
Coping with Conflicts in an Optimistically Replicated File System

Puneet Kumar
School of Computer Science
Carnegie Mellon University

1. Introduction

Coda is a scalable distributed Unix1 file system that
provides high availability through the use of two dis-
tinct but complementary mechanisms. One mecha-
nism, server replication, stores copies of a file at
multiple servers. The other mechanism, discon-
nected operation, is a mode of execution in which a
caching site temporarily assumes the role of a repli-
cation site. Disconnected operation is particularly
useful for supporting portable workstations.

Both mechanisms are forms of optimistic replica-
tion [1], meaning that they place availability above
consistency. Consequently, Coda allows potentially
conflicting updates to be made in each network par-
tition during failures. We believe this strategy is
acceptable for two reasons. First, sequential write-
sharing of data within a short period of time is rel-
atively infrequent in Unix. Second, Coda provides
mechanisms to minimize the inconvenience caused
by conflicting updates.

This paper focuses on the mechanisms in Coda to
cope with conflicts and describes our experience in
implementing them. Other aspects of Coda are de-
scribed in earlier papers [3, 4].

2. Support for Optimistic Replication

In a system that adopts an optimistic replication
strategy there must be support to cope with conflicts
when they arise. Specifically the system should:

� be able to detect a conflict as soon as possible
after it arises,

1Unix is a trademark of AT&T

� contain the damage due to a conflict, and pre-
serve information needed to fix it,

� provide means for recovering from the con-
flict.

In Coda, the resolution subsystem provides this sup-
port. The following sections describe how Coda
satisfies each of these requirements.

3. Detecting Conflicting Updates

Every update operation in Coda is tagged with a
unique identifier called the store id. Stored along
with each replica is the store id of its latest update
operation, called the latest store id (LSID). Different
LSIDs identify potentially conflicting updates. We
use another mechanism Coda version vectors(CVV),
to distinguish between genuine conflicts and mere
staleness of a replica. CVVs are conceptually sim-
ilar to version vectors first suggested by Locus [6],
but differ in detail. A CVV is an estimate of the
length of the update histories of each replica. CVV
comparison may indicate a conflict when none ex-
ists, but it will never falsely indicate dominance or
equality when there is a conflict. Details of how
CVVs work are described elsewhere [4].

Although CVVs are useful for differentiating be-
tween version staleness and conflicting updates in
plain files, they are not useful for directories. This is
because a directory’s CVV does not capture the up-
date activity of its children. If directory CVV’s were
to reflect updates of their children, then any modifi-
cation would require CVV’s of all objects along the
path from the root to that directory to be updated.
Furthermore, directories are amenable to automatic
resolution as described below, so version informa-
tion beyond equality/inequality is superfluous.

4. Containing Damage and Preserving Evidence

Damage containment is achieved in Coda by disal-
lowing further mutations on conflicting replicas. At
the servers the replicas are "marked in conflict". At
the client an obvious way to implement this would
be for system calls on the object to return an "Incon-
sistent Object" error code. Unfortunately, this would
require modifications to existing Unix applications
to provide intelligent error messages. Instead, the
cache manager, called Venus, makes the object ap-
pear to be a dangling symbolic link. The contents
of the symbolic link are derived by the system from
the low level identifiers for the object.

If servers were the only repositories of objects, the
number of conflicting replicas would always be lim-
ited by the replication factor. But, Coda provides
the means for clients to temporarily assume the role
of replication sites (disconnected operation), so the
number of potentially conflicting replicas for an ob-
ject is effectively unbounded. To preserve all evi-
dence of the conflicting updates Coda uses a tem-
porary repository per volume2 called a covolume.
Covolumes are like lost+found directories in Unix
except that they are not accessible to normal Unix
applications. The names of the objects in the covol-
ume are derived from the low level identifiers used
by the system. The only way to access objects in the
covolume is via a special repair tool (q.v.).

5. Resolving Conflicts

Resolving a conflict requires knowledge of the con-
tents of objects. Since files are untyped byte streams
there is, in general, no information to automate their
resolution. Coda provides a repair tool to aid the
resolution process. Directory contents, on the other
hand, have well defined semantics and their reso-
lution can sometimes be automated, an observation
first made by Locus [6]. For example, partitioned
creation of files in different replicas of the same
directory will make it inconsistent. When the parti-
tion heals, the system can automatically resolve the

2A volume in Coda is like a logical file system in Unix that
can be mounted in different areas of the tree.

inconsistency by inserting the missing files in the
directory replicas that do not already contain it. In
the following subsections we describe the repair tool
and automated resolution for directories. The repair
tool has been implemented and is a part of the Coda
prototype. Automated directory resolution is being
implemented.

5.1. Manual Repair Tool

The Coda repair tool allows users to manually re-
solve inconsistent objects. It uses a special interface
to Venus, so that file requests from the tool are dis-
tinguishable from normal Unix application file re-
quests. This allows the tool to mutate inconsistent
objects (subject to normal access restrictions). The
tool allows users to mount volumes with inconsis-
tencies in a scratch area in read-only mode. The
volumes are mounted in read-only mode so that the
user cannot inadvertantly alter anything. The read-
only replicas are themselves not inconsistent so the
user can examine their contents using normal Unix
applications and determine the cause of the incon-
sistencies.

To repair an inconsistent file the user specifies a
local file whose contents are to be forced over the
replicas at all sites. The local file is typically a brand
new file created by the user or a manually merged
version of the conflicting replicas. Venus sends the
file to the servers and in one atomic action the servers
force the new data and clear the inconsistency. From
then on the object is accessible to all normal Unix
applications.

To repair a directory the user specifies a list of com-
pensating operations for each replica. The opera-
tions are listed in a local file which is sent to the
servers during the repair. Each server parses the
file and performs the compensating operations on its
replica. The inconsistency is not cleared. The user
must verify that the versions are indeed identical.

At the server, the set of compensating operations
are performed via a transaction. Coda servers store
directory contents and file meta information in re-
coverable virtual memory (RVM) [5]. With the aid
of transactions and RVM the servers can guaran-

tee the atomicity of the compensating operations.
This considerably simplifies the user’s management
of manual repair in the event of server or network
failures.

5.2. Automating Directory Resolution

In the taxonomy put forth by Guy [2], all but three
kinds of conflicting directory operations can be au-
tomatically resolved in a Unix system. These are
remove/update conflicts (involving an update of a
replica in one partition and removal in another), up-
date/update conflicts (exemplified by status modi-
fications to partitioned replicas of a directory), and
name/name conflicts (objects with identical names
are created in partitioned replicas of a directory).
Name/name and update/update conflicts can be de-
tected by inspecting the contents of directory repli-
cas. To detect remove/update conflicts, the state of
the replica just before removal should be known.

Our original implementation strategy consisted of
creating a ghost when an object is deleted during
partitioning. The ghost contains the status of the
object just before deletion. A ghost is invisible to
the user but is accessible to the resolution subsystem
via the object’s parent. Except for directories, ghosts
contain no data. Directory ghosts may contain a list
of child ghosts. Thus, recursive tree removals dur-
ing partitions may result in trees of ghosts. The
implementation of resolution with ghosts is com-
plicated. Directory contents have to be examined to
recreate the update histories of replicas and compose
the list of compensating actions. A garbage collec-
tion mechanism is needed to reclaim ghost objects
when network partitions disappear. The advantage
of ghosts is that they can exist indefinitely, so re-
move/update conflicts will be detected eventually.
However, during long partitions a lot of garbage will
be generated in the system which could paralyze it.

We are implementing a new design for the resolution
subsystem. Instead of creating ghosts, the status of
an object being deleted is stored in its parent’s log.
The directory data structure is augmented to acco-
modate a circular log which contains the list of op-
erations performed on the directory and the status of
any affected child. It is invisible to the user. A direc-

tory log is a linked list allocated from a finite circular
buffer in the volume. Each log record contains the
id of the operation and the id(s) and some status bits
of the affected child(ren). When the log fills up, old
records are reused. Directory operations are logged
only during partitions. Logging simplifies the im-
plementation of directory resolution. Resolving two
directories now entails finding the last common log
entry and replaying the rest of the log at the other
site. Genuine conflicts are automatically detected
when some operations cannot be performed at a site.
The finiteness of the log ensures that old log entries
are automatically garbage collected by the system.
The disadvantage is that the last common log entry
between two replicas may be overwritten due to a
wrap around. In this case, even if there is no genuine
conflict, manual repair is required.

We believe that logging directory operations is a bet-
ter design. In the absence of failures there is no over-
head. In the event of short network partitions there is
a small overhead of logging when objects are created
or deleted. Resolution can be automated during long
partitions provided there is no write-sharing (even
when some useful logging information is overwrit-
ten due to a buffer wrap around). One replica will
be strictly dominant and its contents can be forced at
all other replication sites. This situation can be de-
tected by storing the last log entry before the failure
separate from the log. Resorting to manual repair
in the event of write sharing during long network
partitions is an acceptable compromise.

We have augmented the repair tool as a first step
to automating directory resolution. Given an incon-
sistent directory the tool compares its replicas and
produces a list of compensating operations, that will
make them identical. When it encounters a genuine
conflict it prompts the user for help. Completely au-
tomated resolution is similar except that it is invoked
automatically whenever more than one version of a
directory is seen by the client. All genuine conflicts
will be marked with a special flag indicating the type
of conflict.

5.3. Automating Resolution of Genuine Con-
flicts

No matter how convenient the repair tool is, manual
repairs are an annoyance to the user and their fre-
quency should be minimized. We are exploring the
feasibility of attaching resolution policies to user
volumes. Policies are “heuristics” which specify
what action to take for genuine conflicts. For exam-
ple, there may be a policy for remove/update con-
flicts specifying that the remove should be backed
out and the update forced. Policy rules could be
specified in a variety of ways (e.g., like Unix “make”
rules). We are still exploring this and will be able to
report more by the time of the workshop.

6. Conclusions

Conflict detection, confinement of damage and res-
olution are indispensable functions of a distributed
file system that uses optimistic replication to provide
availability. Version vectors are useful for detecting
conflicts in files but not for directories. Since di-
rectories are usually small and have a fixed set of
operations, it is possible to log directory operations
thus simplifying the resolution algorithms consider-
ably. A finite length log is sufficient for automated
resolution except when conflicting updates are made
during lengthy partitions. The added complexity of
managing directory logs is minimal in a system that
provides transaction and recoverable virtual mem-
ory support at the servers.

References

[1] Davidson, S. Optimism and Consistency
in Partitioned Distributed Database Systems.
ACM Transactions on Database Systems 9, 3
(September 1984).

[2] Guy, R. A Replicated Filesystem Design for a
Distributed Unix System. Master’s thesis, De-
partment of Computer Science, University of
California, Los Angeles, 1987.

[3] Satyanarayanan, M. Scaleable, Secure, and
Highly Available Distributed File Access. Com-
puter 23, 5 (May 1990).

[4] Satyanarayanan, M., Kistler, J., Kumar, P.,
Okasaki, M., Siegel, E., and Steere, D. Coda: A
Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions
on Computers 39, 4 (April 1990).

[5] Spector, A., and Swedlow, K.R., e. The Guide
to the Camelot Distributed Transaction Facil-
ity: Release 1, 0.98(51) ed. Carnegie Mellon
University, May 1988.

[6] Walker, B., Popek, G., English, R., Kline, C.,
and Thiel, G. The LOCUS Distributed Operat-
ing System. In Proceedings of the 9th ACM
Symposium on Operating System Principles,
Bretton Woods (October 1983).

