
Detecting Semantic Anomalies in Truck Weigh-In-Motion Traffic Data

Using Data Mining

Orna Raz1, Rebecca Buchheit2, Mary Shaw3, Philip Koopman4, and Christos Faloutsos5

ABSTRACT

Monitoring data from event-based monitoring systems are becoming more and more prevalent

in civil engineering. An example is truck weigh-in-motion (WIM) data. These data are used in the

transportation domain for various analyses, such as analyzing the effects of commercial truck traffic

on pavement materials and designs.

It is important that such analyses use good quality data or at least account appropriately for

any deficiencies in the quality of data they are using. Low quality data may exist due to problems

in the sensing hardware, in its calibration, or in the software processing the raw sensor data. The

vast quantities of data collected make it infeasible for a human to examine all the data.

We propose a data mining approach for automatically detecting semantic anomalies—unexpected

behavior—in monitoring data. Our method provides automated assistance to domain experts in

setting up constraints for data behavior.

We show the effectiveness of our method by reporting its successful application to data from an

actual WIM system: experimental data the Minnesota department of transportation collected by

its Minnesota road research project (Mn/ROAD) facilities. The constraints the expert set up by

applying our method were useful for automatic anomaly detection over the Mn/ROAD data: they

detected anomalies the expert cared about—unlikely vehicles and erroneously classified vehicles—

and the misclassification rate was reasonable for a human to handle (usually less than 3%). Moreover,

the expert gained insights about the system behavior, such as realizing that a system-wide change

had occurred. The constraints detected, for example, periods in which the WIM system reported

roughly 20% of the vehicles classified as three axle single unit trucks to have one axle!
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Truck weigh-in-motion (WIM) data are an example of event-based monitoring data. Monitoring

data are collected to measure the state of infrastructure elements. Such data are often used in

infrastructure management systems to assist local, state and federal agencies in developing strate-

gies to maintain their infrastructure. Monitoring data provide support for predicting deterioration,

scheduling maintenance, and calculating life cycle costs. Within an infrastructure management sys-

tem, monitoring data are usually used as historic precedent to predict future deterioration (Hudson

et al. 1997).

Monitoring data are also used to analyze design decisions and support research activities. For

example, the Minnesota road research project (Mn/ROAD) data we use in this paper are included in

the Long Term Pavement Performance (LTPP) Project (LAW PCS 1999). The LTPP project uses

the Mn/ROAD data and similar data from other states to support pavement performance analysis

and to design better pavements.

WIM data, such as the Mn/ROAD data, are collected from an event-based monitoring system;

every vehicle that passes over the WIM scale is an event that yields a recorded observation. This

particular WIM scale is embedded in the infrastructure itself and is meant to monitor the infras-

tructure. Multiple software algorithms process the sensor data to estimate various attributes, such

as the vehicle class, and filter out unreasonable values.

The data processing path between vehicles crossing the scale and the resulting recorded obser-

vations is fraught with opportunities for data quality degradation. For example, a sensor may be

defective or wrongly calibrated, or software may assume an incorrect system state. These may result

in unreasonable values, such as values that are physically impossible, or values that are improper

for the vehicle class.

Because such data are used for analysis, it is important that the data be of good quality. Un-

fortunately, independent information about correctness rarely exists, making it challenging to verify

the data quality. A first step toward achieving good quality data is the ability to detect anomalies.

Other work (Buchheit et al. 2003) concentrated on finding the best automated techniques for

detecting and cleaning aggregated data, using domain knowledge. Buchheit also detected individual

anomalies using the Minnesota Truck regulations as a model of data behavior. However, in that

work, aggregate properties, such as the daily sum of vehicle weight, were used to find patterns of

systematic error in the data. Our work is complementary because it concentrates solely on individual

observations. In addition, our general purpose inference framework expands on Buchheit’s work by

helping the users to elicit their own, possibly more complete, model of the data’s behavior.

We concentrate on semantic anomalies—unreasonable values. Once anomalies are detected the
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data may be cleaned or proper allowances may be made in the analysis to account for the data

quality.

Detecting semantic anomalies requires a precise model of proper behavior: a semantic anomaly

is behavior that is outside this model. However, though users (e.g., analysts) often have accurate

expectations for the behavior of the data, they usually are unable to state these formally and

precisely. For example, a user may expect trucks reported by a WIM scale to be physically plausible

but may not be able to specify all the properties and values that define such plausibility.

We propose an automated method for assisting a user in creating a precise model of proper data

behavior. Our predicate inference framework contains a template mechanism that interacts with

a user to make the user’s expectations for the data behavior precise. The framework then uses

the precise expectations to detect semantic anomalies in the data. It uses data mining—applying

statistical and machine learning techniques to help discover meaningful information in the data.

Though these techniques characterize various aspects of the data, characterizing relevant behavior

requires eliciting the user’s expectations as well.

We apply our general purpose predicate inference framework to the Mn/ROAD data. An expert

interacts with the template mechanism to make the expert’s expectations precise. We then use the

resulting model to detect semantic anomalies in the Mn/ROAD data.

We show that the template mechanism is effective; we measure effectiveness both by the insights

the expert gains (the usefulness of the process) and the detection and misclassification rates (the

usefulness of the resulting model). We were able to detect anomalies that surprised our expert,

as they suggested system (hardware and software) behavior the expert was unaware of. Moreover,

because our approach is automated, it detects anomalies quickly. In comparison, it had taken the

data providers several months to notice the same problems independently. This is probably because

the amount of data is very large, and it is hard to know what to look for.

WEIGH-IN-MOTION DATA

The data we use in our case-study are experimental data the Minnesota Department of Trans-

portation collected in its Mn/ROAD research facilities between January 1998 and December 2000.

The data have over three million observations for ten commercial vehicle types out of fourteen total

vehicle types.

The Mn/ROAD research division operates a two-lane mainline test road equipped with a weigh-

in-motion (WIM) scale. The test road is an active highway segment that runs parallel to a 3.5

mile section of I-94 westbound, near Otsego, Minnesota (Minnesota Department of Transportation
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2002). The WIM scale uses four single load cell detectors in a sealed frame and four loop detectors

embedded in the pavement to observe passing vehicles. The WIM scale measures the individual axle

spacings and weights for each vehicle that passes over the scale. The gross weight of each vehicle

is calculated based on this information. Length and speed are derived from the time that passes

between noticing axles. In addition, the time when the vehicle crosses the scale, the lane in which

the vehicle was traveling, and any error codes generated by the WIM scale are recorded. These

measurements are sent to a nearby computer. Software algorithms then calculate a classification

number and the equivalent standard axle loads (ESALs) (American Association of State Highway

and Transportation Officials 1986) for each vehicle. The classification numbers are based on the

Federal Highway Administration (FHWA) vehicle classification system, modified to include a class

for invalid vehicles and a class for vehicles that do not fit into the FHWA schema (Federal Highway

Administration 2001). ESALs are a dimensionless quantity that describes the usage of a pavement

surface; an ESAL value of 1.0 is a standard truck. The computer saves the vehicle information

into a text file; a software algorithm then imports this text file into a database. It assigns a

unique identification number to each vehicle, purportedly filters out unreasonable values, and ignores

personal vehicles (the WIM scale records all vehicles that pass on it).

Roughly one million vehicles are added to the data set per year. The number of observations

the system collects varies by vehicle type. For example, it collects two thousand observations during

roughly three weeks for each of vehicle types 4 and 6 and during roughly two days for type 9.

We treat the Mn/ROAD data as a time-stamped sequence of observations. Each observation has

attribute values for a single commercial vehicle: date and time (accurate to the millisecond), vehicle

type (one of ten classes), lane (one of two classes), speed (mph—miles per hour), error code (one of

twenty five classes), length (feet), ESAL, number of axles, and weight (kips—kilo-pounds).

Several states in the USA are collecting truck WIM data and analyzing them to better understand

transportation issues. Though there are different WIM scales, the basic data are very similar.

WIM data have been used extensively for analysis of transportation design issues. This includes

Mn/ROAD research projects, such as pavement performance, preventive maintenance, and low vol-

ume road design (Minnesota Road Research Section 2003), as well as research projects and analyses

at other states (Beshears et al. 1998; Najafi and Blackadar 1998; Lee and Souny-Slitine 1998; Clay-

ton et al. 2002). There is also research examining additional applications of WIM data, for example,

real time enforcement of truck weight restrictions (Andrle et al. 2002).

However, little work addresses data quality issues. Assessing data quality is complementary to

analyzing the data. The Vacuum system (Buchheit 2002; Buchheit et al. 2002; Buchheit et al. 2003)
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was applied to the Mn/ROAD data for assessing the data quality and cleaning the data. However,

the analysis concentrated on aggregated data: the daily sum of attribute values, such as daily sum of

ESAL. Our analysis is complementary. It concentrates on individual observations and our framework

can support various existing techniques. The kind of anomalies we detect are vehicles that do not

seem to belong to their assigned class and vehicles that have attribute values that are improbable

(e.g., too low or too high). Such anomalies may explain anomalies in the aggregated data.

POSSIBLE DATA PROBLEMS

The Mn/ROAD data are produced by an event-based monitoring system. The sensor data are

further processed by multiple software algorithms, written by different contractors. Many things

can go wrong in this process. For example, there may be problems in the physical calibration of the

WIM scale, inaccurate sensing, improper processing done by software, or undesirable interactions

among multiple software algorithms processing the data.

Such problems may cause an observation to have attribute values such that a real vehicle is not

in its correct class (it has realistic attribute values but these are very different from values of the

same attributes in other vehicles of its assigned class) or a vehicle is physically highly improbable.

Such unreasonable values are semantic anomalies that we want to detect.

Anomaly detection is a first step toward improving the sensing system—both hardware and

software. It enables further analysis such as indicating whether an anomaly is a system failure,

locating the failure source, and taking remedial actions.

Buchheit (Buchheit 2002) distinguishes between two categories of error types in event-based

monitoring data: errors in aggregated data and errors in individual observations. We concentrate

on problems in individual observations. Buchheit classifies individual observation error types as:

missing observation, duplication of same observation, garbling errors—occur when a real-world value

is incorrectly recorded or is missing from a data set, and combination errors—occur when two events

are recorded as a single event or when a single event is decomposed into two events. Detecting

unreasonable values due to garbling or combination requires knowledge about the semantics of the

data and is, therefore, harder to automate than detecting missing or duplicated values. We, therefore,

concentrate on detecting unreasonable values.

PROPOSED SOLUTION

We are interested in detecting semantic anomalies such as the unreasonable values in WIM data

that we have defined above. Detecting such values requires knowledge about the semantics of the

data. In addition, different analyses may rely on different aspects of the data behavior. Users, even
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experts, use the data for a particular purpose and have expectations about the behavior of the data

that are relevant to the specific usage/analysis.

If an expert could look at all the observations and could concentrate while doing so, the expert

would most likely detect the unreasonable values. However, expert time is expensive, humans find

it hard to concentrate on repetitive tasks, and the quantities of data to inspect are often large.

Alternatively, the expert could define a model of proper data behavior for the specific us-

age/analysis the expert is involved with. An anomaly would then be a value that is outside this

model. This model would be based on the expert’s expectations for the data behavior. However,

users’ expectations are informal and imprecise, though they are reasonably accurate.

We propose a method that provides automated assistance to users in making their expectations

for the data behavior precise. This method relies only on: (1) data: the observable behavior of

the system over some period of time, which we term a data feed and (2) minimal user feedback

in the form of classifying the output of the data mining techniques into three categories. We use

the resulting model to detect semantic anomalies in the data. We do this through our predicate

inference framework.

Data mining and machine learning have been used for civil engineering applications (Melhem and

Cheng 2003; Reich 1997; Arciszewski and Rossman 1992). However, these applications concentrate

on analysis and prediction. Our approach is complementary: we use data mining for detecting

anomalies in the data prior to using the data for such analysis and prediction.

Soibelman et al. (Soibelman and Kim 2002) propose a process for data preparation for knowledge

discovery in data bases, in the construction domain. Our method provides automation for such a

process, using the techniques in our inference tool kit. Our method could be used in any domain

that would benefit from using the resulting constraints on data behavior.

Approaches of modeling expert knowledge are complementary to our approach of suggesting

predicates using unsupervised learning. Caldas et al. (Caldas and Soibelman 2003; Caldas et al.

2002) propose mechanisms for project collaboration, coordination,and information exchange. They

deal mostly with text documents. Maher et al. explore case-based approaches to structural design of

buildings in a large body of work, an example of which is (Maher and Balachandran 1994). Simoff et

al. explore virtual environments for learning about design, for example in (Simoff and Maher 1997).

We use and adapt existing unsupervised learning techniques from the areas of statistics and

machine learning. Co-training (Blum and Mitchell 1998) investigates ways to reduce the human effort

that labeling data for supervised learning requires. Active learning (Cohn et al. 1996) investigates

statistical ways to select the most promising training data for a technique. We ask the user to
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classify the output of a technique, rather than its input.

Our approach of inferring the characteristics of a data feed from its behavior is similar to work

in the areas of program analysis and testing. Daikon (Ernst et al. 2000) dynamically discovers likely

program invariants from program executions. We incorporate Daikon in our predicate inference

tool kit. “Bugs as deviant behavior” (Engler et al. 2001) infers beliefs from source code so it is

inappropriate for data. “Specifications mining” (Ammons et al. 2002) uses a machine learning

approach for discovering specifications of interface protocols. However, it uses techniques specific

to code. “Observation-based testing” (Dickinson et al. 2001) uses clustering and visualization

techniques to identify unusual program executions. We have similar techniques in our tool kit.

PREDICATE INFERENCE FRAMEWORK

We present our framework concentrating on the domain of monitoring systems and on a particular

data set: the Mn/ROAD data. Our framework is domain independent; a detailed discussion of our

framework and its general applicability appears in (Raz et al. 2003).

Figure 1 gives a synopsis of our predicate inference framework. This framework has three major

stages: (1) setting up a model of proper behavior by eliciting precise user expectations; this stage

relies on a novel template mechanism and is the focus of this paper, (2) using the precise expectations

as a proxy for missing specifications to detect semantic anomalies in the data; previous work (Raz

et al. 2002) discussed this stage, and (3) updating the precise expectations to account for evolving

system behavior or user expectations; we defer this stage to future work.

The mechanisms that support the above stages are: (1) the technique tool kit—a collection of

existing statistical and machine learning techniques that we support and adapt, (2) the template

mechanism—a mechanism that guides the human attention required in making expectations precise

using templates that document the predicates a particular technique can output, and (3) the anomaly

detector—a mechanism that uses the precise expectations as a model of proper behavior and reports

as anomalies observations that falsify the expectations. Details about these mechanisms follow.

THE TEMPLATE MECHANISM

We characterize a predicate inference technique by the types of predicates it can produce. Tem-

plates capture the form of these predicates. For example, an inference technique may find a probable

range for the values of a given attribute, e.g., the length attribute. The corresponding template would

be #≤length≤ #, where # is a numeric value. Our method concentrates on numeric valued at-

tributes. However, the template variable # can be a category value (e.g., lane = 1). Figure 2 gives

a synopsys of how the template mechanism works.
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An inferred predicate is a “complete instantiation” of a template. The template mechanism uses

this complete instantiation for templates of “accept” predicates. Classifying a predicate as either

“reject” or “update” may make the template instantiation partial by rendering the instantiation of

all the numeric values in one or more dimensions void. See the description of Rectmix in the next

Section for an example.

The template mechanism treats the predicate inference techniques as black boxes and uses the

instantiated templates to filter the predicates a technique infers. It constructs and updates the

model of proper behavior from instantiated templates of “accept” and “update” predicates. It will

never present the user or the anomaly detector with predicates that match templates of previously

rejected predicates. The template mechanism eliminates techniques that are not relevant for this

user and data: it will not employ an inference technique if the user rejects all the predicates that

are associated with this technique.

Premises of our template mechanism include (1) it is easier for a user to understand expectations

about data behavior when presented with examples. It is especially useful to examine examples

of anomalous behavior, with the predicates that flagged them as anomalous, and (2) it is easier

for a user to choose from a list of inferred predicates than to create this list, so having a machine

synthesize the list is helpful.

THE TECHNIQUE TOOL KIT

The tool kit consists of multiple predicate inference techniques. These are existing machine

learning and statistical techniques that we support and adapt. Users may add techniques to the

tool kit. The truck WIM case study that follows uses two of the tool-kit techniques: Rectmix

and Percentile. We selected these techniques because they work best on the Mn/ROAD data:

their predicates describe data behavior that the expert cares about. For this data feed, the other

techniques either describe irrelevant behavior or produce predicates that are less precise or redundant

with respect to the Rectmix and Percentile predicates. A description of the techniques we used and

their selection follows.

Each technique is likely to be useful only for data with certain characteristics. This provides an

initial technique filtering criterion. We use measurement scales (Fenton and Pfleeger 1997) for this

purpose. Measurement scales enable matching data with techniques that perform manipulations

appropriate to the data scale. For example, the lane attribute of the Mn/ROAD data feed has a

nominal scale—there is no notion of ordering or magnitude associated with the numbers used to

specify lanes. Therefore, it is meaningless to apply mathematical predicates to this attribute. If a
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technique performs transformations that are inappropriate to all the attributes of a data feed the

technique should not be applied to that data feed.

In addition, different users may find different techniques useful or the output of one technique

may be largely redundant with another for the data of interest. Different techniques make different

assumptions and often use different vocabularies. Therefore, it may be useful to apply multiple tech-

niques to the same data. However, a large number of techniques is likely to burden the human. The

template mechanism supports filtering techniques partially on discriminating ability (effectiveness

in anomaly detection) and partially on output comprehensibility. Filtering by these criteria enables

the user to select the techniques that promise the best use of human attention.

Our technique tool kit currently consists of five techniques. We selected these techniques because

they expose different aspects of the data and because their output is easy for a human to understand.

We breifly present these techniques, and summarize their output for the Mn/ROAD data.

The Rectmix technique Rectmix (Pelleg and Moore 2001) is a clustering algorithm that sup-

ports soft membership (a point can probabilistically belong to multiple clusters). The clusters it

finds are hyper-rectangles in N-space. Rectmix provides a measure of uncertainty called sigma (an

estimate of the standard deviation) for each dimension. Anomalies are points that are not within a

rectangle. Though clusters rarely have a hyper-rectangle shape in reality, Rectmix has the significant

advantage of producing output that is easy to understand: a hyper-rectangle is simply a conjunc-

tion of ranges, one for each attribute (see Table 1). Rectmix has two parameters: the number of

rectangles and the number of sigmas of uncertainty to allow.

Rectmix always outputs hyper-rectangles, so it has a single template: # ≤ A1 ≤ # ∧ ... ∧

# ≤ An ≤ #, where n is the number of attributes (dimensions). Table 1 gives an example of

user classification for predicates that Rectmix outputs for a subset of the Mn/ROAD data. The

corresponding templates have numeric values in one dimension—the axle attribute—because the

user chose to void the other attribute values. For example, the template for the first predicate is

#≤length≤# ∧ #≤ESAL≤# ∧3≤axles≤3 ∧ #≤weight≤#.

The Percentile technique The x percentile of a distribution is a value in the distribution such

that x% of the values in the distribution are equal or below it. Percentile calculates the range

between the x and 100-x percentiles and allows y% uncertainty. Percentile only assumes values are

somewhat centered and tolerates extreme values.

Percentile predicates are a probable range for the values of each attribute. Percentile has a
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single template: #≤A≤#. Table 2 gives an example of user classification and resulting instantiated

templates for predicates that Percentile infers over a subset of the Mn/ROAD data. Percentile

(x=25, y=25%) works well for speed, length, axles, and weight, but not for ESAL (ESAL seems to

be exponentially distributed).

The K-means technique (Duda et al. 2000) is a clustering algorithm with hard membership: it

partitions points into distinct clusters. Anomalies are points that are furthest away from the center

of their cluster, according to the Euclidean distance metric K-means uses.

K-means templates are a set of k cluster centers: C1, ..., Ck , where Ci = (A1 = #∧ ...∧An = #)

and n is the number of attributes. For the Mn/ROAD data, when requesting k=2–4 clusters, the

centers make sense. However, the furthest observations in each cluster are not necessarily anomalies.

This means that the measure of multi-dimensional Euclidean distance is not meaningful for this data.

In addition, soft membership is more appropriate for the Mn/ROAD data than hard membership.

Therefore, K-means is not a good choice for the Mn/ROAD data.

The Association Rules technique (Agrawal et al. 1993) finds probabilistic rules in an ’if then’

form. The rules reflect correlations among attributes but cannot know about cause and effect. They

can only give examples with specific values. The advantage is that association rules may detect

correlations that may be due to complicated relations. The disadvantage is that they cannot suggest

a general relation to explain the correlation. Association rules work on categorical data so numeric

data is first divided into bins.

Association rules templates are of the form ’if E1 ∧ ...∧Em then Ex’, where Ei ∈ {# ≤ Ai ≤ # |

Ai ≥ # | Ai ≤ #} and m < n, the number of attributes. For the Mn/ROAD data, association rules

work rather well. An example of the rules they produce is ’if length<34.8∧ESAL<0.11∧2≤axles≤3

then weight<19.2’. However, not all the rules contain all of these four attributes, and the cause and

effect relation is often absent (as is the case above: ESAL is calculated based on the other attribute

values). In general, Rectmix performs better over the Mn/ROAD data.

The Daikon technique (Ernst et al. 2000) was developed for the program analysis domain. It

dynamically discovers likely program invariants over program execution traces by checking whether

pre-defined relations hold. We map Daikon’s program points and variables to our observations

and attributes, respectively. Daikon assumes the data is clean, but our data contains anomalies.

Therefore, we use voting: we run Daikon on multiple subsets of the data and use the invariants that
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appear in multiple subsets. Daikon is very effective when strong correlations that can be described

by its pre-defined relations exist.

We have a template for each of Daikon’s pre-defined relations. Because the Mn/ROAD data has

mostly statistical correlations the only useful predicates Daikon outputs are ’axles ∈ {#}’. However,

Rectmix and Percentile produce similar predicates, so we prefer these techniques for Mn/ROAD data.

Pre-processing Data pre-processing may be necessary before the template mechanism interacts

with the user. Pre-processing often helps to overcome technique weaknesses. This includes: (1)

setting parameters of inference techniques, (2) performing data transformations, (3) selecting at-

tributes, and (4) clustering.

To determine technique parameters, the template mechanism runs each technique with several

values for each parameter and lets the user select the combination that best reflects the user’s

expectations. Alternatively, the user may choose to use the default parameter values.

Data transformations are usually straight forward and automated. For example, normalizing each

numeric valued attribute to have mean one and standard deviation zero is a common transformation

that is necessary for techniques that assume similarly scaled attributes (e.g., Rectmix) and data

with differently scaled attributes (e.g., the Mn/ROAD data).

Attribute selection is useful for techniques that produce multi-dimensional templates both be-

cause these techniques tend to work better with less dimensions (attributes) and because as the

number of dimensions increases it becomes harder for a human to understand and visualize the

results. If different classes of data (clusters) exist, they are likely to behave differently. Therefore,

the template mechanism runs the techniques on data in each class to enable the user to create a

separate model for each class.

Any attribute selection technique could be used with our method. We found Principal Component

Analysis (PCA) useful for attribute selection and clustering of the Mn/ROAD data because these

data have linear correlations.

PCA (Jolliffe 1986) is a way to reduce the dimensionality of the data thus enabling visualization.

PCA generates a new set of variables, called principal components, where each principal component

is a linear combination of the original variables. If linear correlations exist, PCA can serve for

attribute selection because it indicates which of the attributes are most strongly linearly correlated.

Looking at the data helps in finding different classes of the data. To visualize the data, we

plot the observations along the first two principal components. To check for clusters, we color

the observations according to each of the attributes (a color for each value of a categorical valued
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attribute, a color for each bin of a numeric valued attribute).

We observe by looking at the PCA plots for the Mn/ROAD data that either vehicle type or axles

can be used to cluster the data and the resulting clusters overlap. We choose vehicle type as the data

class. The first principal component indicates a linear correlation among length, ESAL, axles, and

weight. Therefore, we select these attributes as input for techniques that produce multi-dimensional

templates (e.g., Rectmix). The other components do not indicate interesting correlations. The

second axis indicates mostly the speed of a vehicle. Therefore, we add the speed attribute for

analysis by techniques that produce one-dimensional templates (e.g., Percentile).

CASE STUDY HYPOTHESIS

We test our template mechanism by having an expert interact with it to set up a model of proper

behavior for the Mn/ROAD data. Our case study tests the following hypothesis: the template

mechanism helps users make their expectations precise. Further, the template mechanism, along

with the technique tool kit and the anomaly detector, effectively direct the human attention necessary

in setting up a model of proper behavior and in analyzing the resulting anomalies.

If our hypothesis is correct then

1. The resulting model of proper behavior will be useful in detecting semantic anomalies in the

Mn/ROAD data.

2. The user, an expert in this case, will gain insights about the WIM system through interaction

with the template mechanism and through analysis of anomalies.

CASE STUDY METHODOLOGY

As described in the pre-processing Section, we begin by looking for clusters and selecting at-

tributes. As a result, the template mechanism interacts with the user for each class (vehicle type)

separately and inputs the selected attributes to techniques in the tool kit.

For the purpose of validating our template mechanism, we select three out of the ten vehicle

types that the data contain. We select the most common vehicle type (type 9, about two million

observations) and two additional types (type 4 and type 6, about one hundred thousand observations

each). The existing documentation defines these types as follows: type 9 vehicles are five-axle single

trailer trucks, type 6 vehicles are three-axle single unit trucks, and type 4 vehicles are buses. On

the basis of preliminary analysis, the vehicle types seem similar enough that we can use the same

techniques over them. We first let the user create a model for two of the types (4 and 6) then we let

the user create a model for the third type (9) using the techniques and parameters the user chose
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for the first two types. This works well, supporting our preliminary analysis regarding the similarity

of the vehicle types with respect to the tool-kit techniques. The same techniques and parameters

should work well for the other vehicle types as well, but doing so is beyond the scope of our work.

A domain expert sets up the model of proper behavior. We give this model to the anomaly

detector. The anomaly detector runs over subsets of the data. We sort the data by time and divide

it into subsets of two thousand consecutive observations each, to simulate the on-line data nature.

To analyze the model, we determine the resulting detection rate and the misclassification rate.

The detection rate calculates how many attributes the model flags as anomalies out of the total

number of attributes. It is an objective measure because the results of using the model for anomaly

detection are binary: normal or anomalous. However, it is important to also analyze the usefulness

of the model. The misclassification rate quantifies the usefulness of the model. Because we do

not have independent information on correctness this is necessarily subjective. We concentrate on

whether the model is effective in detecting anomalies the user cares about, not on whether it detects

all the anomalies.

CASE STUDY DETECTION RATE

We detect anomalies over the Mn/ROAD data using the model the expert has set up. Tables 3,

4, and 5 list the Rectmix model the expert has set up (predicates outputed by Rectmix) for vehicle

types 4, 6, and 9, respectively. Table 6 lists the Percentile models the expert has set up (predicates

outputed by Percentile) for vehicle types 4, 6, and 9. These models consist of “update” and “accept”

predicates from the final setup stage. For example, for vehicle type 6, Table 4 consists of the “update”

predicates from Table 1—the final setup classification for Rectmix predicates. The middle column of

Table 6 consists of the “update” predicates from Table 2—the final setup classification for Percentile

predicates.

We use the model for anomaly detection and compute the resulting detection rate. We present

plots for one vehicle type—type 6. The plots for type 4 and type 9 vehicles are similar except as

indicated in the analysis that follows.

Figure 3 depicts a count of anomalous attributes flagged by the Rectmix predicates the expert

chose for vehicle type 6. Similarly, Figure 4 depicts a count of anomalous attributes flagged by the

Percentile predicates the expert chose for vehicle type 6.

Data subsets are time ordered; each has two thousand observations. The y-axis in a plot gives

the total number of anomalies in one of the subsets, according to the criterion the plot specifies,

e.g., length anomalies. Notice that the y-axis scale differs among plots. The x-axis is the sequential
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subset index. Figure 3’s left-most plot summarizes the total number of anomalous attributes, out

of eight thousand attribute observations (four attributes times two thousand observations for each).

The other plots show the break-down of this total by attribute, out of two thousand observations.

The first column in Figure 4 summarizes the number of anomalies for each attribute. The plots

in the second and third columns summarize the anomalies that are due to attribute values that are

smaller or larger, respectively, than the range bounds. All are out of two thousand observations.

Table 7 summarizes the average detection rate over the subsets of each vehicle type. It gives the

detection rate over all attributes and a break-down by attribute.

Looking at the detection rate over a number of subsets (Figures 3 and 4) is insightful.

Patterns and changes become visually obvious.

The detection rate (anomalies) for type 9 vehicles is much lower than for the other types. The

data of type 9 vehicles seem much cleaner than for the other types. The number of axles is absolutely

clean (no anomalies). The weight is usually normal but in some of the subsets there is a very large

number of over-weight vehicles (hundreds out of two thousand). This may be due to weight sensor

problems in the scale or calibration problems on specific dates. Type 9 is by far the most common,

so probably the scale and software are calibrated to best recognize this type.

Figure 4 draws our attention to a correlation between low speed (speed < 40 mph) and over-

length (length > 39 feet)—the plots have a similar shape. This helps us to better understand how

the length estimation works. The length is estimated from the time that passes between axles,

assuming high-way speed. Therefore, if the speed is very low, the length will be over estimated.

Looking at the anomalies for axles in Figure 4, it appears there was a change in the WIM system

starting subset number 54 (November 1999). The number of axles is very noisy in earlier observations

and very clean in later observations. The same behavior occurs in type 4 vehicles. This may be due

to a software update in the classification or filtering algorithms or a re-calibration of the WIM scale.

Our expert was surprised to see this behavior. The expert was also surprised to learn that a large

number of vehicles with one axle exist in the data; all commercial vehicles should have at least two

axles, and the filtering algorithm should have detected such an anomaly.

Both Figure 3 and Figure 4 show that during the period of time in which the axle attribute is

clean, the length is also cleaner (fewer anomalies). The same behavior occurs in type 4 vehicles.

This may be due to the same change that resulted in a cleaner number of axles. Many of the type 6

length anomalies are due to the maximal length the WIM system can record: 99.9 feet. Our expert

was unaware of the large number of exceptionally long and slow type 6 vehicles during the early
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data collection period. This may be due to problems in either the scale calibration or the software.

The total detection rate (Table 7) cannot be compared between Rectmix and Percentile because

the attributes are not all the same and because these techniques describe different behavior: Rectmix

finds correlations among common attribute values whereas Percentile simply finds common values

for a single attribute. However, it is interesting to compare the detection rates for the identical

attributes (length, axle, weight). Understanding differences helps in model understanding.

The axles anomaly detection rate is very different between Rectmix and Percentile because the

predicates the expert chose differ. For example, Percentile predicates allow 3 axels for type 6 vehicles,

but the Rectmix predicates allow 2–4 axles.

Small differences in the ranges for length and weight result in large differences in the detection

rate, indicating that the values for these attributes are closely concentrated. The exact cut-off

point between normal and anomalous is, therefore, not clear from the data. For example, due to

small range differences, the Rectmix length-anomaly detection rate is about five times the Percentile

detection rate, except for vehicle type 6 that has an exceptionally high length-anomaly rate. Type

4 Rectmix length anomalies are numerous compared to the other attributes, indicating this bound

may be too tight. Due to small range differences, the Percentile weight-anomaly detection rate is

about twice the Rectmix detection rate. Rectmix notices a correlation of weight and ESAL in light

vs. heavy trucks. The type 6 upper weight bound is much higher for Rectmix, possibly because it

also considers trucks with more axles.

CASE STUDY MISCLASSIFICATION RATE

The overall misclassification is FP+FN

Nor+Ab
(Runeson et al. 2001) (lower is better), where True Pos-

itives (TP) are correctly detected anomalous data, False Positives (FP) are normal data falsely de-

tected as anomalous, False Negatives (FN) are undetected anomalous data, Normal (Nor=TN+FP)

are data that are actually anomaly-free, and Abnormal (Ab=TP+FN) are data with anomalies.

Determining these measures is subjective even though documentation for the WIM system exists.

This is because, on the one hand, the documentation is sometimes incomplete and imprecise, and

on the other hand, it sometimes describes behavior that neither Rectmix nor Percentile can express.

To determine Ab, FP, and TP, our expert sets constraints based on analyzing anomalies flagged

by the anomaly detector and differences between the inferred and documented models. Table 8

summarizes the resulting misclassification rate, averaged over data subsets of each vehicle type. The

rates are reasonable for a human to handle. The slightly higher Rectmix rate for type 4 is due to

the restrictive lower bound on length. Type 9 is the cleanest, so the techniques do best on it.
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INFERRED MODEL VS. DOCUMENTED MODEL

We use the WIM system documentation of vehicle types (Chalkline et al. 2001) and attribute

bounds (Mn Regulations 2000) as another indicator of what the system might do, and compare it

to what the expert finds interesting.

The documentation concentrates on upper bounds. E.g., type 9 length ≤ 75 feet, type 4 or 6

length ≤ 40 feet. The techniques we use infer predicates about lower bounds as well (e.g., Tables

3–6). The expert found the lower bounds useful. For example, low speed correlates with over-length.

The classification is very noisy compared to the vehicle type documentation. For example, the

documentation defines the number of axles per type, yet, except for type 9, the actual number of

axles often differs. This led our expert to think about the way the system is calibrated and its effect

on vehicle classification. The system seems to be physically tuned for the common type of trucks

(type 9). Possible causes for anomalies in other types include: (1) inaccurate sensing, (2) unintended

interaction effects among the algorithms (e.g., the filtering algorithms may not properly clean the

output of the classification algorithm), and (3) boundary problems in the classification.

The class documentation often seems imprecise. Our expert chose predicates that are different

from the documentation when they described vehicles the expert thought belonged in the same class.

The documentation defines type 4 as traditional buses with at least two axles. The expert allowed

only vehicles with 2–4 axles. The documentation defines type 6 vehicles as vehicles with a single

frame having three axles. The expert allowed vehicles with 2–4 axles.

This comparison illuminates subtle expectation differences. The expert emphasizes equally all

vehicle types and also data precision. The providers seem to emphasize most vehicle type 9 and

avoiding over-estimation. The models reflect these different emphases.

SUMMARY OF EXPERT INSIGHTS

The major insights our expert gained from the analysis detailed above are as follows:

• The data behavior strongly suggests a system wide change in the Mn/ROAD WIM system

starting November 1999.

• The system (both hardware and software) seems to be calibrated for the most common type

of trucks. This, in turn, seems to adversely affect the accuracy of vehicle identification and

classification of other types.

• The interaction of the various algorithms seems to occasionally have undesirable effects.

CONFIRMATION FROM PROVIDERS

The data providers confirmed the expert insights and cause analysis. They were unaware of the
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behavior that surprised our expert until recently, when they validated analyses that used these data.

It turns out that the WIM scale has two different modes for weighing an axle. The various software

algorithms made inconsistent assumptions about the weigh mode. As a result, they occasionally

assigned values to the wrong attribute. The next algorithms in the chain did not recognize the

problem and made calculations based on the incorrect data. Type 9 vehicles are cleaner because

one of the many software providers recognized a problem and made an undocumented correction for

type 9. In addition, the system is physically calibrated for this type.

This provides additional confirmation about the usefulness of our method. Moreover, it demon-

strates the benefits of having automated anomaly detection. To set up the model, the expert invested

less than ten hours. The anomaly detection was fully automated and quick (minutes). In compar-

ison, it had taken the data providers several months to notice the same problems. Analyzing the

anomalies requires expert time and this time depends on the number of anomalies and their nature.

However, our method directs the expert’s attention to problems, so expert time is invested efficiently.

CONCLUSIONS AND FUTURE WORK

We successfully applied our predicate inference framework to detect semantic anomalies in the

Mn/ROAD data. Our template mechanism provides automated assistance to experts in setting up

constraints for the behavior of monitoring data—it helps users to make their expectations for data

behavior precise. The result is an analyzable model of proper behavior.

Our case study results support our hypothesis: (1) The model was useful for automatic anomaly

detection over the Mn/ROAD data. It enabled detecting actual anomalies that the expert cared

about: classification problems and unlikely vehicles. In addition, the misclassification rate was

reasonable for a human to handle (usually less than 3%). (2) The expert gained insights about the

WIM system. The data providers confirmed the expert insights.

Moreover, the case study results corroborate the benefits of interacting with the template mech-

anism to make expectations precise and of analyzing the resulting anomalies. Our method: (1)

detected hardware and software problems from observed data only. It detected, for example, prob-

lems that were caused by mis-calibration, software modifications, or state changes, (2) promptly

detected these problems. It had taken the data providers months to discover these independently.

and (3) increased the understanding of existing documentation. For example, the exact cut-off point

between normal and anomalous was not clear from the data though it was clear (for upper bounds)

from the documentation, suggesting the documentation bounds may be too strict.

Many challenges remain in this area. We plan to extend our method to support updating
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predicated and time-correlated data, thus enhancing its applicability and usability. We believe our

method is appropriate for any monitoring data. However, for every different data feed, a user would

need to interact with our method to (1) set up the tool-kit techniques and (2) classify templates.

This may require adding techniques to the tool kit; our method will provide a procedure for doing so.

Once detection is in place, cleaning and mitigation/repair would be a natural next step. Automated

support for analyzing the cause of anomalies would be a valuable aid for this purpose because it

would greatly enhance the ability to automatically recover from or eliminate the detected anomalies.
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Class Length ∧ ESAL∧ Axles ∧ Weight
Update 20–42 0–.43 3–3 12–29
Update 23–44 0–1.2 2–3 26–47
Reject 13–100 0–.45 2–7 7–40
Update 23–29 0–6.7 2–4 27–71

TABLE 1. Example of Rectmix predicates classification
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Class Predicate Template
Update 40≤speed≤88 #≤speed≤#
Update 17≤length≤39 #≤length≤#
Reject .06≤ESAL≤.9 #≤ESAL≤#
Update 3≤axles≤3 #≤axles≤#
Update 12≤weight≤49 #≤weight≤#

TABLE 2. Example of percentile predicates with user classification and instantiated templates
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Rectangle Length ∧ ESAL∧ Axles ∧ Weight
1 32–43 0–.42 2–2 11–22
2 32–45 .1–1.2 2–2 18–29
3 31–49 0–1 3–4 21–43

TABLE 3. Rectmix predicates the expert chose for type 4
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Rectangle Length ∧ ESAL∧ Axles ∧ Weight
1 20–42 0–.43 3–3 12–29
2 23–44 0–1.2 2–3 26–47
3 23–29 0–6.7 2–4 27–71

TABLE 4. Rectmix predicates the expert chose for type 6
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Rectangle Length ∧ ESAL ∧ Weight
1 50–78 .1–2.2 37–77
2 51–77 0–.1 11–34
3 50–77 0–.2 30–41
4 52–78 2.4–6.3 74–101

TABLE 5. Rectmix predicates the expert chose for type 9 (Axles is always 5)
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Type 4 Type 6 Type 9
45≤speed≤85 40≤speed≤88 39≤speed≤85
23≤length≤52 17≤length≤39 42≤length≤79
2≤axles≤3 3≤axles≤3 5≤axles≤5
13≤weight≤40 12≤weight≤49 16≤weight≤94

TABLE 6. Percentile predicates the expert chose for vehicle types 4, 6, and 9
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Vehicle Average detection rate (%)
Rectmix type Total Length ESAL Speed Axles Weight

4 15.5 42.5 7.7 4.4 7.4
6 10.9 37.7 0.4 0.6 4.8
9 2.3 5.0 3.4 0.0 0.9

Percentile 4 8.4 8.1 0.8 10.2 14.6
6 20.2 30.5 22.2 17.0 11.3
9 0.8 1.0 0.3 0.0 1.9

TABLE 7. Average detection rate
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Vehicle type Average misclassification rate (%)
Rectmix Percentile

4 8.5 3
6 2.3 2.3
9 1 .8

TABLE 8. Average overall misclassification rate
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1. Set up model of expected behavior by eliciting user expectations

1. Identify appropriate techniques for the problem
2. Use selected techniques from the technique tool kit to infer predi-

cates that describe data behavior
3. Interact, via the template mechanism, with the user to articulate

expectations precisely using the predicates the techniques can out-
put

4. Use the model (predicates) resulting from Item 1 as a proxy for missing
specifications

1. Detect semantic anomalies when a new observation falsifies a pred-
icate

2. Tune the model to account for changing data behavior or user expecta-
tions

FIG. 1. Synopsis of our method
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1. Run the techniques in the tool kit to infer predicates over subsets of the
data.

2. Ask the user to classify each predicate as either “accept”, “update”, or
“reject”.

3. Use the classification to instantiate templates.
4. Use the instantiated templates to filter the output of the tool kit tech-

niques.
5. Give the filtered output to the anomaly detector and present to the user

the resulting anomalies and their templates. Allow the user to change
the classification.

6. Goto 1 or terminate when the user is happy with the classification.

FIG. 2. Synopsis of our template mechanism
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FIG. 3. Counts of anomalies detected using Rectmix predicates for vehicle type 6
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FIG. 4. Counts of anomalies detected using Percentile predicates for vehicle type 6
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