
Increasing File System Availability
through

Second-Class Replication

James Jay Kistler�

School of Computer Science
Carnegie Mellon University

1. Introduction

In this position paper we describe an impor-
tant component of our overall approach to
achieving high availability in the Coda file
system. Coda, a descendant of the Andrew
file system (AFS) [6], provides users with
shared file access in a large-scale Unix1 work-
station environment. Our goal is to provide
users with the benefits of a shared data repos-
itory without the negative consequences of
total dependence on that repository.

High availability in Coda is achieved through
two types of data replication: first-class repli-
cation, in which entire servers are repli-
cated, and second-class replication, other-
wise known as client caching. The two are
complementary: server replication increases
the availability of the entire file store, whereas
caching permits operation in the event of to-
tal disconnection. A particularly valuable use
of disconnected operation is the graceful inte-
gration of portable computers into the system.

Coda manages replicas, both first- and
second-class, optimistically [2]. That is, it
allows updates to be made at any accessible
replica, even in the presence of network par-
titions. Clients always read from and write
to their cache copy of an object, i.e., from/to
a second-class replica. Updates are written
through to all accessible first-class replicas
at file close and at completion of mutating di-
rectory operations. First-class sites invalidate

�Author supported in part by a Graduate Fellowship
from the IBM corporation.

1Unix is a trademark of AT&T.

second-class replicas via callback messages
sent upon their own receipt of an update.

In the absence of failures all replicas, both
first- and second-class, will be identical. In
the presence of failures replicas may diverge.
The system ensures that a client’s cache copy
is the latest among all accessible first-class
replicas, and that all conflicting updates will
be detected eventually and the corresponding
replicas made available for resolution.

This two-tier replication strategy provides a
high-degree of fault-tolerance: a client can
continue computing in the face of most fail-
ures except that of the client itself. We be-
lieve that the consequent weakening of the
consistency model seen by users and applica-
tions is acceptable for three reasons: the low
frequency of write-sharing observed in Unix
environments makes conflicts rare in practice,
Unix consistency semantics are already weak,
and the degree of fault-tolerance provided is
substantially higher than any alternative.

In the rest of this paper we focus on our use
of second-class replication and its contribu-
tion to availability, disconnected operation.
Details on server replication, the consistency
model, and other aspects of Coda have been
described elsewhere [7].

2. Disconnected Operation

Disconnected state at a client arises either
voluntarily, due to detachment of a portable
computer, or involuntarily, due to failure of
all first-class replication sites or intervening



communications links. It is not hard to envi-
sion a style of disconnected operation where
users manually copy files to a local file sys-
tem on the client workstation prior to dis-
connection, and manually copy updated ob-
jects back to the shared file store upon recon-
nection. However, this is a decidedly non-
transparent arrangement which hearkens back
to the early days of distributed file systems.
The challenge is to support disconnected op-
eration transparently, so that users needn’t be
aware, or at least concerned, whether they are
disconnected or not.

Transparent disconnected operation dictates
a much-expanded role for client cache man-
agers, effectively turning them into pseudo-
servers. We break pseudo-server operation
into three phases:

� a hoarding phase prior to disconnection.
We use the term hoarding to mean cache
management geared towards capturing
both immediate and future working-sets,
rather than just the immediate working-
set as in conventional caching. We do
not consider hoarding otherwise distinct
from caching, nor do we believe that
separate caches and hoards should be
maintained.2

� a server emulation phase during discon-
nection. The pseudo-server must faith-
fully emulate the semantic and protec-
tion checks made by real servers, and it
must maintain a detailed enough record
of its actions to make the next phase pos-
sible and efficient.

� a reintegration phase upon reconnec-
tion. The pseudo-server must re-sync its
state with that of the real servers; this en-
tails conflict detection, automated con-
flict resolution when possible, and pro-
vision for manual resolution when not.

2Hoarding is similar to “stashing,” as described by
Birrell, Schroeder, and Alonso et al [5, 1]. We use our
own term to emphasize that hoarding is integral with
other caching functions in our system.

Figure 1 illustrates pseudo-server behavior at
a high level. In our system the namespace is

Connected:

Hoarding

Connected:

Reintegrating

Disconnected:

Emulating

Figure 1: Pseudo-Server State Diagram

subdivided and distributed across many real
servers, so a pseudo-server may be in one
state with respect to one part and in another
state with respect to another. Next, we dis-
cuss each of the pseudo-server phases in more
detail.

2.1. Hoarding

The purpose of hoarding is to enable opera-
tion at the client during some future discon-
nected period(s). Cache misses while discon-
nected result in suspended or aborted com-
putation; thus, hoarding should result in as
many “useful” objects as possible being in the
cache when disconnection occurs. The task
of hoarding, capturing future working-sets, is
complicated by a number of factors:

� working-sets are functions of time in-
tervals; both their starting and ending
points are variables.

� future working-sets cannot be predicted
perfectly. Predictive ability decreases as
both the horizon (i.e., time until start)
and the duration of the interval increase.

� involuntary disconnections, both their
horizon and duration, cannot be pre-



dicted. Voluntary disconnection param-
eters may be known only approximately.

� client cache space is limited (on the or-
der of tens of megabytes); it is a small
fraction of the size of the whole file store.

� the caching needs of connected and dis-
connected mode are generally at odds
with each other. Connected mode utility
is maximized by retaining the immediate
working-set. Disconnected mode utility,
on the other hand, is a complex function
of the capture rate of the (infinite) set of
future working-sets.

In theory, our hoarding/cache-management
algorithm should maximize the user’s util-
ity given data on the immediate working-set,
future working-sets, future voluntary discon-
nections, the distribution of future involun-
tary disconnections, client cache size, and the
user’s conditional utility function. In prac-
tice, of course, we must settle for an approx-
imation that balances the computational ex-
pense, the effort involved in collecting the in-
put (e.g., future working-set estimates), and
the goodness of the approximation.

Our current algorithm is based on object pri-
orities, where the highest priority candidates
are added to the cache until the space allotted
to it is consumed. Priorities have two com-
ponents: a component s representing how re-
cently the object was used at this client, and a
componentm, also called the hoard priority,
representing the expected future value of the
object to the user (0 if unspecified). Users can
influence caching behavior in three ways: by
assigning hoard priorities to objects, by set-
ting the horizon parameter which controls the
relative weighting of s and m in the priority
calculation, and by setting the decay param-
eter which controls how fast s decreases in
response to time since last use.3

3We assume a primary-user model, where the pri-
mary user is at the workstation console. Other users
may run processes on the machine at the discretion of

2.2. Server Emulation

Server emulation involves the temporary pro-
motion of cache copies from second- to first-
class status. The goals here are twofold: one
is to provide the illusion of connectivity to the
user, the other is to enable a smooth(eventual)
transition back to connected mode.

The first goal demands that the pseudo-server
emulate precisely the actions of real servers in
handling file system calls. The illusionbreaks
down and emulation cannot be performed
when cache misses occur—transparency is
thus heavily dependent on the success of the
previous hoarding phase. A subtle point is
that system call handling, and therefore emu-
lation, often involves pathname expansion to
derive the actual parameters of a call. If even
a single path component is missing from the
cache the entire operation is impeded, regard-
less of whether the target objects themselves
are available. To account for such naming ef-
fects we manage the cache hierarchically: the
object priority function effectively assigns to
an interior node the maximum of its own pri-
ority and that of all its cached descendents.

Preparation for transition back to connected
mode entails logging by the pseudo-server
of all mutating operations performed while
disconnected. Read operations need not be
logged since we only detect and address
write/write conflicts that arise as a result of
disconnected operation.4 The logging proce-
dure employs several compression and seg-
mentation techniques for efficiency; we omit
further discussion of these for the sake of
brevity.

One issue that does warrant mention is our use

the primary user, but they cannot substantially affect
the hoarding behavior.

4The Unix file system interface contains no explicit
support for transactions; thus, any notion of read/write
conflict would have to be based on implicit or inferred
transactional boundaries. Although we make such in-
ferences with respect to file opens and closes, further
inferences seem inappropriate.



of Mashburn’s recoverable virtual memory
(RVM) package[4]. RVM is a lightweight,
transaction-like facility which breaks out and
addresses separately the basic properties of
transactions: atomicity, permanence, serial-
izability. A local, non-nested RVM transac-
tion guarantees only atomicity. Control over
permanence is given to the application by al-
lowing it to specify when commit records are
forced to the log device. Asynchronous log
forces provide dramatic performance bene-
fits, but they sacrifice permanence. Conven-
tional transaction semantics can be achieved
by forcing immediately upon every transac-
tion commit. Synchronization, and hence se-
rializability is solely the responsibility of the
application.

The pseudo-server stores all persistent data
(logs, directories, other cached meta-data) ex-
cept file contents in RVM. This has two key
advantages. One, the atomicity guarantees
of RVM greatly simplify the task of manag-
ing and recovering pseudo-server state. Two,
we can tailor the permanence/performance
trade-off to the mode of operation that we are
in. When in connected mode we use asyn-
chronous log forces with a relatively low fre-
quency (order of minutes or tens of minutes).
This yields very good performance with per-
manence comparable to a local Unix file sys-
tem. When we become disconnected we in-
crease the log-force frequency, all the way
to synchronous forces if desired, at a cost of
increased latency for users.5

2.3. Reintegration

Reintegration involves the demotion of tem-
porarily promoted cache copies from first-
back to second-class status. Disconnected
updates must be merged into the shared repos-
itory so that they become visible throughout
the system.

5Our clients are equipped with non-volatile but not
necessarily stable storage. Thus, our permanence guar-
antees all presume the absence of local media failure.

Our merge technique is based on replay of the
pseudo-server’s log at a first-class replication
site. Log replay can be viewed as the write-
back part of a write-back caching scheme.
However, unlike conventional write-back
caching, we have the possibility of update
conflicts since we enforce no concurrency
control between partitioned replicas. We also
have the possibility of protection conflicts
since a user’s credentials may have expired,
and not been renewed, by the time reintegra-
tion occurs.6 The replay algorithm detects
conflicts, and attempts to automatically re-
solve them in two ways: via Unix directory
semantics, and via user-supplied heuristics.

Automated resolution using directory seman-
tics is feasible because most operations on
Unix directories commute. For example, the
partitioned creation of files foo and bar in
the same directory are independent events; it
matters not which order they are eventually
applied. However, not all directory opera-
tions commute, e.g., partitioned creation of
files with the same name in a directory, so
some cases must be handled differently.

Resolution by heuristic is attempted if auto-
mated directory resolution fails or is not appli-
cable. The motivation for heuristic resolution
comes from the fact that manual conflict re-
pair is both irksome and (often) mechanistic.
Simple rules which break conflicts based on
comparison of file names, update times, last
authors, etc can be pre-assigned to objects or
collections of objects by users. Successful
application of a heuristic results in either (1)
acceptance of an update from pseudo-server’s
log and rollback of an operation committed at
the first-class replica, or (2) rejection of an
update from the pseudo-server’s log. The
danger of "incorrect" heuristics is mitigated
by preserving "discarded" versions in an au-
dit area.7

6Coda uses authentication tokens, similar in spirit to
Kerberos tickets[8], which have fixed lifetimes (on the
order of a day).

7Heuristic resolution is an instance of the "data-



When neither automated directory nor heuris-
tic resolution succeeds in settling a conflict,
the system prepares for eventual manual re-
pair. The inconsistency is contained by mak-
ing the uppermost node involved in the con-
flict inaccessible to normal file system opera-
tions, and by moving the divergent branches
to a reserved place at the server. A user can
manually repair the object(s) using a special
tool provided for this purpose. The repair
tool is able to locate the various conflicting
branches—there may be arbitrarily many—
and superimpose a sensible naming struc-
ture over them. Commitment of the repair
makes the affected node(s) generally accessi-
ble again.

3. Status and Future Work

We are in the midst of implementingand eval-
uating disconnected mode for Coda. Basic
support for hoarding, emulation, and reinte-
gration has been completed, although some
of what has been described in this paper re-
mains to be done. The system is in daily
use by the members of our research group,
and we are acquiring portable workstations
so that we can get experience with voluntary
disconnected operation.

As yet unimplemented functionality includes
working-set monitoring and specification
tools, integration with RVM, and heuris-
tic resolution. Our future work consists of
adding this functionality and measuring and
analyzing the performance and availability
characteristics of the system.

References

[1] Alonso, R., Barbara, D., and Cova, L.
Using Stashing to Increase Node Auton-

patch" philosophy promoted by Garcia-Molina et al[3].
The FACE group at Princeton is also applying this tech-
nique to partitioned file merge[1].

omy in Distributed File Systems. In Pro-
ceedings of the Ninth Symposium on Reli-
able Distributed Systems (October 1990).

[2] Davidson, S., Garcia-Molina, H., and
Skeen, D. Consistency in Partitioned
Networks. ACM Computing Surveys 17,
3 (September 1985).

[3] Garcia-Molina, H., Allen, T., Blaustein,
B., Chilenskas, R., and Ries, D. Data-
Patch: Integrating Inconsistent Copies of
a Database after a Partition. In Proceed-
ings of the Third Symposium on Reliabil-
ity in Distributed Software and Database
Systems (October 1983).

[4] Mashburn, H. RVM: Recoverable Vir-
tual Memory, 0.1 ed. Carnegie Mellon
University, June 1990.

[5] Needham, R., and Herbert, A. Report on
the Third European SIGOPS Workshop,
“Autonomy or Interdependence in Dis-
tributed Systems”. Operating Systems
Review 23, 2 (April 1989).

[6] Satyanarayanan, M. Scalable, Secure,
and Highly Available Distributed File
Access. Computer 23, 5 (May 1990).

[7] Satyanarayanan, M., Kistler, J., Kumar,
P., Okasaki, M., Siegel, E., and Steere, D.
Coda: A Highly Available File System
for a Distributed Workstation Environ-
ment. IEEE Transactions on Computers
39, 4 (April 1990).

[8] Steiner, J., Neuman, C., and Schiller, J.
Kerberos: An Authentication Service for
Open Network Systems. In Proceedings
of the Winter Usenix Conference, Dallas
(February 1988).


