might include many system variables such as cache hit

ratio at clients, volume of client-server traffic, and disk traffic at the

server. The ultimate degree of realism is to replay an actual file

reference trace. Unfortunately, traces can be extrapolated only in

limited ways. Parameters such as file sizes and interarrival times

can be scaled with relative ease, But there is no mechanical way to

modify more complex aspects such as the degree of write-sharing

between users,

SynRGen achieves realism through trace-inspired micromodels.

File reference traces of applications reveal distinctive patterns or

signatures in their file access behavior. A micromodel captures the

signature of a particular application in a parameterized function. As

an example, considers hypothetical C compiler that opens and reads

a “.c” file, opens and reads a number of “,h” files, creates an empty

“.0” file, writes to that file, and finally closes it. The specific “.c” file

referenced, the number and identity of “h” files, the sizes of each

file. and many other details vary from execution to execution. Yet

an examination of traces from many such executions will reveal the

general pattern described above, A micromodel for this hypothetical

C compiler would capture this distinctive signature, parametrizing

the details of interest that vary between executions.

SynRGen achieves flexibility because experimenters can

stochastically combine micromodels to capture workloads repre-

sentative of a particular class of users, They can also specify pa-

rameter values at runtime and during configuration. Rather than

wiring in the degree of realism, our approach defers this decision to

the experimenter.

We expect most experimenters will begin by using existing

micromodels, simply setting parameter values appropriately. If

they find that no micromodel exists for an important application or

if they find that the existing micromodel is not sufficiently accurate,

they will either create a new micromodel or improve the existing

one. An important aspect of our approach is that it is possible to

substantially separate the efforts of the modeler and experimenter –

micromodels encapsulate the work of the former.

2.2 File System Independence

A goal in developing SynRGen was to compare the performance

of akemative implementations of a particular file system API (ap.

plication program interface) for identical user communities. For

example, one might want to compare AFSII 4], NFS[l 2], Sprite[l 1:1

and Coda[16]. This requires that the reference stream generated by

SynRGen had to beat the level of abstraction common to these file

systems, in this case the Unix file system API.

References generated at the file system API means that semantic

constraints at that level must be respected. For example, in the Unix

API, one cannot delete a directory unless it is empty; nor can one reacl

from a file until it has been opened. Rather than trying to capture

these API-specific constraints in some declarative form (such as a

table), we chose to embed them in micromodels written in arbitrary

C code. It is then the responsibility of the micromodel’s author to

ensure that API-specific constraints are met. Further, the mecha-

nism for stochastically combining micromodels is AP1-independent

because the micromodels encapsulate all knowledge of the API,

A consequence of this decision is that SynRGen is not restricted

to generating file system references. By writing appropriate micro-

models, SynRGen could equally well generate, for example, syn-

thetic SQL database queries or disk I/O references. Although our

experience with SynRGen has been limited to file reference gener-

ation, we do not foresee any obstacles to its broader use.

2.3 Parameterizing File Locality

The performance of virtually every file system ts critically depen-

dent upon design assumptions regarding the degree and nature of

locality of file reference. If these assumptions do not hold in a

particular environment, the performance of the file system could be

significantly different from expectations. We wanted the ability to

study the effect of changing the locality of reference substantially.

In order to conduct such a study without recoding every micro-

model, one needs the ability to convey interfile locality information

between independently-authored micromodels. For example, if a

user examines the attributes of a given file, he or she is likely to

look at the contents of that file next. Somehow. we must capture

this temporal locality of reference. We use pathrarne iferators to

meet this requirement. A pathname iterator is simply a procedure

that encapsulates locality information. Each call to a pathname it-

erator yields the name of a file or directory; the stream of names

generated by successive calls exhibits the interfile locality modeled

by that iterator. To use SynRGen micromodels with different lo-

cality patterns, one merely invokes them with different path name

iterators.

In principle, a similar mechanism could provide a choice of

intrafde locality models. However, intrafile locality tends to be
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Physical Characteristic

Total Number of Volumes

Total Number of Directories

Total Number of Files

Total Size of File Data (MB)

Absolute Depth

Relative Depth

File Size (KB)

Directories/Directory

Files/Directory

Hard Links/Directory

Symbolic Links/Directory

User

786

13955

152111

1700

4.3 (1 3)

3.3 (1 3)

10,3 (65 O)

3.6 (134)

14.6 (3o 6)

3.7 (124)

4.1 (10.1)

Project

121

33642

313890

7000
6.3 (z1)

5.2 (2 O)

24.0 (1457)

3.0 (45)

16.2 (35 6)

2.0 (15)

3.4 (75)

‘olume Typ
System

72

9150

113029

1500

60 (13)

4.0 [1 2)

16.4 (72.6)

3.6 (104)

15.9 (36 9)

4.0 (39)

13,6 (45 3)

BBoard

71

2286

144525

560

53 (lo)

2,7 (O 8)

2,6 (7,0)

6.8 (194)

66.9 (1424)

0.0 (00)

6.0 (25 9)

All

1050

59033

723555

11000

5.7 (2 o)

4.5 (1 9)

19.1 (1180)

3.2 (83)

15.7 (34 5)

34 (57)

6.3 (24 9)

This table summarizes various physlcd cbamctermcs of system, user. project, and bulletin board (“bboard’) volumes in AFS at Carnegie Mellon University in early 1990 These d~tzz

were obtained WI statx mmlysls. We present only the mean and standdrd deviation (m pmenthesls) here. The full data are represented In cumulauve dwnbution funcuons Absolute

depth IS measured from “Pafslcs cmu eduluser” for user volumes. “/afslcs cmu edulproject” for project volumes, and so on Relat]ve depth IS mewured from the volume root

Table 1 Sample Physical Characteristics by Volume Type

specific to an application rather than being a function of the usage

environment. Hence we expect SynRGen’s micromodels to capture

intrafile locality internally. For instance, a micromodel for the more

program would open a file and read all or the initial part of the file

sequentially, while a micromodel for a database or a linker/loader

would open a tile and access portions of the file randomly

3 Architecture and Implementation

The design rationale presented in the previous section leads directly

to the architecture of SynRGen. The core of SynRGen consists of

a set of preprocessors that transform configuration files mto exe-

cutable code. linking in the specified micromodels from a hbrary.

Synthetic user executable are generated for each type of user spec-

ified by the configuration files. Running a synthetic user results in

references corresponding to that type of user.

An experiment consists of subjecting a candidate system to a

collection of synthetic users. To emulate a timesharing environment,

multiple synthetic users are run on the same machine. When em-

ulating a distributed workstation environment, each synthetic user

is run on a different client machine. Tbe system-spectfic instru-

mentation necessary for momtoring the impact of synthetic users on

clients, servers, and the network must be provided externally.

In the following sections, we describe SynRGen at the next level

of detad. We first present the abstractions supported by SynRGen,

and then discuss how each abstraction is specified. We complete

the section by giving the status of our implementation.

3.1 SynRGen Abstractions

Our design 1s based upon two key abstractions: volumes and user

classes. The volume abstraction provides the basis for modeling the

layout and storage characteristics of the file system, while the user

class abstraction provides the basis for modeling user activity.

A volume is a subtree of files and directories exhibiting a unique

combination of physical characteristics. Each characteristic. such

as file size and directory fan-out. is descrtbed by a distinct volume-

specdic stochastic distribution. For simplicity, we assume volumes

are mounted only at the root of the file system hierarchy. Table 1

summarizes the characteristics observed in different types of vol-

umes from a representative file system

A user class corresponds to a stochastic finite state machine.

States in the FSM represent distinct user behaviors, while transi-

tions represent a user changing from one behavior to another. For

example, a behavior might be “programming” or “document pro-

cessing”. Each behavior consists of some set of possibly repetitive

actions, corresponding to subtasks performed within this behav-

ior. The actions associated with a “programming” behavior might

include “searching header files”, “editing” and “compiling”, while

the actions associated with a “document processing” behavior might

include “editing” and “formatting” Actions exhibit distinctive file

access characteristics, and correspond to micromodels
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045
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Action

0.1 – – 0,04

. to
clean.

I

I
,0 x“

another_behevior

-UP

(a) Complete Finite State Machine (b) Detail of demo Behavior

Figure (a) shows the finite state m~chine for a h ypothetical user class Each of the states ini t ial i ze.me. demo, c 1 ea~up, and another. behavi or represent user behaviors

Figure (b) shows the detmled contents of one of these behaviors, demo Each small rectangle in this figure, such as edit-debug and readent ire-file, corresponds to m

action, these actrons are Implemented m mtcromodels In both figures, arcs represent transitions between user behaviors, and the numbers on the arcs Indicate trmslt]on prohabdltles

Figure 1: User Class Finite State Machine

/‘ Include volume type descriptions ‘/

#include <system>

#include <hacker-pro] ect>

/’ Volume Instantlations -- name: volume-t~e */

Sys : system

codasrc: hacker-pro j ec t

synrgensrc: hacker.proj ect

/’ Include user class descriptions */

#include <hacker>

/’ User Declarations -- group: user-class (parameters) ●/

codahackers, hacker ( )

synrgenhackers: hacker (proj ectl = synrgensrc, mean- mterarrival = O 14 )

Figure 2: Sample System Configuration File

This figure shows I v~mple system contigumuon file NotIce that the synrgenhackers user declwmon redefines the default vidue of the $pro j ect 1 vtiriable to “synrgensrc”

md the value of the mean-interarrival vwmble to O 14

FILESIZE: DIRS per DIRECTORY,

007 0 0,67 0 SYMLINKS per DIRECTORY

010 100 081 1 091 0

013 200 089 2 0.95 1

,,. 092 3 0.98 3

,. 095 4 099 9

099 400000 100 90

100 10000000 100 100

Tbls figure, contammg excerpts of the pro] ect volume contigtmmon file, shows three physd chamctenstics of tbls type of volume This frle contmns the reverse tmnsformation

of tbe CDF for each Chwdcterlstic For example, 13’36 of all files In project volumes contain no more than 200 bytes of dtta The dum detmls the summary presented In T~ble I

Figure 3: A Portion of a Volume Configuration File
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Figure 1(a) shows an example of a user class. This class

of users exhlblts four behaviors initial ize.me, demo,

another. behavior and clean-up. The arcs m this fig-

ure represent transitions between behaviors; the numbers repre-

sent the probability of taking a particular transition Figure l(b)

details a single behavior (demo) of that user class The ac-

tions associated with the demo behavior include syscall-stat,

read-entire_file andedit_debug.

Our representation of a user class closely resembles a user be-

hal’iorgraph, asdefinedby Ferrari[6] Each behavior ina SynRGen

user class comespondsto anode in the behavior graph, and each

transition to an arc.

3.2 Configuration Files

SynRGen’s volume and user class abstractions are described in

configuration files which are transformed by preprocessors. The

mkclass preprocessor transforms a user class into a C program

representing a synthetic user, Themkvol preprocessor transforms

a volume description into a C data structure accessed by micromod-

elsthrough library routines. Toslmplify thecompilation andlinking

of synthetic users, we provide a third preprocessor. mksynrgen.

that takes a system configuration file and generates shell scripts.

Redescribe SynRGen further with asetofexamples Figure2

shows atypical system configuration file. Thetirstsection ofthis file

defines volume descriptions by including volume configuration files,

system .vol andhacker-.pro ject.vol Inthe next section,

we instantiate three volumes: sys, codasrc, synrgensrc.

The first volume is of type SYS tern, and the other two are of type

hacker.proj ect. The syntax resembles the way in which C

programs include header files to obtain typedef definitions and

then instantiate variables of those types. In a similar manner, the

rest of the file obtains definitions of the user class hacker and

instantiates two different instances of this type of user. The instances

differ in that codahackers uses the default set of parameters,

while synrgenhackers redefines certain parameters,

Figure 3 depicts a portion of a volume configuration file, This

file can contoin up to six sections, each describing a physical char-

acteristic of the file system hierarchy, The physical characteristics

are: the file size; the number of files, symbolic links, hard links and

directories per directory: and the relatlve depth, The characteristics

are described using the inverse transformation of the correspond-

ing CDF (cumulative distribution function). This information is

transformed into a data structure used by the volume information

routines (e.g. get_Fi leSize) accessible to mlcromodels,

Figure 4 depicts the user class configuration file correspond-

ing to Figure 1. The heart of the user class definition consists of

the description of individual behaviors such as ini t ialize.me,

demo, another.behavior and clean-up. Descriptions of be-

haviors can use either arbdrary C code or our syntactic constructs

for commonly encountered control flows. The demo behavior, for

example, uses our syntactic constructs. After entering the demo be-

havior, the program will stochastically choose a volume in which to

operate (either the $proj ectl or the sys volume), If the project

volume is chosen, the program will loop, stochastically choos-

ing one of three actions (syscall_stat, readentire-f ile

or edit_debug) on each iteration These actions are micro-

models. If the sys volume is chosen instead, the program

will stochastically choose to perform either a syscal l_s tat,

a read_ entire-file or a transition to the clean_up behav-

ior, Notice that each of the micromodels take a pathname iterator,

Fractile_FallOff ( ) , as a parameter.

Parameters to the user class can be accessed within the configu-

ration file by prepending a $ to their name, e g. $pro j ectl. These

variables are bound to a default value when they are declared, but

can be rebound either at configuration time or at run hme, Run time

binding takes precedence over configuration time binding, which

in turn takes precedence over the default binding. As shown m

Figure 4, the default binding for the $proj ectl volume M “co-

dasrc”. However, as shown in Figure 2, the system configuration file

redefines this parameter to “synrgensrc” for synrgenhackers.

Arbitrary C code (surrounded by ‘{’ and ‘}’) also appears in

many places within the body of Figure 4. By allowing experimenters

to combme specialized syntactic constructs together with arbitrary

C code, SynRGen provides a good balance between brevity and

open-endedness,

3.3 Implementation Status

SynRGen has been operational since May 1992. The implemen-

tation is highly portable and has run under Mach on DEC MIPS

workstations, Intel 386/486 machines, and IBM RTs. It has also

been ported to run under AIX on IBM R!V6000 machines, The

three preprocessors are implemented in C, using lex and yacc.

We have built up a small library of parameterized micromodek

representing a variety of typical applications used in our environ-

ment. These include use of an emacs-style editor, C compilation,

and building programs via make. Using micromodels and user

classes representative of our environment, we have used SynRGen

extensively for stress testing new releases of the Coda File System.

Also, we have conducted controlled experiments to evaluate how

realistically SynRGen models a true Coda file server workload. The

results of our experiments are reported in the next section.
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1**’’*********’*’””* ***********’’*******” *******++************ ****
. SynRGen USER Configuration File *

*******.***,*+** +*************** * *************.* *****.********** ***J

{

#include “behavior. h“

#include “fract.falloff. h”

#include “volume-i nfo. h”

Fractile. FallOff-Inf O system-info, project-info,

Volume. Inf o System-VolLune, Proj eCt-VOIUMe;

}

/’ Parameter Declaration and Initialization *I

double meaminterarrival = O. 10227;

double ckp.interval = 30. O;

int pause = 10;

int loop. times = 5;

char projectl [101 = “codasrc” ;

initial ize. me:

{

printf ( “SynRGen initialized. Beginning SynRGen demo in %d seconds\n” , pause) ;

sleep (pause) ;

BEGIN (demo) ;

1

demo z

{ printf ( “\n\nSTART: demo behavior\n” ) ; }

< 0.60 $projectl

loop [$loop.times]

<0.25 syscall-stat (Fractile. FallOff ( ) , &Pro ject.Volunte, &project-info, DIR-OBJ) >

<0.25 read-entire-file (Fractile-FallOff ( ) , &PrOj ect-VOlume, &prOj ect-info) >

<0.50 edit-debug (Fractile-FallOf f ( ) , &Proj ect.Voluone, &project- info, ckp-intemal ) >

end loop

{ BEGIN ( another-behavior) ; }
>

< 0.40 Sys

<0.45 syscall-stat (Fractile. FallOffo , &System_ Volunte, &syste~inf o, DIFLOBJ) >

<0.45 read_ entire. file(Fract ile-FallOff () , &systemVolume, &systerkinfO) >

<0.10 { BEGIN (cleanup) ; } >

>

{ .l.ep (Exponential (mean interarrival ) ) ; }

another. behavi or:

{

I* This section of the configuration file would model another behavior. */

BEGIN (demo) ;

}

c 1 can-up:

J1
printf ( “ \n\nSynRGen run complete! \n” ) ;

exit(0);

This figure shows the user ckiss configumtion tile corresponding to the user elms finite state machine shown in Figures l(a) and (b). The demo behavior exemplifies SynRGen’s

syntactic constructs which simplify modeling common control flows. In this behavior, we see three distinct actions syscal 1. stat, read-entire-file, and edit-debug.

These octions correspond to micromodels. Arbitrary C code appears in numerous places in the file: at the top of the file, in well-defined points within the demo behavior, and as

the entirety of three bebaviors (initialize-me, another-behavior, and c lean-up). The BEGIN statements that appew throughout this tile represent transitions between

behaviors. Although the Fract i le. Fal 10 f f ( ) parameter looks like a function call, the preprocessor translates this into a pointer to a function so that the micro models can use it

w a pathn ame itemtor.

Figure 4: Sample User Class Configuration File
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4 Case Study: Users in an Edit/Debug Cycle

An important question is “How well does a SynRGen workload

emulate a real workload?” To answer this question, we conducted

a performance-oriented study [6] comparing real users to a syn-

thetic user. We chose to study the editidebug cycle because it is a

common activity in our environment as well as many others. We

wrote micromodels for the most frequent activities in an editidebug

cycle, generated a synthetic user, and then performed a controlled

experiment to compare the load generated on Coda servers by the

synthetic user to that generated by real users.

4.1 The Synthetic User

Our first task was to build mlcromodels of the tools most frequently

used during editidebug cycles. To build these micromodels we

examined many traces generated by a number of users working in

an editidebug cycle on a variety of machine architectures.

After completmg the mlcromodels, we constructed a synthetic

user. The main achvity of this synthetic user is an edit/debug cycle

that consists of editing some number of files associated with a par-

ticular “program”, recompding the modified files, and executing the

program after it is built In addition, the synthetic user occasionally

performs a few other related activities such as consulting a manual

page, examining a system header file or looking through a source

file. Broadly, the user resembles the example shown in Figure 4.

The important user class parameters are the mean interarrival time

of file system requests, and the mean checkpoint interval time for

the emacs-style editor.

4.2 The Experiment

For our experiment, we observed five C or C++ programmers as they

performed edit/debug activity for one hour. We made no attempt to

rigidly constrain these users – our only request was that they confine

their activities to a single workstation. Inevitably, some activities

not modeled by SynRGen were performed, but we believe that the

amount of such activity was minimal

These users were working on DEC DS-5000/200 machines rtm-

ning Mach 2.6. The data they were accessing resided primarily in

triply replicated volumes located on three Coda servers. Each server

was also a DS-5000/200 machine running Mach 26 The client and

server machines communicated via an Ethernet,

The system parameters we measured on the Coda servers in-

clude distribution of incommg RPC operations. transactional activity,

CPU utilization, disk activity, and Ethernet load. In addition to these

server and network statistics, we obtained file reference traces of

these users on the client machines.

The mean interarnval time parameter of our synthetic user was

set to the mean interarnval time of file system requests observed in

the traces of these users (about 0,1 seconds). The mean checkpoint

interval parameter to our synthetic user was set using an estimate

of the frequency of checkpoints in actual use of our editors (30

seconds) In addition, the pathname iterator to our micromodels

was the fractile falloff distribution described by Satyanara yanan

[15], Specifically, 75% of the time, 4% of the files were referenced;

209Z0of the time, 16T0 of the files were referenced; and the remammg

5% of the time, the other 80% of the files were referenced.

Using these parameters, we then ran the synthetic user on one

of the client workstations in a subtree of the Coda tile system, The

physical characteristics of files in this subtree were consistent with

the data presented in Table 1 for project volumes.

4.3 Results

Table 2 compares the values of the system variables obtained from

our real users to those obtained from our synthetic user. The last

column of this table calculates the difference between the synthetic

user and the mean of the real users in units of the standard deviation

of the real users. This column shows that all but two system var-

iables (the number of status fetches and the CPU usage in user mode)

fall within one standard deviation of the average for the real users,

For most system variables including the two above, the synthetic

user comes within 20% of the mean value for the real users, With

the exception of the number of data fetch and store requests, all

the other system variables of interest lie within about 40?Z0of their

observed values for the real users In all cases where the results

from the synthetic user diverge substantially from the mean value

for the real users, the result from the synthehc user still falls within

the range observed for real users,

A final observation is that SynRGen consistently underestimates

the observed values from real users (i.e., relative error N negative for

most system variables). This suggests that we might be able to get

the synthetic user to better match real users by applying a correction

factor to the run time parameters. Experiments not reported here

confirm that this 1s indeed the case.

It is important to note that the bulk of our effort m this experi-

ment was in building the micromodels The actual construction of

our synthetic user was relatively simple. This confirms the under-

lying hypothesis of our approach: that it is possible to substantially

separate the efforts of the modeler and experimenter, and to encap-

sulate the work of the former in micromodels

Our results confirm that SynRGen is able to realistically model

users in at least one domain. Further validation of our approach

would require slmdar controlled experiments spanning a broader

class of activities, applications, and environments,
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Real Users Synthetic Relative Stdzd
Characteristic User 1 User 2 User 3 User 4 User 5 Mean (StD.v) Cov User Error Error

Total Time (see) 3642 3379 3603 3602 3597 3565 (105) 0.0 3602 1% 0.4
Total Operations 3431 2177 2898 2085 2601 2638 (551) 0.2 2590 -2% 0.1
SERVEROPS:

FetchData 32 30 63 4 28 31 (21) 0.7 11 -65% 1.0
Fetch Status 1219 1061 1462 1161 1278 1236 (149) 0.1 1078 -13% 1.1

StoreData 269 29 70 72 35 95 (99) 1.0 167 76% 0.7
StoreStatus 263 48 49 59 21 88 (99) 1.1 115 31% 0.3

Create 117 26 21 22 7 39 (44) 1.2 33 -15~o 0.1
RVM:

Transactions 2158 437 422 403 394 763 (780) 1.0 686 -lo% 0.1

CPU TIME:

User (see) 81 90 81 63 68 77 (11) 0.1 63 -18% 1,3
System (see) 163 169 244 132 133 168 (46) 0.3 134 -20% 0.7

DISK:

Transfers 7804 2434 11735 2535 3518 5605 (4070) 0.7 3968 -29% 0.4
KBs Transferred 57112 15891 86862 15046 22359 39454(31633) 0.8 22420 -43% 0.5
Busy Time (see) 137 45 196 46 65 98 (67) 0.7 69 -30% 0.4
ETHERNET

Packets In 123800 129365 163207 117353 107830 128311 (21088) 0.2 114245 -11% 0.7
Packets Out 27485 34737 38847 25867 24888 30365 (6115) 0.2 25205 -17% 0.8

This table presents theresults ofacontrolled experiment comparing theworkload generated on Codaservers bytiverval users tothatgenerdted byasyntiehcuser Foreach’’user”,

represent thememv alueobserveda tthethreeservers. Inaddltlon totbe load generated byeachreal user, represent themwan, sr~ndard deviation andcoefficlent ofvarlatl on for

these users Therelauve error isdefined astheratio oftbedifference between thesynthetlc user andtbemean of theredl users tothemr~n of there~l users. ArelWveerrorgrrWer

tianzero ]mpl]es tbatthe synthetic loadoverestimated theactual load. whllean error less than zero lmplles thesynthetlc load underestlm~ted Tbestandwdlzed error ]sdetinedas

the mtio of the absolute value of the difference between thes ynthetic user and the mem of the red users to the standard dewimon of the real users.

Table2: Comparison of Real and Synthetic Users

4.4 Extending the Case Study

In the above sections we used SynRGen to model a single user in

anedit-debug cycle. Suppose. however, that we need to modelan

entire usercommunity. What would thenecessary changes be? The

first step is creating validated SynRGen models for each class of user

inthe community understudy. Once available, these synthetic users

can be run simultaneously to generate a workload representative of

the entire community.

Almost certainly, we will want to model data sharing between

users. Sharing can be read-read, read-wrtte or write-write. For

simplicity, we refer to read-read sharing simply as “read-sharing”

and to both read-write and write-write sharing as “write-sharing”.

We model read- and write-sharing of files and read-sharing of

directories by having synthetic users perform activities in shared

volumes, For example, to model read-sharing of manual pages or

header files, all members of a community might occasionally exam-

ine the contents of files and directories in shared system volumes.

Similarly, when modeling members of a project, one would concen-

trate their actiwties in one or more project volumes. Increasing the

time spent performing activities in the shared volume will increase

the probability of sharing.

Modeling write-sharing of directories is more challenging. Syn-

thetic users create, remove and rename objects as dictated by their

micromodels When synthetic users write-share directories, they

may experience interference caused by these directory updates. For

instance, one synthetic user might remove an object that another

synthetic user later attempts to edit. The micromodels in Section

4.1 do not update internal data structures upon discovering new,

missing or renamed objects. In order to support write-sharing of

directories, we must modify those micromodels to use failed system

calls as hints to trigger updates to internal data structures. One of

SynRGen’s strengths is that these improvements require modifica-

tions only to the micromodels and not to SynRGen itself.

5 Open Issues and Future Work

5.1 Automatic Micromodeling

Because writing micromodeis is a labor intensive task, automatmg

this process in some fashion would make modeling new activities

easier. One approach would be to “invert” a file reference trace,

producing a command script, This command script, when executed,

would produce a trace isomorphic to the original trace We have

experience with an untrace facility that does just that [17]. A

difficulty with such an approach is determining how to parametrize

the generated micromodels, and how to specify locality.

Another approach would be to use the strategy proposed by
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Thekkath et al. [20]. This approach recognizes that random sam-

ples selected from a representative trace of the workload being

modeled will result in workloads that exhibit the same statistical

characteristics as the original. These random samples could be used

as micromodels. Parametrizing these micromodek must still be

done manually

Both of these techniques require an accurate trace of the envi-

ronment being modeled This requirement hrnitsthei rapplicability

to environments that already exist – one cannot use either of these

techniques for constructing a micromodel for a hypothetical or an-

ticipated application.

5.2 Incorporating Locality Phases

SynRGen provides a means of modeling locality of reference in a

synthetic workload In Bunt et al.’s terminology [2, 3], SynRGen

offers flexibility in modeling any degree of concenrrakvrof locality;

that is, SynRGen allows any number of files to be in the active

set, However, Majumdar and Bunt have shown that tile reference

locality exhibits phases. or bounded locahty intervals [8] Although

we do not foresee any difficulty in incorporating locality phases,

SynRGen currently has no notion of these phases The consequence

of not supporting bounded locality intervals is that SynRGen can be

expected to display a hlgherdegree of locality than actual workloads

Adding the notion of locality phases to SynRGen would improve

the accuracy of modeling.

As seen in Figure 2, the synthetic user greatly underestimated

the number of fetches seen by the servers One possible explanation

of this behavior is that the chent cache was able to service fetch

requests for the synthetic user more successfully than for the real

users. In other words, the synthetic user may be displaying a higher

degree of locality than real users.

5.3 Quantifying Accuracy of Micromodels

The overall realism of an experiment is limited by the accuracy of

individual micromodels. This raises the question of how to quantify

the accuracy of a micromodel. One approach would be to define

some metrics and use these metrics to compare traces generated by

the synthetic user to a set of reference traces generated in a real

system. These metrics might include the fraction of files referenced

and the locality of files referenced, While such metrics give some

indication of the accuracy of the micromodel, they completely ig-

nore the order in which events happen. In modeling locality of

reference. it is important to capture the order in which system calls

occur as well as the order in which files and directories are accessed.

One metric that respects ordering is the longest common sub-

sequence (LCS) The LCS is a well-known measure of closeness

between two strings and has been used in a variety of contexts such

as DNA sequencmgand speech processing 13] We explored the pos-

sibility of using thm metrtc to quantify the accuracy of micromodels.

Unfortunately, we found this approach to be intractable due to the

large storage requirements of the algorithm and the voluminous size

of realistic traces.

Quantifying accuracy thus remains an open problem, We now

believe that such quantification must be based either on metrics

other than the LCS, or on a more efficient approximation to the LCS.

6 Related work

Synthetic file reference generation has received considerable atten-

tion in the recent past Much of this attention has been focused

on measuring NFS performance, For example, NHFSStone [9] facil-

itates comparisons of competing NFS implementations, A funda-

mental distinction between this work and ours is the dependence

of this benchmark on the NFS interface. Further, this benchmark is

considerably less realistic and less flexible than SynRGen.

Bodnarchuk and Bunt [1 ] significantly Improve upon the above

benchmark in both flexibility and realism. Their algorithm involves

sampling discrete distributions to choose an NFS operation. a file

system in which to operate (uniformly choosing a specific file from

a “representative set” of this file system), a data transfer size, and an

interarrival time. SynRGen differs from this work in that it raises the

generator up to the file system call level, models interfile locality

in addition to intratile locality, and allows measurement of client

effectiveness as well as server and network effectiveness,

In contrast to NFS benchmarks, SynRGen operates at the file

system call level. This makes performance comparison of file sys-

tem implementations such as AFS and NFS possible. It also broadens

the range of phenomena that can be modeled

Another widely used benchmark, the Andrew Benchmark[7],

operates at the Unix system call level and attains a respectable

degree of realism. Because this benchmark is restricted to specific

activities, it cannot be used to model a variety of workloads, In

contrast, SynRGen is considerably more flexible and allows a wide

range of scenarios to be modeled.

Viewing SynRGenin a broader context, it is clear that the idea of

generating a synthetic workload is not new. In fact, there area wide

variety of synthetic workload generators including the SPEC bench-

mark suite[19], the TPC benchmarks[l 8], IOBENCH[21], tcplib[5],

and many others. What differentiates SynRGen from other work-

load generators is its flexibility in accommodating new workloads

while preserving realism. It achieves this flexibility by providing

not a single workload generator, but a common framework on which

workload generators can be built. The separation of micromodels

from their stochastic combination is, to the best of our knowledge,

not duplicated in any other synthetic workload generator.
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7 Conclusion

SynRGen is a tool born of necessity. Early in the evolution of the

Coda File System, it became clear to us that we needed some way

of stressing our system without burdening real users. In retrospect,

SynRGen has indeed proven to be an invaluable tool for this purpose.

Coda is now used daily by over 30 users as their primary data

repository. New releases of Coda are exposed to synthetic users

for an extended period of time before they are installed on our

production servers. Furthermore, SynRGen proved invaluable in

debugging our current backup system.

We are confident that SynRGen’s unique ability to combine

realism with flexibility will make it attractive to other tile system

developers. As discussed earlier in the paper, we foresee it being

useful in performance evaluation. We also envision it allowing

researchers to subject their systems to a broader range of workloads

than has historically been possible. This will enhance the credibility

of research systems, whose generality has often been questioned

because of their bias toward academic workloads.

While already useful in its present form, SynRGen is not a

finished piece of work. There is clearly work to be done in building

up a rich library of micromodels, representing a wide range of

applications. A related piece of work is to assemble a collection

of configuration files capable of representing a variety of usage

environments. Finally, as Section 5 explained, SynRGen itself can

be refined in a number of ways. We believe that these efforts will

result in an important asset to the tile systems community.
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