
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

Operation-based Update Propagation
in a Mobile File System

_

Yui-Wah Lee, Kwong-Sak Leung
The Chinese University of Hong Kong

Mahadev Satyanarayanan
Carnegie Mellon University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Operation-based Update Propagation
in a Mobile File System �

Yui-Wah Lee Kwong-Sak Leung
The Chinese University of Hong Kong

fclement,ksleungg@cse.cuhk.edu.hk

Mahadev Satyanarayanan

Carnegie Mellon University
satya+@cs.cmu.edu

Abstract

In this paper we describe a technique called operation-
based update propagation for efficiently transmitting up-
dates to large files that have been modified on a weakly
connected client of a distributed file system. In this tech-
nique, modifications are captured above the file-system
layer at the client, shipped to a surrogate client that is
strongly connected to a server, re-executed at the surro-
gate, and the resulting files transmitted from the surro-
gate to the server. If re-execution fails to produce a file
identical to the original, the system falls back to ship-
ping the file from the client over the slow network. We
have implemented a prototype of this mechanism in the
Coda File System on Linux, and demonstrated perfor-
mance improvements ranging from 40 percents to nearly
three orders of magnitude in reduced network traffic and
elapsed time. We also found a novel use of forward error
correction in this context.

1 Introduction

The use of a distributed file system on a mobile client is
often hindered by poor network connectivity. Although
disconnected operation [8] is feasible, a mobile client
with an extensive amount of updates should not defer
propagating them to a server for too long. Damage, theft
or destruction of the client before update propagation
will result in loss of those updates. Further, their timely
propagation may be critical to successful collaboration

�This research was partially supported by the Defense Advanced Research
Projects Agency (DARPA), Air Force Materiel Command, USAF under agree-
ment number F19628-96-C-0061, the Intel Corporation, and the Novell Corpo-
ration. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of DARPA, Intel, Novell, or the U.S.
Government.

and in reducing the likelihood of update conflicts.

Propagation of updates from a mobile client is often
impeded by weak connectivity in the form of wireless
or wired networks that are low-bandwidth or intermit-
tent. Aggressive update propagation under these condi-
tions increases the demand on scarce bandwidth. A ma-
jor component to bandwidth demand is the shipping of
large files in their entirety. Two obvious solutions to the
problem are delta shipping and data compression. The
former tries to ship only the incremental differences be-
tween versions of files, and the latter “compresses out”
the redundancies of files before shipping the files. Un-
fortunately, as discussed later in this paper, both of these
methods have shortcomings that limit their usefulness.

In this paper, we focus on a radically different solution,
which is called operation-based update propagation (or
operation shipping for brevity). It is motivated by two
observations. First, large files are often created or mod-
ified by user operations that can be easily intercepted
and compactly represented. Second, the cost of shipping
and re-executing the user operations is often significantly
smaller than that of shipping the large files over a weak
network.

To propagate a file, the client ships the operation to a
surrogate client that is well connected to the server, as
shown in Figure 1. The surrogate re-executes the opera-
tion, validates that the re-generated file is identical to the
original, and then propagates the file via its high-speed
connection to the server. If the file re-generated by the
surrogate does not match that from the original execu-
tion, the system falls back to shipping the original from
the client to the server over the slow connection. This
validation and fall-back mechanism is essential to ensure
the correctness of update propagation.

updated
Large files

re-generated
Large files

strong network

surrogate

server

2. shipping of operation log

compact operation log

weak network

client

1. Logging of user operations

4. validation of
 re-execution
 and shipping
 of re-generated
 files.

3. re-execution of user operations

Figure 1: An overview of operation shipping

The use of a surrogate in our approach ensures that
server scalability and security are preserved — servers
are not required to execute potentially malicious and
long-running code, nor are they required to instantiate
the execution environments of the numerous clients they
service. In our model, we assume each mobile client
has pre-arranged for a suitable surrogate of an appropri-
ate machine type, at an adequate level of security, pos-
sessing suitable authentication tickets, and providing an
appropriate execution environment. This assumption is
reasonable, since many users of mobile clients also own
powerful and well connected personal desktops in their
offices, and they can pre-arrange for these otherwise idle
personal machines as the surrogates.

Even though the idea of operation shipping is concep-
tually simple, there are many details that have to be ad-
dressed to make it work in practice. In the rest of this
paper, we describe how we handle these details by imple-
menting a prototype based on the Coda File System. Our
experiment confirms the substantial performance gains
of this approach. Depending on the metric and the spe-
cific application, we have observed improvements rang-
ing from a factor of three to nearly three orders of mag-
nitude.

2 Coda background

We have implemented our prototype by extending the
Coda File System [3]. Although our experience is based
on Coda, the general principles should also be applicable
to other mobile file systems. We briefly describe Coda in
this section; more information is available in the litera-
ture [3, 8, 7, 14, 13].

The Coda model is that there are many clients and a
few servers. On each client, a cache manager, called

Venus, carefully manages and persistently stores cached
file-system objects. To support mobile computing, Coda
clients can be used in disconnected and weakly connected
mode, where Venus emulates the servers and allows file-
system operations on cached objects. Updates are ap-
plied immediately to locally cached objects, and are also
logged in a client-modify log (CML). The logging mech-
anism allows propagation of updates to servers to be de-
ferred until a convenient time, such as when network
connectivity is restored. Venus propagates these updates
with a mechanism called trickle reintegration [14, 13].
When propagation is attempted, a prefix of the log is
shipped to the server in temporal order, the size of the
prefix being determined by available bandwidth.

The effect of each mutating file-system operation is rep-
resented as a record in the CML. For example, a chmod
operation is logged as a CHMOD record, a mkdir opera-
tion is logged as a MKDIR record. Furthermore, if there
have been some intervening write operations made to
an open’ed file, a subsequent close operation will be
logged as a STORE record.

Records of the type STORE are special, because the as-
sociated data include the contents of the files. There-
fore, these records are much bigger than records of other
types. STORE records can be as large as several kilo-
bytes or even megabytes, whereas other records are typ-
ically smaller than a few hundred bytes. Although the
contents of a file logically constitute a part of the CML,
they are physically stored in a separate container file in
the client’s local file system.

Although trickle reintegration has been shown to be ef-
fective in decoupling the foreground file-system activi-
ties from the slow propagations of updates, it still suffers
from an important limitation: updated files are propa-
gated in their entirety. In other words, although the users
perceive a fast response time from the file system, the ac-
tual propagations of the updates are very slow, and they
generate heavy network traffic. On a weak network, we
need a more efficient scheme for shipping updates.

3 Design and Implementation

3.1 Overview

We organize our discussion according to the four steps
shown in Figure 1:

2

1. Logging of user operations. When a file is updated
on a client, the client keeps the new file value V (the
contents of the file) and also logs the user operation
O.

2. Shipping of operation log. If the network band-
width is low, the client does not ship V to the server.
Instead, it ships O, the fingerprint of V , and other
meta-data to a surrogate client.

3. Re-execution of operations. The surrogate re-
executes O and produces a file value V 0.

4. Validation of re-execution. The surrogate vali-
dates the re-execution by checking the fingerprints
and meta-data. If it accepts the re-execution, then it
will present V 0 to the server; otherwise, it will re-
port failure to the client, which will then fall back
to value shipping and ship V directly to the server.

3.2 Logging of user operations

3.2.1 Level of abstraction

We need to find the right level of abstraction for log-
ging operations, such that the operation logs are com-
pact. Currently, Venus logs only the low-level file-system
operations. File-system operation logs are not compact
enough for efficient operation shipping, since they con-
tain the contents of the files.

On the other hand, computer users tend to think at a
higher level. Typically, when they are working with a
computer, they issue a series of commands to it. Since
human beings type relatively slowly, the commands must
be compact; hence, we focus on this level for operation
shipping. When we speak of user operations, we mean
the high level commands of computer users that can be
intercepted, logged, and replayed later.

There must be an entity that intercepts the user oper-
ations and supplies the relevant information to the file
system. This entity can be an interactive shell, or it can
be the application itself. We refer to the two cases as
application-transparent and application-aware logging.

3.2.2 Application-transparent logging

Application-transparent logging is possible if the ap-
plication is non-interactive. In this case, an inter-
active shell can intercept the information related to
the user operation. For example, operation logging
can be transparent to the following types of applica-
tions (examples are listed in parentheses): compiler

and linkers (gcc, yacc, and ld), text processors
(latex and troff), file-format converters (dvips
and sgml2latex), software-project management tools
(make), and file packagers (tar).

For application-transparent operation shipping, we need
not modify the applications, we simply need to mod-
ify some interactive shells – the meta-applications –
such as bash and tcsh. Fortunately, there are much
fewer meta-applications than applications. We assume,
of course, that the users are willing to use a modified
shell to take advantage of operation shipping.

We extend the file-system API (application-programmer
interface) with two new commands for the ioctl sys-
tem call: VIOC BEGIN OP and VIOC END OP. They
delineate the beginning and the end of a user operation.
The user operation is tagged with the process group , so
forked children in the same group are considered part of
the same user operation. When the file system receives a
file-system call, it can determine whether the call comes
from a tagged user operation by examining the process-
group information of the caller. The information nec-
essary for re-execution, including the name of the user
command, the command-line arguments, current work-
ing directory, and so on, is passed to the file system with
the VIOC BEGIN OP command.

Our file system provides the logging mechanism, but the
logging entities can choose the appropriate logging poli-
cies. For example, an interactive shell may allow users
to specifically enable or disable operation logging based
on certain criteria.

We have experimented with the bash shell, a com-
mon Unix shell. We added a few lines of code so
that the modified shell issues the VIOC BEGIN OP and
VIOC END OP commands appropriately. Currently, we
implement the most straightforwardpolicy: the shell logs
every user operation. In the future, we may implement a
more flexible policy.

3.2.3 Application-aware logging

Application-aware logging is needed when the applica-
tion is interactive. In this case, the application is in-
volved in capturing the user operations. The follow-
ing types of applications fall into this category (ex-
amples are listed in parentheses): text editors and
word processors (emacs, vi, Applix Word and
Microsoft Word), drawing tools (xfig and Corel
Draw), presentation software (Applix Present and
Microsoft PowerPoint), computer-aided-design

3

tools (AutoCAD and magic), and image manipulators
(xv and GNU Image Manipulation Program).

In this paper, we focus on application-transparent op-
eration shipping. The mechanism that we have de-
signed, and the evaluation that we have performed, is
limited to non-interactive applications. We plan to study
application-aware operation shipping next, and we will
report our findings in the future.

3.3 Shipping of operation log

3.3.1 Shipping mechanism

The reintegrator, which is a user-level thread within
Venus, manages update propagation. It periodically se-
lects several records from the head of the CML and ships
them to the servers. For records with no user-operation
information attached, the reintegrator uses value ship-
ping and makes a ViceReintegrate remote proce-
dure call (RPC) to the server. The server, when process-
ing the RPC, back-fetches the related container files from
the client. If the reply of the RPC indicates success, the
reintegrator will locally commit the updates. Local com-
mitment of updates is the final step of successful update
propagation, and includes updating the states of relevant
objects, such as version vectors and dirty bits, and trun-
cating the CML.

If user-operation information is available for a record,
the reintegrator will attempt operation shipping first. All
the records associated with the same user operation will
be operation shipped altogether. The reintegrator se-
lects the records, packs the operation log, and makes a
UserOpPropagate RPC to the surrogate. If the reply
indicates success, the reintegrator will locally commit the
updates. However, if the reply indicates failure, the rein-
tegrator will set a flag in each of the records indicating
that it has tried and failed propagation by operation ship-
ping. These records will then be value shipped.

3.3.2 Cost model

The current version of our prototype attempts operation
shipping for a record whenever there is user-operation
information available. This static approach implicitly
assumes that the connectivity between a mobile client
and its servers is always weak. In real life, a mobile
client may have strong connectivity occasionally. Dur-
ing that time, as explained in the following paragraphs,
value shipping is more efficient than operation shipping.
We plan to enhance our prototype so that mobile clients
dynamically decide whether they should use operation

shipping or value shipping.

Our cost model compares the costs of value shipping
with that of operation shipping. For each case, there are
two different costs involved: network traffic and elapsed
time.

For value shipping, assuming the overhead is negligible,
the network traffic is the total length L of the updated
files, and the elapsed time is Tv = L=Bc, where Bc is
the bandwidth of the network connecting the client to the
server.

For operation shipping, the network traffic is the length
of the operation log, Lop, and the elapsed time is Top.
The latter is composed of four components: (1) the
time needed to ship the operation log (Lop=Bc), (2)
the time needed for re-executing the operation (E), (3)
the time needed for additional computational overhead
(Hop) such as computing checksum information and en-
coding and decoding of forward-error-correction codes,
and (4) the time needed to ship the updated files to the
servers. There are two cases for the last component. If
the re-execution passes the validation (accepted), the up-
dated files will be shipped from the surrogate (the time
cost will be L=Bs, where Bs is the bandwidth of the
network connecting the surrogate to the server); if the
re-execution fails the validation, the updated file will be
shipped from the client (the time cost will be L=Bc). The
following equation summarizes the time costs involved:

Top =

�
Lop=Bc +E +Hop + L=Bs if accepted
Lop=Bc +E +Hop + L=Bc if rejected

(1)

Therefore, operation shipping is more favorable than

value shipping only in certain condition. Operation ship-
ping saves network traffic if the operation log is more
compact than the updated files (Lop < L). Also, it
speeds up the update propagation (Top < Tv) if the fol-
lowing five conditions are true: (1) the re-execution is
accepted, (2) the operation log is compact (Lop � L),
(3) the re-execution is fast (E � L=Bc), (4) the time
needed for additional computational overheads is small
(Hop � L=Bc), and (5) the surrogate has a much better
network connectivity than the client (Bs � Bc).

3.4 Re-execution of user operations

3.4.1 Re-execution mechanism

Although we anticipate most re-executions will be suc-
cessful (execute completely and pass the validation), we
have to prepare for the possibility that they may fail (can-
not execute completely or fail the validation). Therefore,
we have to ensure that re-executions are abortable trans-

4

actions such that failed re-executions will have no lasting
effect. We implement this as follows.

Upon receiving a UserOpPropagate RPC from the
client, Venus on the surrogate will temporarily put the af-
fected volume 1 into write-disconnected mode, and then
re-executes the user operation via a spawned child called
the re-executor. During the re-execution, since the vol-
ume is write-disconnected, input files can be retrieved
from the servers, but file-system updates are not writ-
ten immediately to the server. These updates are tagged
with the identity of the re-execution and are logged in the
CML. If the re-execution later passes the validation, the
surrogate will re-connect the volume with the servers and
reintegrate the updates. At the end, and only when the
reintegration succeeds, the surrogate will locally commit
the updates, and indicate a success to the client in a RPC
reply. On the other hand, failures may happen any time
during the re-execution, the validation, or the reintegra-
tion. If any such failures occur, the surrogate will discard
all the updates and indicate a failure to the client in a RPC
reply.

It is possible that a reintegration completes successfully
at the servers, but the RPC response fails to arrive at the
client in spite of retransmission. This can happen when
there is an untimely failure of the surrogate or the com-
munication channels. We make use of the existing Coda
mechanism of ensuring atomicity of reintegrations [13]
to handle this kind of failures. In short, the client pre-
sumes an reintegration has failed if it does not receive
a positive response from the surrogate, and it will retry
the reintegration. At the same time, the server retains the
information necessary to detect whether a record has al-
ready been reintegrated earlier. If a client attempts such
an improper retry, the server will reply with the error
code EALREADY (Operation already in progress), and
the client will then know that the records have already
been successfully reintegrated in a previous attempt, and
it will simply locally commit those records.

3.4.2 Facilitating repeating re-executions

A re-execution of a user operation is accepted when it
produces a result that is identical to that of the original
execution. We say the re-execution is repeating the orig-
inal execution. Only these repeating re-executions are
useful to operation shipping. We know that a determin-
istic procedure will produce the same result in different
runs provided that it has the same input and the same en-
vironment in each run. Our file system makes use of this

1In Coda, a volume is a collection of files forming a partial subtree
of the Coda name space.

principle to facilitate repeating re-executions.

First, the re-executor runs with the four Unix-process at-
tributes identical to that of the original execution: (1) the
working directory, (2) the environment-variable list, (3)
the command-line arguments, and (4) the file-creation
mask [23].

Second, our file system expects that the surrogate ma-
chine has software and hardware configurations similar
to the client machine. Two machines are said to be iden-
tically configured if they have the same CPU type, the
same operating system, the same system-header files,
the same system libraries, and any other system environ-
ments that can affect the outcomes of computations on
the two machines.

Third, if a re-execution requires an input file stored in
Coda, we can rely on the file system to ensure that the
client and the surrogate will use an identical version of
the input file. Coda can ensure this because a client
ships updates to its servers in temporal order, and the
surrogate will always retrieve the latest version of a file
from the servers. For example, consider a user issuing
three user operations successively on a client machine:
(Op1) update a source file using an editor, (Op2) com-
pile the source file into an object file using a compiler,
and (Op3) update the source file again. When the surro-
gate re-executes Op2, the client must have shipped Op1
but not Op3, and the re-executor will see exactly the ver-
sion updated by Op1.

We emphasize that our file system does not guarantee
that all re-executions will be repeating their original ex-
ecutions; it just increases the probability of that happen-
ing. More importantly, it ensures that only repeating re-
executions will be accepted. This is achieved by the pro-
cedure of validation (Section 3.5).

In the evaluation section, we will see that many appli-
cations exhibit repeating re-executions. Although some
other applications exhibit non-repeating side effects dur-
ing re-executions, these side effects can be handled in
simple ways. Therefore, we believe we can use opera-
tion shipping with a large number of applications.

3.4.3 Status information

In addition to updating contents of files, user opera-
tions also update some meta-data (status information).
Some of the meta-data are internal to the file system and
are invisible to the users (e.g., every STORE operation
has an identity number for concurrency control); some

5

are external and are visible to the users (e.g., the last-
modification time of a file). In both cases, to make a
re-execution’s result identical to that of the original ex-
ecution, the values of the meta-data of the re-execution
should be reset to those of the original execution. There-
fore, the client needs to pack these meta-data as part of
the operation log, and the surrogate needs to adjust the
meta-data of the re-execution to match the supplied val-
ues.

3.4.4 Non-repeating side effects

We focus on applications that perform deterministic
tasks, such as compiling binaries or formatting texts,
and exclude applications such as games and probabilistic
search that are randomized in nature. In an early stage of
this project, we expected the re-executions of these ap-
plications to repeat their original executions completely.
However, we found that some common applications ex-
hibited non-repeating side effects. So far we have found
two types of such side effects: (1) time stamps in output
files, and (2) temporary names of intermediate files. For-
tunately, we are able to handle these side effects automat-
ically, so we are still able to use operation shipping with
these applications. We will discuss the handling methods
in the two following subsections.

We also anticipate a third possible kind of side effect: ex-
ternal side effects. For example, if an application sends
an email message as the last step of execution, then the
user may be confused by the additional message sent by
re-execution. To cope with this kind of side effect, we
plan to allow users to disable the use of operation ship-
ping for some applications.

3.4.5 Side effects due to time stamps

Some applications, such as rp2gen, ar, and latex,
put time stamps into the files that they produce. rp2gen
generates stubs routines for remote procedure calls, ar
builds library files, and latex formats documents. They
use time stamps for various reasons. Because of the
time stamps, a file generated by a re-execution will dif-
fer slightly from the version generated by the original
execution. Observing that only a few bytes are differ-
ent, we can treat the changed bytes as “errors” and use
the technique of forward error correction (FEC) [6, 4]
to “correct” them. (We are indebted to Matt Mathis for
suggesting this idea to us.)

Our file system, therefore, does the following. Venus on
the remote client computes an error-correction code (we
use the Reed-Solomon code) for each updated file that

is to be shipped by operation, and it packs the code as a
part of the operation log. Venus on the surrogate, after
re-executing the operation, uses the code to correct the
time stamps that may have occurred in the re-generated
version of the file.

Note that this is a novel use of the Reed-Solomon code.
Usually, data blocks are sent together with parity blocks
(the error-correction code); but our clients send only the
parity blocks. The data blocks are instead re-generated
by the surrogate. Whereas others use the code to correct
communication errors, we use it to correct some minor
re-execution discrepancies. If a discrepancy is so large
that our error-correction procedure cannot correct it, our
file system simply falls back to value shipping. This en-
tails a loss of performance but preserves correctness.

The additional network traffic due to the error correction
code is quite small. We choose to use a (65535,65503)
Reed-Solomon block code over GF (216). In other
words, the symbol size is 16 bits, each block has 65,503
data symbols (131,006 bytes) and 32 parity symbols (64
bytes). The system can correct up to 16 errors (32 bytes)
in each data block.

However, the additional CPU time due to encoding and
decoding is not small. We discuss this in more detail
in Section 4.4. Also, the Reed-Solomon code cannot
correct discrepancies that change length (for example,
the two timestamps “9:17” and “14:49” have differ-
ent lengths). The rsync algorithm [24] can handle length
change, but we favor the Reed-Solomon code because it
has a smaller overhead on network traffic.

3.4.6 Side effects due to temporary files

The program ar is an example of an application that
uses temporary files. Figure 2 shows the two CMLs on
the client and the surrogate after the execution and re-
execution of the following user operations:

ar rv libsth.a foo.o bar.o.

The user operation builds a library file libsth.a from
two object modules foo.o and bar.o.

Note that ar used two temporary files sta09395 and
sta16294 in the two executions. The names of the
temporary files are generated based on the identity num-
bers of processes executing the application, and hence
they are time dependent. Our validation procedure (Sec-
tion 3.5) might naively reject the re-execution “because
the records are different.”

6

Create sta09395

Store sta09395

Remove libsth.a Remove libsth.a

Rename sta16294

Store sta16294

Create sta16294

Original Execution Re-execution

Rename sta09395
 to libsth.a to libsth.a

Figure 2: CMLs of two executions of ar

Temporary files appear only in the intermediate steps of
the execution. They will either be deleted or renamed at
the end, so their names do not affect the final file-system
state. An application uses temporary files to provide ex-
ecution atomicity. For example, ar writes intermediate
computation results to a temporary file, and it will re-
name the file to the target filename only if the execution
succeeds. This measure is to ensure that the target file
will not be destroyed accidentally by a futile execution.

If a temporary file is created and subsequently deleted
during the execution of a user operation, its modification
records will be deleted by the existing identity cancella-
tion procedure [7]. They will not appear in the two CMLs
and will not cause naive rejections of re-execution.

However, if a temporary file is created and subsequently
renamed during the execution of a user operation, its
modifications records will be present in the CMLs, and
might cause our validation to reject the re-execution. Our
file system uses a procedure of temporary-file renaming
to compensate for the side effect. This procedure is done
after the re-executor has finished the re-execution and be-
fore the surrogate begins the validation.

The idea of the temporary-file renaming is to scan the
two CMLs and identify all the temporary files as well
as their final names. We identify temporary files by the
fact that they are created and subsequently renamed in
an user operation. For each temporary file used by the
surrogate, our file system determines the temporary file
name N used by the client in the original execution. It
thus renames the temporary file to N . In our ar exam-
ple, the temporary file sta16294 will be renamed to
sta09395.

3.5 Validation of re-executions

3.5.1 Validation mechanism

Validation is done after the handling of side effects, and
the adjustments of status information. By that time, if a
re-execution is repeating its original execution, the set of
mutations incurred on the surrogate should be the same
as that on the client. Since mutations are captured on
CMLs, our file system can validate a re-execution by
comparing the relevant portion of the CML of the sur-
rogate to that of the client.

To facilitate the comparison, the client packs every
record in the relevant portion of the CML as part of the
operation log. However, the container files, which are as-
sociated with STORE records, are not packed; otherwise
they would incur a heavy network traffic for shipping the
operation log, amounting to the traffic needed for value
shipping. Instead, the client packs the fingerprint of each
container file. When comparing CMLs, the surrogate as-
serts that two container files are equal if they have the
same fingerprint.

3.5.2 Fingerprint

A fingerprint function produces a fixed-length fingerprint
f(M) for a given arbitrary-length message M . A good
fingerprint function should have two properties: (1) com-
puting f(M) fromM is easy, and (2) the probability that
another message M 0 gives the same fingerprint is small.
For our purpose, the messages for which we find the fin-
gerprints are the contents of the container files.

Our file system employs MD5 (Message Digest 5) fin-
gerprints [17, 21]. Each fingerprint has 128 bits, so the
overhead is very small. Also, the probability that two
different container files give the same fingerprint is very
small; it is in the order of 1=264.

The fact that the probability is non-zero, albeit very
small, may worry some readers. However, even value
shipping is vulnerable to a small but non-zero proba-
bility of error. That is, there is a small probability that
a communication error has occurred but is not detected
by the error-correction subsystem of the communication
channel. We believe people can tolerate the small prob-
abilities of errors of both operation shipping and value
shipping.

7

Test Name Nature NF Size (KB) SE1 SE2
T1 rp2gen callback.rpc2 RPC2 stub generator 5 27.5 �

T2 rp2gen adsrv.rpc2 RPC2 stub generator 5 76.3 �

T3 yacc parsepdb.yacc compiler compiling 1 23.5
T4 c++ -c counters.cc -o counters.o compiling 2 26.0
T5 c++ -c pdlist.cc -o pdlist.o compiling 2 62.4
T6 c++ -c fso daemon.cc -o fso daemon.o compiling 2 265.3
T7 c++ parserecdump.o -o parserecdump linking 1 23.0
T8 ar rv libdir.a ... library building 1 70.2 � �

T9 ar rv libfail.a ... library building 1 363.1 � �

T10 tar xzvf coda-doc-4.6.5-3-ppt.tgz extracting files 5 269.5
T11 make coda (in coda-src/blurb) compiling/linking 3 69.9
T12 make coda (in coda-src/rp2gen) compiling/linking 10 237.1
T13 tar cvf update.tar ... packaging files 1 60.2
T14 sgml2latex guide.sgml translator 1 41.8
T15 sgml2latex rvm manual.sgml translator 1 270.0
T16 latex usenix99.tex text formatter 3 93.4 �

We ran 16 tests using nine applications with some real-life files. For each test, we list the name, nature, the number of the
files that were updated (NF), and the total size of the files. Some of the applications exhibited non-repeating side-effects
due to time stamps (SE1) and temporary files (SE2), they are marked by bullet points (�) in the table.

Figure 3: Selected tests and applications

4 Evaluation

At this time, we do not sufficiently understand client us-
age patterns to accurately model overall performance im-
provement. However, we have selected a set of com-
monly used non-interactive applications that allow us to
focus on the following three questions:

1. Is operation shipping transparent to the applica-
tions?

2. What is the extent of network-traffic reduction that
can be achieved by using operation shipping?

3. What is the extent of elapsed-time reduction that can
be achieved by using operation shipping?

We shall answer these questions in the following subsec-
tions, after we briefly describe the experimental setup.

4.1 Experimental setup

The client, the surrogate, and the server machine used
in the experiments were a Pentium 90MHz, a Pentium-
MMX-200MHz, and a Pentium 90MHz machine respec-
tively. All three machines were running the Linux op-
erating system (kernel version 2.0.35). The network
between the surrogate and the server was a 10-Mbps

Ethernet. The network bandwidth between the remote
client and the surrogate varied in different tests, and we
used the Coda failure emulation package (libfail and
filcon) [18] to emulate different network bandwidths
on a 10-Mbps Ethernet.

We performed 16 different tests using nine common non-
interactive applications (Figure 3). We used real-life in-
put files, found in our environment, for the tests. We
selected the tests such that the data size in each test was
close to one of the three reference sizes: 16, 64, and 256
Kbytes. The data size is defined as the total size of the
files updated by an operation. The 16 tests were labeled
as T1; T2; � � � ; T16. Each test was repeated three times.

4.2 Transparency to applications

We make no claim that operation shipping can be used
transparently with all non-interactive applications. For
example, we anticipate that operation shipping probably
cannot be used with the -j <n> mode of GNU Make,
which runs n jobs in parallel. Fortunately, so far all nine
selected applications can be used transparently with op-
eration shipping. Three of them exhibit non-repeating
side effects, but these side effects can be compensated
by our handling techniques.

8

Expected Expected
Traffic Traffic Traffic traffic traffic

Test Nature by value- by operation- reduction by data- reduction
shipping shipping by operation- compression by data
(Kbytes) (Kbytes) shipping (Kbytes) compression

Lv Lop Lv=Lop Lv;gz Lv=Lv;gz

T1 rp2gen 28.7 2.0 14.4 6 4.8
T2 rp2gen 77.5 1.9 40.8 9.6 8.1
T3 yacc 23.7 1.0 23.7 5.4 4.4
T4 c++ -c 27.1 1.9 14.3 7.9 3.4
T5 c++ -c 63.4 1.8 35.2 17.9 3.5
T6 c++ -c 266.3 2.0 133.2 71.6 3.7
T7 c++ 23.9 2.0 12.0 8.4 2.8
T8 ar 70.2 1.9 36.9 22 3.2
T9 ar 364.0 2.2 165.5 78.6 4.6
T10 tar x 271.8 4.7 57.8 71.5 3.8
T11 make 71.6 2.3 31.1 25.3 2.8
T12 make 242.0 5.9 41.0 81.8 3.0
T13 tar c 60.2 1.0 60.2 10 6.0
T14 sgml2latex 42.0 1.0 42.0 13.8 3.0
T15 sgml2latex 270.3 1.1 245.7 71.0 3.8
T16 latex 94.1 1.4 67.2 35.5 2.7

In column 5, we list the network traffic reduction factors by operation shippingLv=Lop , where Lv andLop is the network
traffic by value shipping and by operation shipping respectively. In column 7, we also list the expected network traffic
reduction factors Lv=Lv;gz if we used data compression (Lv;gz is the expected size of the compressed traffic).

Figure 4: Network traffic reductions by operation shipping (and by data compression)

4.3 Network traffic reduction

For each test, we measured the traffic required for prop-
agating the update by value shipping and by operation
shipping. Both the file data and the overhead are in-
cluded in the traffic. In particular, for operation shipping,
all fields in the operation logs: command, command-line
arguments, current working directory, environment list,
file-creation mask, meta-data, and fingerprints, and so
on, were counted towards the traffic.

In Figure 4, we show the traffic reductionLv=Lop;where
Lv and Lop are the traffic volumes required for the up-
date propagation by value shipping and by operation
shipping respectively.

Previous Coda projects [7, 14] have shown that cancel-
lation optimization is effective in reducing the network
traffic needed for propagating updates. For example, if
a file is stored several times, then only the last STORE
record is needed to be shipped. When we took the mea-
surements, we did not wait for any possible cancellation
optimization to happen, therefore, the measured traffic

reductions achieved by operation shipping alone repre-
sent the best-case numbers. We excluded cancellation
optimization because its effectiveness depends on us-
age patterns, and should be studied using file-reference
traces. At this stage, we do not have file-reference traces
performed at the level of user operations, so we have to
evaluate operation shipping in isolation of cancellation
optimization.

Nevertheless, the traffic reductions achieved by operation
shipping were much more substantial than that achieved
by cancellation optimization. 2 In 13 out of the 16 tests,
the reduction exceeded a factor of 20; the highest reduc-
tion factor was 245.7 (T15); the smallest reduction was
12 (T7). In other words, operation shipping reduced the
network traffic volumes by one to nearly three orders of
magnitude.

2In their study of file-reference traces, Mummert, Ebling and Satya-
narayanan [14] have reported that about 50 % of network traffic was
saved when modification records were allowed to stay in the modifica-
tion log for 600 seconds, waiting for possible cancellations to happen.

9

Elapsed time (msecs)
Data size 9.6-Kbps 28.8-Kbps 64-Kbps

Test Nature (Kbytes) Tv Top Tv Top Tv Top
T1 rp2gen 27.5 27,921 8,282 9,666 6,404 4,539 5,637

(312) (73) (8) (50) (20) (37)
T2 rp2gen 76.3 71,937 9,322 24,294 7,358 11,416 6,706

(27) (61) (39) (9) (133) (90)
T3 yacc 23.5 22,025 3,215 7,563 2,364 3,506 2,049

(31) (60) (13) (34) (0) (9)
T4 c++ -c 26.0 25,112 5,098 8,683 3,491 4,164 2,928

(64) (31) (38) (88) (176) (107)
T5 c++ -c 62.4 59,144 7,546 19,899 5,927 9,591 5,377

(254) (48) (51) (12) (93) (43)
T6 c++ -c 265.3 257,143 15,645 88,274 13,877 39,167 13,181

(23,989) (82) (8,418) (92) (233) (9)
T7 c++ 23.0 22,218 4,425 7,637 2,874 3,599 2,297

(27) (27) (12) (30) (12) (20)
T8 ar 69.3 65,473 5,613 22,059 4,104 10,571 3,646

(58) (21) (77) (25) (343) (138)
T9 ar 363.1 345,241 13,143 118,929 11,634 55,725 10,944

(24,172) (142) (7,402) (74) (3,472) (91)
T10 tar x 269.5 247,674 12,825 85,041 9,448 39,954 8,448

(327) (156) (276) (96) (182) (60)
T11 make 69.9 67,113 8,839 22,723 6,793 10,633 6,115

(580) (79) (354) (25) (142) (30)
T12 make 237.1 224,135 22,272 77,279 18,098 36,256 17,085

(2,452) (132) (73) (39) (293) (396)
T13 tar c 60.0 55,355 3,674 18,826 2,978 8,802 2,602

(36) (8) (33) (92) (7) (74)
T14 sgml2latex 41.8 38,602 5,433 13,160 4,648 6,209 4,439

(15) (18) (12) (25) (87) (235)
T15 sgml2latex 270.0 245,709 13,780 83757 12852 39414 12600

(266) (103) (162) (42) (32) (107)
T16 latex 93.4 86,619 8,522 29,429 7,194 13,869 6,243

(30) (646) (54) (669) (49) (39)

Elapsed time, in milliseconds, for update propagation using value shipping (Tv) and oper-
ation shipping (Top) under three different network conditions. Figures in parentheses are
standard deviations from three runs.

Figure 5: Elapsed time for value shipping and operation shipping.

4.4 Reduction of elapsed time

We also measured the elapsed time for propagating an
update by value shipping and by operation shipping. The
elapsed time is the time to complete the respective re-
mote procedure calls: ViceReintegrate for value
shipping, and UserOpPropagate for operation ship-
ping. For the latter, the elapsed time comprises the time
for shipping the operation log, re-executing the opera-
tion, and other overhead, such as checking the finger-

prints. Since the elapsed time depends heavily on the
network bandwidth, we measured it under three differ-
ent network bandwidths: 9.6, 28.8, and 64.0 kilobits per
second. The measurements are shown in Figure 5.

We summarize the speedups for the tests in Figure 6. The
speedup is defined to be the ratio Tv=Top, where Tv and
Top are the elapsed time for value shipping and operation
shipping respectively.

10

We found that the speedups were substantial. They were
the most substantial in the 9.6-Kbps network. Eight out
of the 16 tests were accelerated by a factor exceeding
10. The maximum speedup was 26.3 (T9); the minimum
speedup was 3.4 (T1). In the other two networks, the
speedups ranged from a factor of 1.4 to 10.2. (There was
one exception: test T1 slowed down when using opera-
tion shipping at 64 Kbps.)

However, we also found that the speedups were smaller
than the numbers that we got from the previous version
of our system, where forward error correction was not
used. We performed some initial profiling of the time
spent for operation shipping and found that the overhead
of FEC was not small, sometimes as high as 80% of the
total elapsed time. Although FEC is useful in handling
the side effects of timestamps, it does not justify such
a large overhead. We plan to use two optimizations to
reduce the overhead: (1) we could use FEC on only those
applications that need it, using hints from the users, and
(2) we could choose to use a smaller number of parity
symbols (says, 16) and substantially reduce the amount
of computation needed.

Even without the planned optimizations, our current re-
sult has already shown that operation shipping is useful.
Our result also indicates another advantage of operation
shipping. That is, the speed of update propagation is
much less sensitive to the network condition. This can
be seen from the elapsed-time–bandwidth curves for test
T9, plotted in Figure 7, in which the curves for value
shipping is steep and that for operation shipping is flat.
(Curves for other tests show similar trends.)

Combining the results of these two subsections, we con-
clude that operation shipping can reduce network traf-
fic very substantially, can accelerate update propagation
substantially, and can make the elapsed time of update
propagation much less dependent on the network condi-
tion.

5 Related work and alternative solutions

5.1 Related work

To the best of our knowledge, this is the first work that at-
tempts to propagate file updates by operation. However,
some ideas and techniques used in this work have been
studied in previous research.

Uses in database. The idea of operation-based update
propagation is not new to the database community [15],
but we apply it in a new context: distributed file system.

Data size Speedup
Test Nature (Kbytes) 9.6 28.8 64
T1 rp2gen 27.5 3.4 1.5 0.8
T2 rp2gen 76.3 7.7 3.3 1.7
T3 yacc 23.5 6.9 3.2 1.7
T4 c++ -c 26.0 4.9 2.5 1.4
T5 c++ -c 62.4 7.8 3.4 1.8
T6 c++ -c 265.3 16.4 6.4 3.0
T7 c++ 23.0 5.0 2.7 1.6
T8 ar 69.3 11.7 5.4 2.9
T9 ar 363.1 26.3 10.2 5.1
T10 tar x 269.5 19.3 9.0 4.7
T11 make 69.9 7.6 3.3 1.7
T12 make 237.1 10.1 4.3 2.1
T13 tar c 60.0 15.1 6.3 3.4
T14 sgml2latex 41.8 7.1 2.8 1.4
T15 sgml2latex 270.0 17.8 6.5 3.1
T16 latex 93.4 10.2 4.1 2.2

Speedups for update propagation under three different net-
work speeds: 9.6-Kbps (9.6), 28.8-Kbps (28.8), and 64-Kbps
(64).

Figure 6: Speedups for update propagation

0 20000 40000 60000 80000

bandwidth (bps)

0

200000

400000

el
ap

se
d

ti
m

e
(m

se
cs

.)

T9: ar libfail.a
elapsed time for update propagation

V

O

Figure 7: Elapsed time vs. bandwidth

First of all, we need to log and ship operations at a level
higher than the file system itself, because the low-level
file-system operations are not appropriate for operation
shipping. Therefore, we need cooperation between the
applications (or meta-applications) and the file system.
Also, the new context requires several new concepts: re-
execution by surrogate, adjustment of meta-data, valida-
tion of re-execution, and handling of non-repeating side
effects. Finally, our file system can attempt operation
shipping more boldly, because it has a fall-back mecha-
nism of value shipping.

Directory operations. Logging and shipping of directory
operations have been implemented in Coda prior to this

11

work [20, 19]. When a directory is updated on a Coda
client (e.g., a new entry is inserted), instead of shipping
the whole new directory to the server, the client ships
only the update operation (e.g., the insertion operation).
Directory operations are more like database operations,
since they can be mapped directly to insertion, deletion,
and modification of directory entries. In contrast, this
work focuses on operation shipping of general user oper-
ations.

Repeatable re-execution. Several previous research
projects have investigated the conditions for repeatable
re-executions. Repeatable re-executions were desired for
fault tolerance [1] or load balancing [2]. In the former
case, a process P can be backed up by another process
Pb. If P crashes, then Pb will repeat the execution of
P since a recent checkpoint, and will thereafter assume
the role of P . In the latter case, a process can migrate to
another host to reduce the load imposed on the original
host. In our work, repeatable re-executions are used to
re-produce some file modifications that are identical to
those produced by the original executions.

Re-execution for transactional guarantee. A previous
Coda project has implemented a mechanism for re-
execution of operations [9] [10]. It addresses the update
conflicts that may be incurred in optimisticallycontrolled
replica. It proposes that a user can declare a portion of
execution as an Isolation-Only Transaction (IOT). If an
update conflict happens, Coda will re-execute the trans-
action. Our work is different in that we focus on perfor-
mance improvement. Also, in our work, re-executions
take place in a different host, whereas re-execution of
IOTs take place in the same host. This implies that we
must handle the case where re-execution does not pro-
duce the same results as the original execution.

5.2 Alternative solutions

There are other possible solutions to the problem that we
are addressing. We are going to discuss four of them.

Delta shipping. The idea is to ship only the incremental
difference, which is also called the delta, between dif-
ferent versions of a file. It has been proposed by many
people and is currently being used as a general mecha-
nism [24] or in specific systems including file systems
[5], web proxies [12], file archives [11], and source-file
repositories [22, 16].

It is possible to compute deltas not only for text files
but also for binary files. We would like to mention the
rsync algorithm [24] in particular. When shipping a

file, the sending host suppresses the shipping of some
blocks of data if they are found to be present on the re-
ceiving host already. It determines whether they are al-
ready present on the receiving host by using the check-
sum information supplied by the receiving host. The al-
gorithm exploits a rolling checksum algorithm so that the
blocks being matched can be started at any offset, not just
multiples of block size.

Delta shipping has several limitations. First, a newly-
created file has no previous version. Second, the effec-
tiveness of delta shipping largely depends on how similar
the two versions of a file are, and how those incremen-
tal differences are distributed in the file. In pathological
case, a slightly changed file may need a huge delta. This
could happen, for example, if there are some global sub-
stitutions of strings, or if the brightness or contrast of an
image is changed. In general, we believe operation ship-
ping can achieve a larger reduction of network traffic.

On the other hand, delta shipping does not involve re-
execution of applications and pre-arrangement of surro-
gate clients, as operation shipping does. Therefore, it is
simpler in terms of system administration. We believe
delta shipping and operation shipping can complement
each other in a distributed file system. In particular, delta
shipping can be used when operation shipping has failed
for some updates, and when the file system has resorted
to use value shipping.

Data compression. Data compression reduces the size
of a file by taking out the redundancy in the file. This
technique can be used in a file system or a web proxy
[12]. However, the reduction factors achieved by data
compression may be smaller than that of operation ship-
ping. We did a small performance study using a repre-
sentative implementation: the gzip utility, which uses
the Lempel-Ziv coding (LZ77). We ran gzip with the
updated files of the 16 tests in Section 4, and listed the
expected traffic volume and expected traffic reduction
by compressing the files before shipping them. The re-
sults are shown in Figure 4 (the sixth and seventh col-
umn). The expected traffic reductions by data compres-
sion ranged from 2.7 to 8.1, substantially smaller than
that achieved by operation shipping, which ranged from
12.0 to 245.7. We were not surprised by the results, since
we know operation shipping exploits the semantic infor-
mation of the user operation, whereas data compression
operates only generically on the files. Like delta ship-
ping, data compression can complement operation ship-
ping, and be used when our file system has resorted to
value shipping.

12

Logging keystrokes. A file system may log keystrokes
and mouse clicks, ship them, and replay them on the sur-
rogate. As such, it may be transparent to an application
even if the application is interactive. However, we are
pessimistic about this approach, because it is very diffi-
cult to make sure the logged keystrokes and mouse clicks
will produce the identical outcome on the surrogate ma-
chine. Too many things can happen at run-time that could
cause the keystrokes to produce different results.

Operation shipping without involving the file system.
Can we use operation shipping without involving the file
system? We can imagine that someone may design a
meta-application that logs every command a user types,
and, without involving the file system, remotely executes
the same commands on a surrogate machine. We believe
such a system would not work, for the following reasons.
If the file system had no knowledge that the second ex-
ecution was a re-execution, it would treat the files pro-
duced by the two execution as two distinct copies, and
would force the client to fetch the surrogate copy. It
might even think that there was an update/update con-
flict. Besides, it cannot ensure the correctness of the re-
execution. We therefore believe that the file system plays
a key role in useful and correct operation shipping,

6 Conclusion

Our experience with operation shipping, although it is
limited only to the application-transparent case, is en-
tirely favorable. We have implemented a prototype by
extending the Coda File System, and have demonstrated
that operation shipping can achieve substantial perfor-
mance improvements.

Efficient update propagation is important for insulating
users from the unpleasant consequences of low band-
width networks. Indeed, without this capability, per-
formance may be sufficiently degraded that users are
tempted to forgo the transparency benefits of a dis-
tributed file system, and rely on explicit copying of local
files instead. Our results suggest that operation shipping
can play an important role in the design of future dis-
tributed file systems for bandwidth-challenged environ-
ments.

Acknowledgements

Matt Mathis gave us the idea of using forward error cor-
rection for handling the side effect of time stamps. Phil
Karn allowed us to use his Reed-Solomon-Code pack-
age in our prototype. Maria Ebling and David Eckhardt

provided major input for the high-level design of the sys-
tem. Peter Braam insisted that operation logging must be
as transparent as possible to non-interactive applications,
and made us think more carefully about the issue. Many
people, including John C. S. Lui, Peter T. S. Tam, K. Y.
So, Eric Tilton, and Kip Walker, helped in improving the
presentation of the paper. Finally, this work would not
have been possible without the excellent support of the
Coda community.

References

[1] A. Borg, W. Blau, W. Graetsch, F. Herrmann,
and W. Oberle. Fault Tolerance Under UNIX.
ACM Transactions on Computer Systems, 7(1):1–
24, February 1989.

[2] F. Douglis and J. Ousterhout. Transparent Process
Migration: Design Alternatives and the Sprite Im-
plementation. Software–Practice and Experience,
21(8):757–785, August 1991.

[3] The Coda Group. Coda File System. Available
from
http://coda.cs.cmu.edu.

[4] A. Houghton. The Engineer’s Error Coding Hand-
book. Chapman & Hall, 1997.

[5] Airsoft Inc. Powerburst – The First Software Ac-
celerator That More Than Doubles Remote Node
Performance. Available from
http://www.airsoft.com/comp.html, Cupertino, CA.

[6] P. Karn. Error Control Coding, a Seminar handout.
Available from
http://people.qualcomm.com/karn/dsp.html.

[7] J. J. Kistler. Disconnected Operation in a Dis-
tributed File System. PhD thesis, Carnegie Mellon
University, School of Computer Science, 1993.

[8] J. J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. ACM Transac-
tions on Computer Systems, 10(1), February 1992.

[9] Q. Lu. Improving Data Consistency for Mobile File
Access Using Isolation-Only Transaction. PhD the-
sis, Carnegie Mellon University, School of Com-
puter Science, May 1996.

[10] Q. Lu and M. Satyanarayanan. Improving Data
Consistency in Mobile Computing Using Isolation-
Only Transactions. In Proceedings of the Fifth
IEEE HotOS Topics Workshop, Orcas Island, WA,
May 1995.

13

[11] J. MacDonald. Versioned File Archiv-
ing, Compression, and Distribution. sub-
mitted for the Data Compression Confer-
ence, an earlier version is available from
http://www.XCF.Berkeley.edu/˜jmacd/xdelta.html,
1998.

[12] J.C. Mogul, F. Douglis, A. Feldmann, and B. Krish-
namurthy. Potential benefits of delta encoding and
data compression for HTTP. In Proceeding of the
ACM SIGCOMM’97, 1997.

[13] L. B. Mummert. Exploiting Weak Connectivity in a
Distributed File System. PhD thesis, Carnegie Mel-
lon University, School of Computer Science, 1996.

[14] L. B. Mummert, M. R. Ebling, and M. Satya-
narayanan. Exploiting Weak Connectivity for Mo-
bile File Access. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles, Cop-
per Mountain Resort, Colorado, December 1995.

[15] K. Patersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers. Flexible Update Prop-
agation for Weakly Consistent Replication. In Pro-
ceedings of the 16th ACM Symposium on Opera-
tiog Systems Principles, Saint-Malo, France, Octo-
ber 1997.

[16] The FreeBSD Documentation Project. CVSup: in
FreeBSD Handbook. Available from
http://www.freebsd.org/handbook/cvsup.html.

[17] R. Rivest. The MD5 Message-Digest Algo-
rithm, Internet RFC 1321. Available from
http://theory.lcs.mit.edu/˜rivest/publications.html,
April 1992.

[18] M. Satyanarayanan, M. R. Ebling, J. Raiff, and P. J.
Braam. Coda File System User and System Ad-
ministrators Manual. School of Computer Science,
Carnegie Mellon University, August 1997. version
1.1.

[19] M. Satyanarayanan, J. J. Kistler, P. Kumar, and
H. Mashburn. On the Ubiquity of Logging in Dis-
tributed File Systems. In Third IEEE Workship on
Workstation Operation Systems, Key Biscayne, FL,
Apr 1992.

[20] M. Satyanarayanan, J. J. Kistler, P. Kumar,
M. Okasaki, E. Siegel, and D. Steere. Coda:
A Highly Available File System for a Distributed
Workstation Environment. IEEE Transaction on
Computers, 39(4), April 1990.

[21] B. Schneier. Applied Cryptography. John Wiley &
Sons, Inc., second edition, 1996.

[22] Cyclic Software. Concurrent Versions System
(CVS). Available from
http://www.cyclic.com/.

[23] W. R. Stevens. Advanced Programming in the
UNIX Environment. Addison-Wesley, 1992.

[24] A. Tridgell and P. Mackerras. The rsync algo-
rithm. Technical Report TR-CS-96-05, The Aus-
tralian National University, Available from
http://samba.anu.edu.au/rsync/, June 1996.

14

