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SUMMARY

In this paper we discuss an application of the fictitious domain method to the numerical simulation of
the mechanical process induced by press-fitting cementless femoral implants in total hip replacement
surgeries. Here, the primary goal is to demonstrate the feasibility of the method and its advantages over
competing numerical methods for a wide range of applications for which the primary input originates
from CT-T, MRI-¥, or other regular-grid medical imaging data. For this class of problems the fictitious
domain method is a natural choice, because it avoids the segmentation, surface reconstruction, and
meshing phases required by unstructured geometry-conforming simulation methods. We consider the
implantation of a press-fit femoral artificial prosthesis as a prototype problem for sketching the
application path of the methodology. Of concern is the assessment of the robustness and speed of
the methodology, for both factors are critical if one were to consider patient-specific modeling. To
this end, we report numerical results that exhibit optimal convergence rates and thus shed a favorable
light on the approach. Copyright (© 2004 John Wiley & Sons, Ltd.

KEY WORDS: Fictitious domain method; regular and geometry-conforming finite element methods;
press-fit implant; linear elasticity; CT- or MRI-scan; medical imaging

1. INTRODUCTION

Today, in total hip replacement surgeries, typical pre-operative planning systems are based
on geometric templating capabilities that are used invariably to find an appropriate match
between the femoral and acetabular implants and their respective receiving bony structures
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(e.g. Fig. 1). Femoral implant choices can be roughly classified into cementless and cemented:
the latter refer to femoral implants whose bonding to the receiving femoral canal is ascertained
via a bonding agent (“cement”), whereas the former refer to bonding ascertained via press-
fitting an over-sized implant. In either case, the primary intent is to allow for an as-normal-as-
possible post-operative range of motion as the healthy anatomy would have provided. Here the
focus is on cementless implants: for these, by and large, it is the anatomical geometry, coupled
with the experience of the operating surgeon, that dictates the implant choice, without the
desirable benefit of an a-priori estimate of the stresses induced to the bones due to such a
choice.

PELVIS

ACETABULUM

ACETABULAR CUP

FEMORAL IMPLANT

FEMUR

Figure 1. Typical post-operative total hip replacement x-ray; shown are the patient’s acetabulum,
femur, acetabular cup and femoral implant

If, however, a biomechanical feedback mechanism were to exist that would present, in a
way meaningful to the planning surgeon, the potential mechanical effects of a specific implant
choice, it is then conceivable that such a mechanism would act as a safety feature [1]. Its
introduction might prevent selections leading to either short- or long-term failures of the chosen
implant, and thus to a potential improvement of the clinical outcome$. The recent introduction
of robotic systems in the operating room [2] —responsible for preparing the femoral cavity
receiving the implant— only accentuated the need for pre-operative planners enhanced with
such a biomechanical feedback mechanism. However, the inclusion of a feedback module into
a pre-operative system imposes severe demands for computational speed and robustness of
the underlying geometry and analysis modeling tools, especially if one were to consider the
onerous requirements of patient-specific modeling. It is within the above framework that we
explore in this paper the applicability and suitability of the fictitious domain method as part
of an analysis tool of a biomechanical feedback mechanism for a pre-operative surgical planner.

$Bone typically regenerates and in many cases will grow into the porous surface of an implant; such long-
term post-operative bone “remodeling” processes are not taken into account in the analysis of the short-term
intra-surgical processes presented herein.
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ASSESSMENT OF A FICTITIOUS DOMAIN METHOD FOR PATIENT-SPECIFIC MODELING 3

A first step in any attempt to address the mechanical (e.g. stress) effects of the implantation
process has perforce to start from the reconstruction of the femoral geometry. Thus, one
strategy for patient-specific geometric modeling is to develop solid models of bone volumes by
reconstructing CT data, and then use these models to generate physical models appropriate
for simulation (e.g. using finite element meshes within the encompassed volumes). The steps
to such a process are pictorially depicted in Fig. 2. Invariably one starts from slices of
the anatomical geometry obtained using patient CT-scans that result in a series of planar
tomographic images. Next, the collected images undergo noise-filtering to remove artifacts.
Extraction of bony boundaries (segmentation) is accomplished by edge detection algorithms,
often based on density threshold values, yielding contours on each tomographic cross-section
that typically separate the cortical (hard) from the cancellous (spongy) bone (red rectangle in
Fig. 2). Having identified the bony geometry on the planar slices, the next step involves the
reconstruction of the three-dimensional anatomy (surface reconstruction step; blue rectangle
in Fig. 2) by connecting the contours extracted in the previous step (often achieved via
triangulation). Once the three-dimensional reconstruction has been completed, one also needs
to identify the femoral canal volume (receiving the implant), the surrounding bony volume,
while also simulating the femoral neck osteotomy that will result in a modified solid model
volume (green rectangle in Fig. 2). The insertion of the implant (selection is made pre-
operatively, and a solid model for the implant is constructed as per the black rectangle in
Fig. 2) will result in the intersection of the bone volumes identified in the previous step,
leading to the final solid model. The last step, following a conventional finite element modeling
approach, involves the meshing of the final solid model and, given loads, material properties,
and boundary conditions, the subsequent simulation of the press-fit problem.

The process described thus far is an exacting one, plagued also by uncertainty with respect to
whether the underlying algorithms could always deliver a final solid model —a hard requirement,
for patient-specific modeling: for example, the three-dimensional surface reconstruction step
from the planar slices may not always admit a unique solution. More importantly though,
there are many sources of error introduced at every step of the outlined process: these include
CT imaging errors, boundary extraction errors, surface generation errors, and meshing errors.
Furthermore, the surface reconstruction and the intersection of volumes during the insertion
of the implant (neck osteotomy and canal preparation) result in geometrically complex
volumes, characterized by fine geometric features, that are difficult to mesh using unstructured
techniques, if at all possible (fine features typically drive, at least locally, three-dimensional
meshers), given a reasonable set of computational resources —both hardware and software.

We remark that in this process the CT-scan data are perforce considered as the best
anatomical information that is available for modeling —a sort of a ground truth. The
approximation errors that are introduced during the outlined modeling path, and prior to
the simulation, potentially distort that ground truth ([3]). Therefore, if one were to avoid
the accumulation of these errors, while simultaneously resolving or sidestepping the meshing
difficulties without sacrificing computational speed or accuracy, one would obtain a fast and
robust simulation tool capable of addressing the needs of patient-specific modeling. We turn to
the fictitious domain method in search for such a tool and use figure 3 to sketch the alternative
modeling path.

Accordingly, we operate directly on the original three-dimensional voxel data, without going
through the steps of segmentation and three-dimensional surface reconstruction. The boolean
operations of the neck osteotomy and of the implantation are performed by imposing traction
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Figure 2. Typical modeling sequence based on unstructured meshes

and displacement constraints on the surface () of the cutting planes and of the implant
(assumed rigid), respectively. The solution for the stresses exterior to the implant surface and
within the bony domain are obtained by direct application of the fictitious domain method
on the original grid provided by the CT-scan. Thus, we summarily bypass all the geometric,
image processing, solid modeling, and meshing errors/difficulties outlined earlier. In the next
sections we provide the technical details.

2. BACKGROUND

To fix ideas we turn to the two-dimensional counterpart of the problem described in the
Introduction: figure 4 depicts a slice of a patient’s femur, where the shades of gray in the
pixels correspond to different densities. The circular insert (red) in Fig. 4 represents the (cross-
sectional) boundary of a rigid implant press-fitted into the femoral canal; the region interior to
the circular boundary is occupied, post-interventionally, by the metallic implant (not shown).
Given a preset amount for the press-fit, and a material description afforded by the CT-scan,
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finite element method

(a) Conventional modeling
pipeline based on standard /

‘ (iii) Boundary extraction

4

(iv) Surface reconstruction
(v) Volume identification

4

(i) Patient CT scan
(i) Noise filtering

(vi) Femoral neck osteotomy
and canal preparation

4

(vii) Finite element mesh

(b) Alternative pipeline
based on the fictitious

domain method

(iii") Fictitious domain mesh
(with femoral neck osteotomy
and canal preparation)

5

Figure 3. Modeling sequence based on conventional finite element meshes versus regular grids (fictitious

domain)
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the goal is to determine the displacement and/or stress field in the exterior of the implant,
i.e., within the affected part of the femur. We remark, that the pixel data are provided, as
it is typical the case, on a regular grid. Thus, as argued, the problem lends itself naturally
to a fictitious domain formulation. Let Q denote the entire square two-dimensional domain
depicted in Fig. 4 bounded by TI'; let w denote the “small” circular domain bounded by ~ and
fully embedded within 2. Let u(x) denote the vector displacement field in Q \ w; we seek wu,
such that:

Figure 4. Typical grayscale femoral cross-section CT-scan

dive + f =0, in 2\ w, (1)
u=g, on 7, (2)
ov =0, on T, (3)

where customary notation has been used to denote the stress tensor o, the traction vector
ov on ', with v the outward normal to T'; g represents the Dirichlet datum on v (press-fit
amount); and f denotes body forces. In addition, under the simplifying assumption of linear
elastic isotropic behavior, there also hold:

o = 2ue + A tre, 4)
1
e=; (Vu +VuT), (5)

where, € denotes the small-strain tensor, I the second-order identity tensor, and A, yu are the
Lamé constants.

Following classical lines of fictitious domain methods, the strong form (1)-(3), together with
the constitutive relation (4) and the kinematic condition (5), can be recast as: find @ in €,

TThe cortical bone’s behavior is closer to an orthotropic material; here we opted for a linear elastic model for
simplicity, even though the presented methodology is not limited to linear elastic materials.
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such that:
divé + f =0, in Q, (6)
=g, on 7, (7
6v=0, on T, (8

with
& = 2p€é + A tre, 9)
e=1 (va+va™) (10)
2 b

where }' represents an extension of f over the entire domain 2, such that the following
restriction holds:

flow = £ (11)
It can then be shown (e.g. [8]) that the restriction of the solution @ over € \ w coincides
with the solution to the original problem defined only over the region exterior to v, i.e.:

g\, = u. (12)

A statement similar to (12) can be written for @|,,, had the original problem (1)-(5) been
cast over the interior to v domain w. In fact, we will return to the interior problem in the
next section. We remark that recasting the problem over the entire domain  (versus the
exterior to v only), offers the advantage of using a regular discretization over {2, as opposed to
a geometry-conforming mesh in Q \ w, while weakly imposing the Dirichlet condition (7) on 7.
In this way, we bypass the need for identifying material boundaries (they are implicit in the
pixel data), by directly operating on the naturally regular grid provided by the CT-scan.

The weak imposition of the Dirichlet datum on « via Lagrange multipliers gives rise to a
saddle-point problem. The treatment of problems of this kind can be traced back to the mid-
to late-seventies: in [4] Fix presented, under the heading of “hybrid” finite element methods,
the, possibly, earliest treatment of what later became known as fictitious domain method.
In [4], second-order elliptic problems were treated and a-priori error estimates were provided.
Similarly early and parallel developments can also be found in the (then) Soviet literature (see,
for example, [5, 6]). The theoretical underpinnings borrow largely from earlier developments
in mixed methods [7]. Renewed interest in fictitious domain methods in the mid-nineties and
later was fueled a) by the increasing need to solve three-dimensional problems efficiently (three-
dimensional unstructured quality meshing remains an open problem); and b) by the maturation
of fast solvers for regular grid problems. Representative works include the many contributions
of Glowinski and his collaborators on flows with rigid bodies [9, 10, 11] and on other elliptic
problems [12, 13] (see also [14]). Applications of the fictitious domain method cover a now ever
widening spectrum, including work on unsteady problems [15], fluid-structure interaction [16],
radiation and scattering problems for the Helmholtz operator [17, 18, 19], the recent work on
the treatment of the exterior Helmholtz problem by Farhat and Hetmaniuk [20, 21, 22], and
the development of distributed forms of the fictitious domain method in which the constraints
are imposed over regions as opposed to interfaces [23, 24]. Applications to biomechanical
problems are scantier (see [25, 26] for modeling of the aortic valve), despite the attractiveness
of the method for these problems. In this paper, we built on past work [27, 28, 29], and
discuss an application to linear elasticity of the fictitious domain method, also motivated by a
biomechanics problem.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1-15
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3. MATHEMATICAL FORMULATION

We turn first to the interior problem (the counterpart to (1)-(5)) (Fig. 5): find u in w, such
that:

dive +¢=0, in w, (13)
u=g, on v, (14)
t=0ov=0, on T, (15)

which, similarly to (6)-(10), is recast over the background domain Q as (henceforth, we use
background to refer to Q, and foreground to refer to ~):

dive +¢ =0, in Q, (16)
w=g, on 7, (17)
t=6v=0, on T, (18)

where ¢ now represents an extension of g over the entire domain (2, such that the following
restriction holds:

al.=q. (19)
It can then be shown [4, 8] that the restriction of @ in w is a solution of (13)-(15). Problem
(16)-(18), together with (9)-(10), can be readily cast in a weak form: we multiply (16) by an
admissible function v € H'(f2). There results:

/v-(div6'+f1)dQ: v-(div&+f1)d(ﬂ\w)+/’u-(div&+(})dw:

Q Q\w w

—/&;VvdQ+/v-idr—/v-i+dr+/v-i’dr+/v-@dnzo, (20)
Q r v v Q

where 2 and #* denote the boundary tractions on v, computed from the interior (7) and the
exterior () region to v, respectively. Next, the Dirichlet condition (17) is imposed weakly on
~ and, thus, we seek the pair (@, &) € H(Q) x H~z(v) such that:

/&:V’udQ+/é-'udfy:/q-'udQ+/i-’udl‘, (21)
Q 5 Q r
[cad=[cgam (22)
¥ ¥
where, physically, é denotes the traction jump on the v boundary, i.e.:
A AJ’_ A—
E=[t -1 (23)

The last term in (21) vanishes as per (18), and equation (22) represents the weak imposition
of the Dirichlet condition (17), where ¢ € H 2 (7). We remark that the same system (21)-
(22) could have been obtained by considering the Lagrangian of the problem and imposing
the Dirichlet condition via Lagrange multipliers £/l. From (21)-(22) it also follows that one

'We will be henceforth referring to € as the Lagrange multipliers.
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need only discretize the background domain Q and the boundary v without resorting to
(unstructured) discretization that conforms to the boundary . In fact, the discretizations
of @ and v, from a geometrical point of view, are largely independent of each other (Fig. 5).
The approximations, though, for the pair of test functions (v, ), and the pair of trial functions

Tv

(+)

Figure 5. Regular grid (background) covering 2 with mesh metric hg; Dirichlet boundary grid
(foreground) « with mesh metric Ay

(a, é) cannot be independently chosen: due to the mixed nature of the problem (our unknowns
are both the displacement vector and the (jump of the) tractions), the LBB (Ladysenskaja-
Babuska-Brezzi) or inf-sup condition need be satisfied (e.g. [8]). Accordingly, let:

ii(x) = ¢ (@)U;, v; = V' p(z),x € Q, and (24)
&i(x) =T (2)Z;, G(z) = Z]p(x),z €, (25)

where the subscripts ¢ = 1,2 denote cartesian components of the corresponding vectors. U
and E denote vectors of nodal displacements in the background grid Q and of the Lagrange
multipliers on the foreground grid -y, respectively. To satisfy the LBB condition, if in (24) ¢ is
chosen to be piecewise linear (quadratic), then 1 in (25) need be piecewise constant (linear).
With the approximations (24)-(25), the saddle-point problem (21)-(22), upon discretization,
leads to the following (indefinite) algebraic system:

K BT u]l @
NIk &
where K is the standard stiffness matrix arising in two-dimensional elastostatics given by:
Kll K12 .
K = [ K2 K22 ] , with

1 _ 0¢; 0¢;  0¢i 0¢; 12 _ / 0¢i 0¢; ,  O%i 0¢;
Kij B ~/Q [()\ 2 Oz 0z, +u5:1)2 Oz o, Kij B Q )\81‘1 0z +H6$2 Oy o

21 _ g2 pe22 _ 09i 0¢; 0i 09
K= K27 K2 = /Q [(qu) Sy pgt o dn. 2n)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1-15
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Similarly, the constraint matrix B is given by:
B!
B =
i

B} =B} = / Vig; dy. (28)
Y

B22 :| ; with

Furthermore, in (26) @ is the vector of body forces, and G is the discrete form of the right-hand
side of (22). Notice that, whereas K is a square matrix, B, in general, is a rectangular matrix.
For example, let n denote the number of grid points in 2 and let us assume that bilinear
approximations are used for 4; then K will be of size 2n x 2n. Furthermore, let m denote the
number of elements of the discretization of v; to satisfy the LBB condition, we use constant
approximations for the Lagrange multipliers £ on «, and thus B will be of size 2m x 2n. Of
course, B is highly sparse, for its elements are only non-zero for those background grid cells
that are intersected by v (Fig. 6). Loosely stated and as depicted in the right column of Fig. 6,
B is responsible for distributing the jump of the tractions on « to the background grid of (.
We remark that given the regular structure of the background grid, the storage requirements

Q Q

Figure 6. Schematic depiction of the role of the B matrix

for K can be minimized, since it is only necessary to store (even for inhomogeneous domains)
only a stencil, appropriately scaled with the material parameters (A and ).

4. NUMERICAL RESULTS

We conducted numerical experiments with the discrete saddle-point problem (26) for a variety
of problems: here we discuss the convergence rates we observed for two prototype problems
involving materially homogeneous domains —an elasticity problem and a similarly-casted
Laplace problem. At the end of this section we report numerical results for the original press-fit
problem, that motivated this analysis, using actual patient CT-scan data.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1-15
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4.1. Prototype problems
To fix ideas, we consider first the following Laplace problem (Fig. 7):

Figure 7. Domain for model Laplace problem

Ad(z,y) =0, (z,y) € 1, (29)
W(z,y) = cosnb, (z,y) €7, (30)

R 5N 5 . 202n
i(z,y) = S 90 (*+y°)z + it cosnd, (z,y) €T, (31)

where § = arctan(Z), Q is the square (0,16) x (0,16) bounded by T, and w is the circular
domain bounded by 7 for which 22 + y? < 52. Then, the exact solution for (29)-(31) is given
as:

1 n
a(z,y) = u(z,y) = 5—n(:172 +4?)2 cosnb, for 0 < /22 4+ y2 < 5, (32)
N s om 202"
W(z,y) = S 1 900 (z* +y%)2 + @1 cos nf, elsewhere. (33)

Furthermore, the exact solution for the Lagrange multipliers (jump in the radial derivative of
u) on the circular boundary 7 is:

2n 202"

5 52m 42027
Problem (29)-(31) is convenient, since by controlling the value of n we can create either a
smooth problem (for n = 0, £ = 0), or one where there will be a jump in the normal derivatives

£= cosné. (34)

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1-15
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across 7. The presence of a jump is critical to the stability of the solution and the convergence
rates. The exact solution for different values of n is depicted in Fig. 8 below, whereas the
exact solution for the Lagrange multipliers, for the same range of n, is shown in Fig. 14. We
remark that for n = 1,2, u € H2(w), whereas 4@ € H2~¢(Q). We study first, numerically,

Figure 8. Exact solution 4 (32)-(33) for n = 0,1, 2 (left to right) (Laplace prototype problem)

the convergence rates in the L, norm for the solution within the inner domain w, and on the
boundary . We use bilinear elements for the test and trial functions of the background grid,
and constant elements for the test and trial functions of the foreground grid. We use square-
shaped elements for the background grid and straight-line elements for the discretization of
v. We denote with hg the mesh metric for the background grid in 2, and with A, the mesh
metric on v (Fig. 5).

Figures 10 show the L, errors for values of the Z—;’z ratio ranging from 1.6 to 22 (Fig. 10a), and
0.7 to 3 (Fig. 10b), respectively. For the error calculations shown in these figures, the foreground
grid mesh is kept constant, while the background grid is refined; the small circles and squares
represent computed errors, while the dashed lines represent best fits to the computed norms. To
compute the reported errors we use the background grid solution for grid cells fully contained
within w; for grid cells intersected by the straight-line approximation to the curved boundary
(vn), we triangulate the polygon resulting from the intersections, as per Fig. 9. In this figure,
shaded areas represent the integration domain for such a “boundary” cell; within each triangle
we use a Gauss quadrature rule and obtain the solution at the integration points using the
shape functions (bilinear) of the background grid cell and the nodal values. In this way, the
solution on boundary cells is clearly affected by nodes lying outside w, as it should.

Notice that the convergence rates in Figs. 10 are clearly suboptimal**, for both the coarser
foreground grid of Fig. 10(a) and for the finer grid of Fig. 10(b). Moreover, as it can be seen from
Fig. 10(b), for ratios Z—; approximately smaller than 2, there is no clear convergence pattern;
this, numerically evaluated, critical value of the mesh metric ratio represents a stability limit.
In the literature, tight estimates of the stability limit have only scantily been reported: for
example, in [30], for the inf-sup condition to be satisfied the stability limit was shown to be

**For the bilinear-constant pair, we use the term optimal to refer to O(h) rates.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1-15
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i

_|_
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Figure 9. Typical boundary cell subdivision for error norm calculations

equal to 3, for a linear-constant pair (in [30] linear triangles were used for the background
grid). On the other hand, as reported in [8], stable results were obtained using Z—; ~1.5.
By contrast, when we simultaneously refine both grids, while respecting the stability limit,
h”‘l

Le., when 7= > 2, the convergence rates improve dramatically, as shown in Figs. 11, for two

different fixed ratios of Z—; This numerically confirms a key theoretical result from [4] that
suggests that both background and foreground grids need be refined simultaneously, i.e.:
hao

E—>O, as hg = 0,h, = 0. (35)
The observed convergence rates are summarized in Figures 12 for the Laplace prototype
problem and for two values of the harmonic parameter n. Notice that for fine discretizations, the
solution, u = 4, or u = 4, in the Ly norm is O(h3) (consistent with the performance reported
in [8]). Shown in the same figures are the rates associated with the first-order derivatives, which,
as expected, drop by one order to O(hg). We remark that no a-priori estimates for the solution
within w have thus far appeared; moreover, even the published a-priori estimates for (a,é)
over () differ: for example, in [4], the estimates are:

~ 3
6 = wnllim @) + 1€ =&l -3 ) < Co (ha+h3), (36)

whereas in [30] (Proposition 6), they are:

1

i = wnllms @y + € = &ll o3, < C h5_6||ﬁ||Hg—6(Q)+hv(lefllZ1 ) CH)

H2 (i)

We also remark that in the presented numerical experiments the errors are mostly
concentrated in the interior region w; very little is contributed to the global error norms
Ly(9) from the exterior region; we attribute this to the closeness of the exterior Dirichlet
boundary. Figures 13 pictorially depict the (absolute) error concentrations; notice that for
the smooth problem (n = 0), for which there is no jump in the normal derivatives across ~y
(€ = 0), there is no error (the exact solution is linear). Fig. 14 depicts the quite satisfactory
approximation of the Lagrange multipliers by the computed solution for a single case of Z—;’z;
shown in the same figure are the convergence rates for the Lagrange multipliers which exhibit

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1-15
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an O(hq) performance for simultaneous refinement. We remark that convergence rates similar
to the ones we discuss here also hold for the three-dimensional counterparts of the prototype

problems [31].
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Figure 14. (a) Exact and approximate traces of the Lagrange multipliers £ (34) for n = 0, 1,2 (Laplace

prototype problem); approximate solution obtained for

%y =11.78; (b) cumulative rates for n = 1,2
Q

We turn next to a prototype elasticity problem similar to (29)-(31). Referring again to Fig. 7,

Copyright © 2004 John Wiley & Sons, Ltd.
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we seek to find the cartesian components 4., 4, of the displacement vector such that:
divé (z,y) =0, (z,y) €Q, (38)
o(2,y) = cosnb, i, (z,y) = —sinnd, (z,y) €7, (39)

n—1 n41

a(2,y) = 1@ + 17T +a@® +9)F+

es(@? +y2) 7" 4 ea(a® + )77 | cosnb, (3,y) €T, (40)
- 2y aymmt A ) +200+2p) 5 5 np
o) = [~ea(a? 499" F - MO EIAL I oy oy
2 2y —ntl TL(A+H)_2(A+2,U/) 2 2y—nzt] .
2 2 T 41
cs(z® +y%) +ecy 2O ) + 20 (z° +v°) sinnd, (x,y) €T, (41)

where 6 = arctan(¥), n > 2, and ¢, ¢, ¢3, ¢4 are appropriate constants. The constants have
been obtained by solving an auxiliary Dirichlet problem in the annular region defined by the
inner () and outer circles shown in Fig. 7, respectively, by setting the conditions on the outer
circle to be 4, = % cosn#, i, = —3 sinné. The boundary conditions on I' were obtained as the
restriction on T' of the solution within the annular regionft. With these definitions the exact
solution within w becomes:

9 oy 1 n—1
Uy (z,y) = 7@ -;y )2 cosnb,
9 o\ 1 n—1
Uy(z,y) = — % sinné, (42)

while within Q\w is given by (38)-(39). As it can be seen from Figs. 15 and 16, the observations

-1 -1
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Figure 15. L2 errors for simultaneous refinement in hq and hy

i The expressions for the constants are quite lengthy and are thus not included here; however, they can be
readily obtained using any symbolic computation software package.
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—— din®

—8— dony
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h/hg

Figure 16. Convergence rates in Ly (prototype elasticity problem); simultaneous refinement; various

iog 21
ratios e

made about the Laplace problem are true here as well (both problems are elliptic). Figures 15
show the convergence rates for the displacement solution on v and in w under simultaneous
refinement with fixed ratio, while Fig. 16 shows the cumulative rates that clearly approach
O(hd) as Z—f — 0.

4.2. Press-fit problem over an inhomogeneous region

Next, we consider the original press-fit problem. Shown in Fig. 4 is, in grayscale, an actual adult
patient CT-scan of a femoral slice; the dimensions of the square region depicted in Fig. 4 are
48mm x 48mm. The red insert represents the circular cross-section of a rigid implant of radius
8mm. We considered a (typical) press-fit amount of 0.5mm that was applied as a Dirichlet
condition in the radial direction on -, whereas the outer boundary I of the slice was taken to
be traction-free.

To solve the resulting BVP, we used published correlations [32] between experimentally
obtained values for Young’s modulus and the CT-scan intensity, to create the material map
shown in Fig. 17(a); the Poisson’s ratio was assumed constant at %. In this map, the red
regions correspond to higher values of Young’s modulus, with the highest amongst them
corresponding to the cortical part (exterior) of the bone. The lighter pixels between the red
and blue regions at the outer fibers of the cortical bone are image artifacts. Shown in Fig 17(b)
is the correspondence curves we used for Young’s modulus.

We used both a finite-element approach based on a geometry-conforming mesh (Fig. 18(a)),
and the fictitious domain method to solve the press-fit problem. The solid model used in the
geometry-conforming mesh case was obtained by manually delineating the outer boundary
of the femur. For the fictitious domain grid (Fig. 18(b)) the material properties are readily
available from the CT-scan map shown in Fig. 17(a). By contrast, for each element of the
geometry-conforming grid we use the coordinates of its barycenter to query the structured
material map shown in Fig. 17(a) in order to assign properties. Since there is overlap between
the elements of the geometry-conforming and regular meshes, there are small differences
between the material properties, and we expect these differences to manifest, especially in
the stress distributions. Nevertheless, as argued in the introduction, the ground-truth data are
represented by the CT-scan, and hence we hold the fictitious domain as the more faithful to

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 00:1-15
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Figure 18. (a) Geometry-conforming FEM grid; (b) regular fictitious domain grid
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Shown in figures 19 are the distributions of total displacements obtained using the
meshes depicted in Fig. 18. Whereas, visually, both solutions appear close, Fig. 19(c) shows
the pointwise difference distribution; notice that the larger differences are close to the
inner boundary. For example, the highest recorded difference was 0.04 corresponding to a
displacement of approximately 0.5 (8% difference). Figures 20 and 21 show similar comparisons
for the 0., and oy, stress components. To ease the comparison, Fig. 22 shows the radial
displacement and hoop stress on a circle of radius 15.5mm that is fully embedded within the
geometry-conforming mesh of Fig. 18. Whereas the agreement between the two solutions for
the displacements is excellent, differences can be seen in the stress distribution. Again, we
attribute these differences, partially, to the mismatch in the underlying material properties
between the two meshes. Finally, Fig. 23 shows a comparison on the displacement components
along the outer boundary of the geometry-conforming grid; the agreement is quite satisfactory.

5. CONCLUSIONS

In this paper, motivated by the needs of patient-specific modeling arising in computer-assisted
orthopaedic surgery, we presented a methodology for tackling problems for which the material
profile originates from medical imaging data that are typically delivered on regular grids.
For such problems, the fictitious domain method is a natural choice, because it avoids the
segmentation, surface reconstruction, and meshing phases required by unstructured geometry-
conforming simulation methods. Using prototype problems, we presented numerical results
that, exhibit optimal convergence rates in the domain of interest. Similarly satisfactory results
were presented using actual patient CT-data for the press-fit problem arising in the cementless
implantation in total-hip replacement surgeries.
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