
Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

Neighborhood-Based Local Sensitivity

Paul N. Bennett

Microsoft Research, One Microsoft Way, Redmond WA 98052, USA
paul.n.bennett@microsoft.com

Abstract. We introduce a nonparametric model for sensitivity estima-
tion which relies on generating points similar to the prediction point
using its k nearest neighbors. Unlike most previous work, the sampled
points differ simultaneously in multiple dimensions from the prediction
point in a manner dependent on the local density. Our approach is based
on an intuitive idea of locality which uses the Voronoi cell around the
prediction point, i.e. all points whose nearest neighbor is the prediction
point. We demonstrate how an implicit density over this neighborhood
can be used in order to compute relative estimates of the local sensi-
tivity. The resulting estimates demonstrate improved performance when
used in classifier combination and classifier recalibration as well as being
potentially useful in active learning and a variety of other problems.

1 Introduction

Consider the following tasks often faced during peer review: (1) Make a recom-
mendation accept/reject; (2) Rate from 0 to 5, where 0 is definitely reject and 5 is
definitely accept; (3) State your confidence on a 0 to 5 scale in your review. When
a reviewer answers the first question, he is classifying the paper. The answer to
the second question is an implicit measure of the posterior probability regarding
“Accept/Reject”. As with a posterior and a classification decision, a consistent
reviewer can use the rating to provide information that both summarizes and
subsumes the classification decision.

Next, the reviewer states his confidence — which intuitively is a self-assessment
of his expertise (previous familiarity with topic, perceived completeness of study,
etc.) and mathematically is a statement about how strongly he believes the pos-
terior he gave is correct. In other words it is a second-order summary of the
uncertainty the reviewer has about his classification.

Given only the feedback and rating from a single reviewer, we cannot use
this secondary confidence information if immediately forced to make a decision.
However, if one of our choices is to consult another expert, then suddenly we are
faced with a value of information problem, and presumably, we will consult an
additional expert when the confidence of the first expert is low. Likewise when
combining the opinions of several reviewers, instead of directly averaging the
acceptance ratings we could weight them by confidence or treat low confidence
reviews as abstentions regardless of the rating.

Furthermore, given access to a past history of the reviewer’s ratings and the
final decisions regarding the papers, we might conclude this reviewer is either too

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

2 Paul N. Bennett

harsh or too lenient and opt to post-calibrate the reviewer’s ratings. Additionally,
the calibration function may vary depending on confidence; for example, the
reviewer may be perfectly calibrated when his confidence is high but increasingly
uncalibrated as his confidence decreases.

Finally, when attempting to improve his own ratings, the reviewer may opt
to perform active learning by requesting what the decisions should be from an
oracle. However, rather than simply requesting decisions on papers that have
borderline ratings (some papers simply are borderline!) he could request deci-
sions where his confidence is low to identify areas where his expertise could be
improved.

Similarly, confidence information can be used in similar ways for value of
information estimation, classifier combination, post-learning recalibration, and
active learning when provided by automated systems. However, most previous
work has targeted estimating only the posterior at a particular point rather than
estimating both the posterior and confidence. This paper partially addresses that
limitation by demonstrating the link between sensitivity estimates of the stabil-
ity or rate of change of the learned posterior function and the confidence in the
posterior. Rather than obtaining sensitivity estimates by tweaking a point in a
single dimension or independently in several dimensions, we use the neighbor-
hood around the prediction point and sample from this neighborhood in a way
that exploits the local covariance of the input and is not constrained to relying
on global estimates of the covariance. The resulting estimates are demonstrated
to be of use in both post-learning recalibration over synthetic datasets and in
combining classifiers over text classification corpora.

Before explaining our approach for sensitivity estimation, we first further
distinguish the concepts of posterior and confidence in the posterior and demon-
strate the latter’s relationship to sensitivity. Next, we motivate and explain the
use of neighbors to estimate the sensitivity and related terms of a learned model.
Using several synthetic datasets, we demonstrate how these quantities can be
used to improve post-learning recalibration of the estimates provided by the kNN
classifier. We then summarize several ensemble learning experiments over text
classification corpora where these quantities play a key role. Finally, we conclude
with a discussion of related work and a summary of our contributions.

2 Variance and Sensitivity

Returning to our motivating example, consider if instead of making the re-
viewer specify his uncertainty, we allowed him to specify an entire distribu-
tion expressing his belief, p(P(c | x) = z | x), where x is the item being
classified, c is a particular class, and z is a specific value of the random vari-
able P(c | x). Then when he is asked to summarize his uncertainty via a rat-
ing, the typical approach is to predict the expected value of the distribution:
P̂(c | x) =

∫

z p(P(c | x) = z | x) dz.
However, the mean of a distribution does not fully summarize the distribu-

tion. Presumably, as the reviewer receives more information or perceives he has

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

Neighborhood-Based Local Sensitivity 3

all necessary information because of his expertise, his confidence that the ex-
pected value fully summarizes his uncertainty will become quite high. Therefore
a reasonable measure for confidence is to treat it as an (inverse) measure of the
variance of p(P(c | x) = z | x). Since “confidence” is often used in the literature
to refer to the posterior distribution estimate, P̂(c | x), we will avoid this confu-
sion for the remainder of the paper by referring to the “posterior distribution”,
P(c | x), and the “confidence distribution”, p(P(c | x) = z | x).

Rather than estimating the variance of the true posterior according to the
confidence distribution, p(P(c | x) = z | x), we will instead consider the variance
of the output of the classifier under the distribution p(P̂(c | x) = z | x). The
variance of this second distribution is the local sensitivity of the classifier, and
we will demonstrate how it can be useful in several of the scenarios where we
previously motivated the importance of the confidence distribution.

Consider again observing a past history of the reviewer’s ratings and the
final decisions on a set of papers in order to learn a recalibration function for the
reviewer’s ratings. For the remainder of the paper, it will be convenient to work

with log-odds estimates, log P̂(c|x)

1−P̂(c|x)
. However, the derivation below holds for

any function λ̂(x) such that VAR∆

[

λ̂
]

6= 0 and thus can be used for computing

the sensitivity of a variety of functions. Now, given our reviewer’s uncalibrated
estimate of the acceptance rating λ̂, we will attempt to recalibrate it with a
locally weighted recalibration function:

λ̂∗(x) = W0(x) + W1(x)λ̂(x). (1)

We can determine the optimal weights in a simplified case by assuming we
are given “true” log-odds values, λ, and a family of distributions ∆x such that
∆x = p(s | x) encodes what is local to x by giving the probability of drawing
a point s near to x. We use ∆ instead of ∆x for notational simplicity. Since ∆

encodes the example-dependent nature of the weights, we can drop x from the
weight functions. To find weights that minimize the squared difference between
the true log-odds and the estimated log-odds in the ∆ vicinity of x, we can solve

a standard regression problem, argminw0,w1
E∆

[

(

w1 λ̂ + w0 − λ
)2

]

. Under the

assumption VAR∆

[

λ̂
]

6= 0, this yields:

w0 = E∆[λ] − w1E∆

[

λ̂
]

w1 =
COV∆[λ̂,λ]
VAR∆[λ̂]

= σλ

σ
λ̂

ρλ,λ̂ (2)

where σ and ρ are the standard deviation and correlation coefficient under ∆,
respectively. The first parameter w0 is a measure of calibration that addresses
the question, “How far off on average is the estimated log-odds from the true log-
odds in the local context?” The second parameter w1 is a measure of correlation,
“How closely does the estimated log-odds vary with the true log-odds?” Note
that the second parameter depends on the local sensitivity of the base classifier,

VAR
1/2
∆

[

λ̂
]

= σλ̂. Although we do not have true log-odds, we can introduce local

density models to estimate the local sensitivity of the model.

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

4 Paul N. Bennett

3 Neighborhood-Based Locality

To compute the local sensitivity, we define a simple nonparametric method based
on the k nearest neighbors. Since we are concerned with how the decision function
changes locally around the current prediction or query point, it is natural to use
a neighborhood-based definition. In particular, consider all points in the input
space whose nearest neighbor is the query (i.e. the Voronoi cell of the query).

Next, we can either explicitly define a density over the Voronoi cell of the
query or implicitly do so by defining a procedure that allows us to draw S

samples from the cell. We do the latter by finding k neighbors of the query x

in the training set and then draw S = k samples by using the difference vector
between the query and its neighbor to interpolate a sample point where the
vector intersects the boundary of the cell. This is illustrated in Figure 1.

−1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

1

2 3

4

5

6

x

Fig. 1. Given the numbered points as the neighbors of the query point x, the figure
illustrates the points that would be sampled within the Voronoi cell of x.

There are multiple advantages to defining the points to sample within the
Voronoi cell in terms of the neighbors of the query point. First, we need not
explicitly compute the Voronoi cell of the query point. Instead after determining
the k neighbors, we can directly compute the sample points. Second, by using
the k neighbors to guide sampling, we sample in locally dense directions. For
example in Figure 1 we do not sample by shifting the query point directly to the
right because no data supports variance in this direction.

More formally, we can consider this as shifting x toward each one of k neigh-
bors with equal probability. Let xi denote the query after it has been shifted
by a factor βi toward its ith neighbor, ni. That is, xi = x + βi(ni − x). To
determine βi we choose the largest βi such that the closest neighbor to the new
point is the original example. Thus, the new point cannot be more than halfway
to the neighbor, and βi will not exceed 0.5. Furthermore, we can find it within
a small ǫ efficiently using a simple bisection algorithm.

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

Neighborhood-Based Local Sensitivity 5

In terms of computational cost, since every bisection step halves the remain-
ing range of βi, this will terminate in at most ⌈log2

0.5
ǫ ⌉ iterations. Thus to find βi

within ǫ = 0.001 for a given neighbor would require at most 9 iterations. Further-
more, for the standard Euclidean space, only neighbors closer than the neighbor
we are currently interpolating between can have an insulating effect that reduces
βi. Thus, we need only check our candidate interpolation point against the closer
neighbors to see if we must move the interpolated point. Therefore, after finding
the k neighbors, the sample points can be computed relatively efficiently.

Returning to our quantities of interest, let ∆ be a uniform point-mass distri-
bution over the shifted points. Given this definition of ∆ and an output function

or classifier λ̂, it is straightforward to compute VAR∆

[

λ̂
]

and E∆

[

λ̂
]

. Rather

than computing exactly these quantities, for comparison to previous work we

compute the closely related quantities VAR∆

[

λ̂(s) − λ̂(x)
]

and E∆

[

λ̂(s) − λ̂(x)
]

.

Note, since λ̂(x) is constant with respect to ∆, VAR∆

[

λ̂
]

= VAR∆

[

λ̂(s) − λ̂(x)
]

and E∆

[

λ̂(s) − λ̂(x)
]

= E∆

[

λ̂(s)
]

− λ̂(x).

Although based on the k nearest neighbors, the neighborhood-based sensi-
tivity estimates can be used to estimate the sensitivity of any function. All that
is required is an input space where interpolation is meaningful and a function λ̂

that can be applied to any point in the input space. For example, the input space
could be the bag-of-words representation of documents in a text corpus and λ̂

could be the margin score using a linear model learned by an SVM algorithm.

4 Empirical Analysis

To understand the impact sensitivity estimates can have in practice, we studied
the use of the estimates in two settings: post-learning recalibration of the output
of the kNN classifier and combining classifiers for text classification. The bulk
of our analysis focuses on the recalibration task to isolate the behavior of the
neighborhood-based estimates. We then summarize the ensemble learning work
which uses neighborhood-based estimates as well as other similar quantities to
improve text classification — full details of the ensemble study are in [1].

4.1 Post-Learning Recalibration

The post-learning recalibration problem attempts to take either poor probability
estimates from a classifier or a more general rating and learn a function that
will output good probability estimates or an improved thresholding [2–5]. In
Platt recalibration [2], we perform nested cross-validation over the training set
to collect a set of data for which we know both the class labels and model
predictions. These collected pairs

〈

λ̂(x), c(x)
〉

, where c(·) denotes the actual

class of the example, are then used as a training set by logistic regression to
learn a and b such that our final recalibrated estimate is:

λ̂∗(x) = aλ̂ + b (3)

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

6 Paul N. Bennett

As noted above, we can compute neighborhood-based sensitivity estimates
for a variety of classifiers, but for this study we will focus on the case where the
classifier to be recalibrated is the kNN classifier. Our expectation is that a kNN
classifier that is input to a local recalibration function should perform well in
many sets where adaptive kNN methods work well.

Given the similarity between Equation 3 and Equation 1, an obvious exper-
iment is one in which we compare the performance of three systems:

1. kNN — use the estimates from kNN directly;
2. Recalibrated kNN — Use the log-odds estimates from kNN obtained by

nested cross-validation as inputs to logistic regression to produce improved
estimates that depend only on the original kNN estimations;

3. Sensitivity Recalibrated — Use both the log-odds estimates from kNN and
sensitivity-related estimates obtained by nested cross-validation as inputs to
logistic regression to produce improved estimates that use both the original
estimates and the sensitivity estimates.

Synthetic Datasets Friedman [6] introduced a series of synthetic datasets
to highlight the differences between various flexible kNN approaches and other
adaptive methods. These datasets form an interesting case study since we expect
a locally recalibrated kNN classifier to demonstrate many of the strengths of
adaptive kNN methods. We note that Friedman’s work and this work could
complement each other by extending the work here to more general metric spaces
and learning a metric before estimating the sensitivity using that metric.

We present results here for the first five synthetic problems in [6]. Each prob-
lem is binary classification and varies as to whether each dimension is equally
informative. Because these are binary classification tasks, we refer to the positive
and the negative class. We use the same number of training/testing points per
problem as used in Friedman’s original study. Ten train/test sets are drawn for
each problem and the error averaged across the ten runs is computed. Since we
expect the base kNN to produce poor log-odds estimates, we do not compare
probability quality and instead compare improvement in error.

Problem 1 The number of input dimensions equals ten, d = 10. A class label
is drawn with P (c = +) = P (c = −) = 0.5. For the negative class, the exam-
ples are drawn from a standard normal x ∼ N(0,1). For the positive class the

examples are drawn from a normal x ∼ N(µ,Σ) where µi =
√

i
2 , Σii = 1√

i
, and

Σij = 0 for i 6= j and i, j = 1, . . . , d. Thus the higher number dimensions have
both means that are further separated and variances that are smaller and are
generally more informative than the lower dimensions. For each run, 200 training
and 2000 testing points are generated.

Problem 2 The number of input dimensions equals ten, d = 10. A class label
is drawn with P (c = +) = P (c = −) = 0.5. For the negative class, the examples
are drawn from a standard normal x ∼ N(0,1). For the positive class the exam-

ples are drawn from a normal x ∼ N(µ,Σ) where µi =
√

d−i+1
2 , Σii = 1√

i
, and

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

Neighborhood-Based Local Sensitivity 7

Σij = 0 for i 6= j and i, j = 1, . . . , d. Thus the higher number dimensions have
means that are closer together, but the variance binds the values more closely to
the means. Whereas, the lower dimensions have means that are well separated
but also have higher variances. Thus all dimensions are informative. For each
run, 200 training and 2000 testing points are generated.

Problem 3 The number of input dimensions equals ten, d = 10. All exam-
ples are drawn from a standard normal x ∼ N(0,1) and are labeled with a class

by the rule: if
∑d

i=1
x2

i

i ≤ 2.5 then negative else positive. The resulting class dis-
tribution marginalizes to approximately P (c = +) = 0.51. Unlike the previous
two problems, the optimal error here is zero. Again, the dimensions contribute
unequally to the final determination of the class label although the values of the
features vary uniformly in the space. The decision surface is quadratic. For each
run, 200 training and 2000 testing points are generated.

Problem 4 The number of input dimensions equals ten, d = 10. All exam-
ples are drawn from a standard normal x ∼ N(0,1) and are labeled by the rule:

if
∑d

i=1 x2
i ≤ 9.8 then negative else positive. The resulting class distribution

marginalizes to approximately P (c = +) = 0.46. Again the optimal error here
is zero, but now the dimensions contribute equally to the final determination
of the class label. For each run, 500 training (instead of 200) and 2000 testing
points are generated.

Problem 5 The number of input dimensions equals ten, d = 10. All exam-
ples are drawn from a standard normal x ∼ N(0,1) and are labeled with a class

by the rule: if
∑d

i=1 xi ≤ 0 then negative else positive. The resulting class distri-
bution is P (c = +) = P (c = −) = 0.5. Again the optimal error here is zero, and
the dimensions contribute equally to the final determination of the class label.
The decision surface is linear. For each run, 200 training and 2000 testing points
are generated.

kNN Classifier We use a standard way of performing a distance-weighted
vote of the neighbors to compute the output for the kNN classifier [7]. k is set
to be 2⌈log2 N⌉ + 1 where N is the number of training points.1 The score used
as the uncalibrated log-odds for being in a class y is:

λ̂kNN(x) =
∑

n∈kNN(x)|c(n)=y

K(x,n) −
∑

n∈kNN(x)|c(n) 6=y

K(x,n). (4)

where K is a kernel (similarity) function. For text classification, this is typically
cosine similarity. For the synthetic datasets, we use a Gaussian RBF kernel with
σ = 1 since the problems imply a translation invariant kernel is desirable. It is
reasonable to expect this score to behave like an uncalibrated log-odds estimate

1 This rule is motivated by theoretical results which show such a rule converges to the
Bayes optimal classifier as the number of training points increases [8].

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

8 Paul N. Bennett

since it is similar to SVM’s margin score,
∑

αiyi K(si,x), which has been shown
to empirically behave like an uncalibrated log-odds estimate [2, 4].

Efficient Approximation Because identifying the k neighbors of a point in
kNN is computationally expensive, we desire a more efficient approach than
separate neighbor retrievals for the k +1 classifications. In this case, we perform
a single retrieval around the query point to obtain a cache of size K ≥ k such
that the k neighbors of a sample point are approximated by taking the k closest
of the K. We use K = 2k as a heuristic derived from the fact that retrieving
K neighbors by finding all points within twice the radius, r, of the original
example (the farthest neighbor of the k from the query) would guarantee that
the k closest neighbors of a sample point are contained within the K. This is
because the sample point is within 0.5r of the original example, and therefore
the original query’s k neighbors are within 1.5r of the sample. Thus, the sample
has radius ≤ 1.5r and therefore 2r from the original will contain all its neighbors.

For benchmarking, we ran over a text classification corpus using a kNN algo-
rithm with an inverted index, the same algorithm but retrieving 2k neighbors,
and the version that computes both predictions and sensitivity estimates. The
experiments were run on a machine with an Intel Pentium R© 4 CPU, 3GHz clock
speed, and 1 GB of RAM. As can be seen in Table 1, a slowdown of three times
the baseline is experienced instead of the näıve slowdown of k + 1 = 30 times
the baseline. For the synthetic experiments below, we do not use this caching
approximation, but for the experiments over the text corpora we do.

Table 1. Effect on running time of computing the kNN sensitivity estimates for the
Reuters 21578 corpus (9603 training examples, 3299 testing examples, 900 features).

Method Total Run Time (s) Ratio to Baseline

Sparse (k) 69.1 1

Sparse (2k) 80.07 1.16

Sparse w/Sensitivity (2k) 196.37 2.84

Recalibration Results and Discussion Table 2 summarizes results over the
synthetic datasets giving the average error for each method over the ten runs as
well as the standard deviation across runs. Table 3 presents a summary of the
two recalibration methods in terms of the relative reduction in error they yield
over the baseline kNN method. When the best result is statistically significant
according to a two-tailed paired t-test with p=0.01, it is underlined.

To ensure that our baseline error is not artificially poor, we list the average
error reported by Friedman for his baseline kNN method. Our baseline performs
either approximately the same or far better (Problems 1 and 2); the latter proba-
bly results from our use of a distance-weighted kNN vote rather than Friedman’s
unweighted vote.

Examining the performance of Recalibrated kNN, we see that simple recal-
ibration gains large reduction in errors in all problems but one — Problem 5

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

Neighborhood-Based Local Sensitivity 9

where it loses slightly relative to the baseline. Examining the Sensitivity Recali-
brated results, we see that not only does this method always achieve large wins
over the baseline method, but it also yields large improvements over Recalibrated
kNN in all but one case — Problem 4 where it improves over Recalibrated kNN
by only a slight amount.

In the fifty different runs (10 runs * 5 problems), the Sensitivity Recalibrated
method only has a worse error on 3/50 runs vs. Recalibrated kNN and on 4/50
runs vs. kNN; furthermore, no more than one of these runs occurs on the same
Problem (explaining the paired t-test significance). Relative to the baseline, the
Sensitivity Recalibrated method reduces the error anywhere from 13% to 65%.
Altogether, the evidence argues that not only are the sensitivity estimates use-
ful in recalibrating kNN, but they provide information beyond that which is
captured in the original log-odds estimates.

Table 2. The average error of each method in the synthetic datasets as well as one
standard deviation. The best result in each problem is in bold.

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
Error Stdev Error Stdev Error Stdev Error Stdev Error Stdev

Friedman kNN [6] 13.2 — 10.3 — 35.9 — 34.0 — 17.4 —

kNN 2.57 0.2973 2.81 0.5868 36.22 1.7335 38.16 0.6919 17.07 1.5592

Recalibrated kNN 2.23 0.6601 2.40 0.3752 21.81 0.9459 21.52 1.4870 18.00 1.9490

Sensitivity Recal. 1.33 0.2679 1.81 0.3354 20.97 1.0061 13.19 0.9562 14.85 1.6264

Table 3. Relative Reduction in Error, 1 - Error(Method) / Error(kNN).

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Recalibrated kNN 0.13 0.15 0.40 0.44 -0.05

Sensitivity Recal. 0.48 0.36 0.42 0.65 0.13

4.2 Local Classifier Combination

We have seen that sensitivity estimates can boost the performance of recali-
bration techniques. However, it seems likely that they should also be useful in
classifier combination. Returning to our peer review problem, when faced with
opinions from three reviewers, we might want the weight on a reviewer’s accep-
tance rating to depend on the reviewer’s confidence.

The STRIVE metaclassification approach [9] extended Wolpert’s stacking
framework [10] to use reliability indicators. In this framework a metaclassifier has
access to both the outputs of base classifiers as well as some auxiliary reliability
indicators. If each of the base classifiers outputs a log-odds like estimate, then
a linear metaclassifier has a natural interpretation as both recalibrating and
weighting each classifier according to its class-conditional information content
[11, 1]. Note that this is the direct extension of the recalibration paradigm in the
previous section to multiple classifiers. A metaclassifier that recalibrates a single

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

10 Paul N. Bennett

base classifier is now replaced by a stacking approach which applies a metaclass-
ifier to the outputs of multiple base classifiers. Likewise recalibrating with the
additional sensitivity information is now replaced by a striving approach which
applies a metaclassifier to the outputs of multiple base classifiers and additional
sensitivity information.

Our goal in this section is to illustrate that computing the neighborhood-
based sensitivity estimates is both practical in “real-world” datasets and yields
increased performance. To demonstrate this, we compare the performance of the
base classifiers to both a stacked model of the base classifier outputs and to
striving with the base classifier outputs and sensitivity information.

For the base classifier outputs, we obtain log-odds like estimates from five
standard classifiers (kNN, linear SVM, decision trees, multivariate näıve Bayes,
and multinomial näıve Bayes), and use a linear SVM as a metaclassifier to learn
a stacked model. For the striving model, we apply a linear SVM metaclassifier
to the base classifier outputs and the sensitivity estimates described above for
kNN as well as a variety of other variables tied to sensitivity as motivated in [1].
Since an SVM is used as a metaclassifier in both cases, we refer to the stacking
model as Stack-S and the striving model as STRIVE-S. Space prevents us from
providing a full description of these experiments, but see [1].

We examined performance over several topic-classification corpora including:
the MSN Web Directory; two corpora drawn from the Reuters newswire; and
the TREC-AP corpus. We selected these corpora because they offer an array
of topic classification problems from very broad topics over web pages to very
narrow topics over financial news stories. In terms of scale, the number of training
documents across these corpora varies from 9603 to 142791 while the number of
testing documents varies from 3299 to 781265.

4.3 Results and Discussion

For space, only the base SVM — which typically performs best among the base
classifiers — is explicitly listed. We note that our implementation of the base
SVM is on par with the best results in previously reported literature [12, 9].
In Figure 2, we display the changes in the three components that determine
error and F1: false positives, false negatives, and correct positives. Not only
does STRIVE-S achieve considerable reductions in error of 4-18% (left) and 3-
16% (right), but it also nearly always improves beyond those gains achieved by
Stack-S. Furthermore, STRIVE-S never hurts performance relative to the SVM

on these performance measures as Stack-S does over RCV1-v2 on the far left.
Examining a micro-sign, macro-sign, and macro t-test, STRIVE-S significantly
improves (p < 0.05) over the base SVM classifier (except for one collection and
one performance measure, F1 for RCV1-v2), and over Stack-S for the majority
of collections and performance measures (see [1] for more detail).

Finally, the STRIVE model augmented with sensitivity information not only
demonstrates improved and robust performance across a variety of corpora, but
in post-analysis, backward selection reveals that the primary variables of interest
are the neighborhood-based sensitivity related estimates [1].

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

Neighborhood-Based Local Sensitivity 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

P
er

ce
nt

 R
el

at
iv

e
to

 B
as

el
in

e
(S

V
M

)

RCV1-v2 MSN Web Reuters TREC-AP

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

S

T
R

IV
E

-S

 S
ta

ck
-S

 S
V

M

S
T

R
IV

E
-S

 S

ta
ck

-S

 S

V
M

RCV1-v2 MSN Web Reuters TREC-AP FalsePos
FalseNeg

CorrectPos

Fig. 2. For Stack-S and STRIVE-S change relative to the best base classifier — the
SVM classifier — over all the topic classification corpora. On the left, we show the
relative change using thresholds learned for F1, and on the right, we show the relative
change using thresholds learned for error.

5 Related Work, Future Work, and Summary

In addition to the related work mentioned throughout the paper, several ap-
proaches merit mention. The STRIVE metaclassification approach [9] extended
Wolpert’s stacking framework [10] to use reliability indicators. In recent work,
Lee et al. [13] derive variance estimates for näıve Bayes and tree-augmented näıve
Bayes and use them in a combination model. Our work complements theirs by
laying groundwork for how to compute variance estimates for models such as
kNN that have no obvious probabilistic component in addition to being able to
use the same framework to compute estimates for any classification models.

A variety of other work has examined stability and robustness related to
sensitivity. Several researchers have attempted to obtain more robust classifiers
by altering feature values [14] or training multiple classifiers over feature subsets
[15]. Similarly, [16] compresses a more complex model into a simpler model by
using the former to label instances generated by combining attributes of a point
with its nearest neighbor. Finally, [17] contains a variety of related work that
focuses on sensitivity analysis to determine the significance of input dimensions
while [18] examines the stability of the algorithm with respect to small changes in
the training set. Where much of the previous work focuses on change in a single
dimension, we focus on characterizing the change around the current prediction
point according to the local density across all dimensions.

There are a variety of interesting directions for future work. One of the most
interesting directions is extending the neighborhood-based estimates for learned
metrics. Additionally, exploring other methods of sampling from the Voronoi cell
and characterizing how these methods differ in the quality of estimates they yield
could be quite useful. Such a study could also analyze how critical staying within
the Voronoi cell is. In our experiments, we found performance over the synthetic

Preprint of Paper to Appear in ECML 2007. See www.springerlink.com
for official version which is copyright 2007 Springer-Verlag Berlin Heidelberg.

12 Paul N. Bennett

datasets was less sensitive to staying within the Voronoi cell while it was more
important over the text datasets. Formally characterizing this dimension will be
important in advancing the understanding of sensitivity estimators.

In conclusion, we motivated the use of sensitivity information in a variety of
different scenarios including active learning, recalibration, and classifier combi-
nation. We then demonstrated how a neighborhood-based sensitivity estimator
can sample efficiently from the points in the input space near the prediction
point to estimate sensitivity. Finally, the resulting estimates were demonstrated
to be useful in improving performance in both recalibration over synthetic data
and classifier combination over standard text classification corpora.

References

1. Bennett, P.N.: Building Reliable Metaclassifiers for Text Learning. PhD thesis,
CMU (2006) CMU-CS-06-121.

2. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In Smola, A.J., Bartlett, P., Scholkopf, B.,
Schuurmans, D., eds.: Advances in Large Margin Classifiers. MIT Press (1999)

3. Zadrozny, B., Elkan, C.: Reducing multiclass to binary by coupling probability
estimates. In: KDD ’02. (2002)

4. Bennett, P.N.: Using asymmetric distributions to improve text classifier probability
estimates. In: SIGIR ’03. (2003)

5. Zhang, J., Yang, Y.: Probabilistic score estimation with piecewise logistic regres-
sion. In: ICML ’04. (2004)

6. Friedman, J.H.: Flexible metric nearest neighbor classification. Technical report,
Department of Statistics, Stanford University (1994)

7. Yang, Y.: An evaluation of statistical approaches to text categorization. Informa-
tion Retrieval 1 (1999) 67–88

8. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition.
Springer-Verlag, New York, NY (1996)

9. Bennett, P.N., Dumais, S.T., Horvitz, E.: The combination of text classifiers using
reliability indicators. Information Retrieval 8 (2005) 67–100

10. Wolpert, D.H.: Stacked generalization. Neural Networks 5 (1992) 241–259
11. Kahn, J.M.: Bayesian Aggregation of Probability Forecasts on Categorical Events.

PhD thesis, Stanford University (2004)
12. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection

for text categorization research. Journal of Machine Learning Research 5 (2004)
361–397 http://www.jmlr.org/papers/volume5/lewis04a/lewis04a.pdf.

13. Lee, C.H., Greiner, R., Wang, S.: Using query-specific variance estimates to com-
bine bayesian classifiers. In: ICML ’06. (2006)

14. O’Sullivan, J., Langford, J., Caruana, R., Blum, A.: Featureboost: A meta-learning
algorithm that improves model robustness. In: ICML ’00. (2000)

15. Bay, S.D.: Combining nearest neighbor classifiers through multiple feature subsets.
In: ICML ’98. (1998)

16. Bucila, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: KDD ’06.
(2006)

17. Saltelli, A., Tarantola, S., Campolongo, F., Ratto, M.: Sensitivity Analysis in
Practice: A Guide to Assessing Scientific Models. John Wiley & Sons Ltd (2004)

18. Bousquet, O., Elisseeff, A.: Stabilitiy and generalization. JMLR 2 (2002) 499–526

