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Challenges for a Symbolic Model
Checker

State, transition relation representation
* Characteristic function based
* Non-characteristic function based
Image Computation
State Space Traversal
Abstraction/Refinement
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Scope of the Research

BDD Based Image

_ SAT Based Image
Computation

Computation

SAT Based

SAT Based Existential Reparameterization

Quantification

Abstraction/Refinement

Bounded Model Checking
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SAT Based Reachabillity

BDD Based Image
Computation

SAT Based
Reparameterization

Abstraction/Refinement
Bounded Model Checking

[4 < > »] —p. 4/58



Basic Reachability Algorithm
Img(S(z)) = 3z,1.T(z,1,2') A S(z)

REACHABILITY(.S))

S'reach < ¢
10

0 e

S'r'each < S'r'each U Sz
S’i—i—l < Img(si)\sreach

1+—1+1

}

return S, .,
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SAT Based Reachability

A SAT Solver checks the validity of 34X, Y. f(X,Y).

* Representation: S; and S,..., as DNF cubes

« Computing Images: Enumerate satisfying
cubes = compute 3X.f(X,Y).

e Detection of Fixed Point: At least one
satisfying cube

[« <> »] —p. 6/58



SAT Based Images

Enumerate cubes in the next state (z') variables to

Sz-_l(:r;

YAT(z,2,2") A Sreqen(T’)

« Convert S;_; and T' to CNF using

Intermeo

° reach 1N

 Add eac

late variables.
DNF = =5,.,., IN CNF

N satisfying assignment to .S; and In

the SAT as blocking clause
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Problems

* Time complexity
* Too many cubes to enumerate, each cube
represents one state in S;.
« Space complexity

« Storage of cubes expensive and
redundant

* Cubes can be merged
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Solving Time Problem

Given an assignment from SAT, reduce the
number of assigned literals = Cube
Enlargement

 Circuit based heuristic to propagate free
variables to infer the next state variable

assignments that can be safely ignored
« An enlarged cube represents multiple states
« Enlarged cube Is added as a blocking clause
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Solving Space Problem

1 \NTs \NT :
1 2 6 } can be combined to form z; A zs

1 N\ Ty /\ g
 Due to S,.4c; CONStraint, z; A zs A g A T3 CAN
never arise.

« Therefore, sufficient to check merging with
cubes that have the same set of variables
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Solving Space Problem

A hash table based data structure to efficiently
add a newly enumerated cube.

 For each added clause, use a hash table to
find clauses with the same set of variables

« A smaller hash to find clauses differing only
In one literal.

Can use zDDs or other data structure.
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Relative Runtime v/s BDD

Relative runtimes of BDD and SAT reachability
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Space Savings

Storage Efficiency

120.00
100.00
80.00
60.00
40.00
20.00

0.00 Js®ees

__ ¢ Yoage space
—— 100% line

cube merging procedure

—_
0
=
©
ge
D
£
S
=
@
—
O
O
@
Q
w
)
o)
®
S

2 o W O O N N D
) =

Circuits

[« < > »] - p. 13/58



SAT Enumeration Summary

Algorithm is relatively unaffected by the
number of variables to be quantified.

Important to reduce the number of cubes to
enumerate.

The biggest bottleneck is the clausal
representation.

Related work: Satori (UCSB), McMillan
(CAV’'02)
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Future Work for SAT Based
Reachabillity

» Space efficient SAT enumeration
» Use of Boolean minimizers like Espresso
* Non-clausal representation
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Reparameterization

BDD Based Image SAT Based Image
Computation Computation
SAT Based Existential
Quantification

Abstraction/Refinement
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Parametric Representation: An
Example inR?

A

[« <> »]-p. 17/58



Parametric Representation: An
Example inR?

A
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Characteristic Functions

V — {’U1) U2}
S = {01, 10}
Characteristic function of S Is

X(V) — (’U1 /N\ _I’U2) \% (_I’Ul /N\ ’U2).
S Is given by
S ={V|X(V) =1}
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Parametric
Representation| CM’90]

For § = {01,10} LS T
0|0 1
filp1)) = m
11 0
fa(p1) = —p1

[€ < > »] - p. 20/58



Parametric
Representation| CM’90]

For § = {01,10} PLS T
0|0 1
fi(p1) = m
111 O
f2(p1) = -
Or 11 12| h1 Ao
o . . 0 0|0 1
hl(Zl,Zg) = 11 V 19
o . . 0O 1]1 0
hao(t1,%2) = —1 A i
1 0|1 O
1 1] 1 O
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Parametric Representation

S(V) : Set of states

F(P) = (f1i(P),

P = (p1,po, ..., pk) : parameters

S(V) =«

y

V|3P.

Uy = f2(P)

v = £2(P)

[ v1=fi(P) A\

A
A

, fo(P)) : parametric functions

).
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Parametric= Characteristic

A parametric representation can be easily
converted to a characteristic function by using
the following equation.

x(V) = 3P.

[ & f1(P) A
'UQHfQ(P) A\
: /\

\ Up < .fn(P)

)

/
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Parametric Representation in
Symbolic Simulation

f2(1™)
(1M

fn(1™)

f 1™ =1, Ul U...U]l,, then after m steps of
symbolic simulation,

Se(V)=AV|IT" v = iI")N ... ANvp = fo(IT)}
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Parametric Representation in
Symbolic Simulation

Problems:

« The number of parameters, |I™|, gets larger
and larger with the number of simulation
steps.

* Functions fi, fo, ... keep on getting bigger
and bigger.
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Reparameterization

 Find functions hy(P), ho(P), ..., h,(P) in
parameters P, such that |P| <« |I™| and
Su(V) = 55(V).
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Reparameterization

 Find functions hy(P), ho(P), ..., h,(P) in
parameters P, such that |P| <« |I™| and
Su(V) = S¢(V).

e |t can be shown that a set of vectors in n

variables can be represented by parametric
functions of n variables.
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Reparameterization

 Find functions hy(P), ho(P), ..., h,(P) in
parameters P, such that |P| <« |I™| and
Su(V) = 55(V).

It can be shown that a set of vectors in n
variables can be represented by parametric
functions of n variables.

« We would like |P| < n.
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Reparameterization Algorithm

* The algorithm computes functions
hi(P),hy(P),...,h,(P) in that order.
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Reparameterization Algorithm

* The algorithm computes functions
hi(P),hy(P),...,h,(P) in that order.

* hi(pi,...,p:). This means that h; depends on the first
1 parameters only.
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Reparameterization Algorithm

* The algorithm computes functions
hi(P),hy(P),...,h,(P) in that order.

* hi(pi,...,p:). This means that h; depends on the first
1 parameters only.

* We think of each new parameter p; as free variable for
the 7% state bit v;.
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A Known Decomposition
|GB’'03]

hi(p1, ..., pi) = hi(p1, ..., Pic1)VD-hi(D1, . . ., Pic1)
where,

* hi(pi,...,p;—1). Boolean condition under
which v; Is forced to 1
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A Known Decomposition
|GB’'03]

hi(p1, ..., pi) = hi(p1, ..., Pic1)VD-hi(D1, . . ., Pic1)
where,

* hi(pi,...,p;—1). Boolean condition under
which v; Is forced to 1

* h)(p1,...,p;—1). Boolean condition under
which v; 1s forced to O
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A Known Decomposition
|GB’'03]

hi(p1,- - 05) = hi (D1, ..., Dic1)VD-hi(D1, . . ., Pic1).

where,

* hi(pi,...,p;—1). Boolean condition under
which v; Is forced to 1

* h)(p1,...,p;—1). Boolean condition under
which v; 1s forced to O

* hi(pi,...,p;_1): Boolean condition under
which v, Is free to choose any value
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A Known Decomposition
|GB’'03]

For S = {01, 10}, suppose hi(p:) = p1, then
p1 = 0= v; = 0= vy = 1. Thus, hj(pl) = —p;.
Moreover,

hi = =(hy V h{) = =h; A —h;

i.e., hi, kY and k¢ are mutually exclusive and

complete.
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Computingh; andhs
Restriction Function
1—1
pi(P1, - Pi-1, 1) = N hy(p1, ..., p5) = f;(I7)
71=1

Set of input vectors for which the functions f; to
fi—1 compute the same values as those
computed by h; to h;_; for the given parameter
assignment p, o, ..., Pi—1.

Note that p; = 1.
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Computingh; andhs

hi(p1, -, 0ic1) = VI pi(p1, ... 01, I™) = fi(I™) =1
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Computingh; andhs

hi(p1, -, 0ic1) = VI pi(p1, ... 01, I™) = fi(I™) =1

R, pi 1) = VI™pi(p1, ., pi 1, I™) = £i(I™) =0
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Computingh; andhs

hi(p1, -, 0ic1) = VI pi(p1, ... 01, I™) = fi(I™) =1

R, pi 1) = VI™pi(p1, ., pi 1, I™) = £i(I™) =0

Reparameterization is very expensive with
BDDS, even with an altogether different set union
based approach.

[€ < > »] - p. 30/58



High Level Algorithm

ORDEREDREPARAM(f(I™) = (f(I™),..., fo(I™))
p <1
fori=1ton
hi < VI™(p— f; =1)
hY «+ VI™.(p — f; =0)
h « —(hl V RO)
h; < h; V (p; A hS)
p < pA(hi= f)
endfor
return (h(P), ho(P),..., h,(P))
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SAT Based Enumeration

h"?(ph SRR 7pi—1) — \V/Impz(pl’ ey Pi-1, Im) — fz(Im) =
= —3AI"™ - (pi(p1,.--,0i1, L") = fi(I™) = a)
= —3AI™.pi(p1,...,Pic, I™) AN fi(I™) #
* SAT based enumeration computes =A% in DNF, thus
h; and A? are in CNF.

* Enumerates on p;(ps,...,pi_1,I™) to compute both
—h; and —A? in a single call.
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Incremental SAT

Enumeration formula for A$ Is very similar to the
formula for AY ;.

* Remove blocking clauses and the conflict
clauses derived from them from p;_;.

« Add clauses for h;_; = f;_1, repeat
Incremental SAT is the key to performance!
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Correctness of the Algorithm

* Non-trivial to see that the algorithm is
correct.

» The algorithm was rigorously proved,
detailed proof in the thesis.

* Proof was also done in PVS in about 8 days.
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Experimental Results (Time)

ckt | #regs | #inp | bug bmc fmcad | symbot symbot | symbot | # reps
len time | bug time time || maxlen time

D2+ 94 11 15 18 79 32 221 1000 8
D5+ 343 7 32 15 38.2 17 127 1000 13
D24 223 47 10 ) 8 7 543 1000 9

D6 161 16 20 289 833 145 64 1000 5
D18 498 247 28 6834 9955 1698 56 3000 7
D20 532 {0] 14 2349 1947 574 89 3000 9
IUpl 4494 361 | true || 3000* 3350 - 183 3000 45
18] o) 4494 361 | true || 3000* 712 - 183 3000 45

* BMC could complete only 39 steps of simulation before running out of space
+ BDD based symbolic simulator could do only these two circuits.
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Experimental Results (Memory)

ckt #regs | #Pls | bug Bug time BMC max sym max

len. BMC sym len time len. time | #rest.
D2+ 94 11 15 18 32 64 8084 M 4336 | 216007 163
D5+ 343 7 32 15 17 45 3594M 2793 | 216007 338
D24 223 47 10 5 7 || 913 | 13293M || 10298 | 216007 152
D6 161 16 20 289 145 48 6094 M 1521 | 216007 93
D19 285 49 32 || 6834 | 1698 23 | 13721M 399 | 216007 144
D20 532 30 14 || 2349 574 36 3984M 1856 | 216007 185
M3 334 155 | true - - 68 7039M 781 | 216007 22
M4 744 95 | true - - 26 | 12695M 302 | 216007 38
M5 316 104 | true - - 41 7492M 518 | 216007 45
lUpl | 4494 | 361 | true - - 39 | 2870M 1278 | 216007 902
18] o) 4494 361 | true - - 39 3192M 1103 | 216007 1242
IUp3 4494 361 | true - - 39 2994 M 1284 | 216007 856
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Extensions

./ Counterexample generation

./ Handling of general transition constraints,
SMV style | NVAR, TRANS
* Need to check for empty set of states
./ Fixedpoints
« By adding self-loops to states

* By using a parameterized set union
algorithm
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Future Work for
Reparameterization

Effect of variable orders

Better circuit representation and BMC like
optimizations

Parametric Abstraction
Proving properties true?
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Abstraction/Refinement

BDD Based Image
Computation

SAT Based Image
Computation

SAT Based
Reparameterization

Bounded Model Checking

SAT Based Existential
Quantification
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CEGAR Loop

1. Generate an initial abstraction function h.

2. Build abstraﬁct maphine M based on h.
Model check M. If M = ¢, then M = o.
Return TRUE.

3. If M [~ ¢, check the counterexample on
the concrete model. If the counterexample is
real, M ~ ¢. Return FALSE.

4. Refine h, and go to step 2.
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Preservation Theorem

Let M be an abstraction of M corresponding to the
abstraction function h, and p be a propositional formula
that respects A. Then

M= AGp= M = AGp
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Approaches to Automated
Abstraction/Refinement

« Clarke et al., CAV,02, FMCAD’02: Analyse
falled counterexample and use SAT checker
for deriving refinement information
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Approaches to Automated
Abstraction/Refinement

« Clarke et al., CAV,02, FMCAD’02: Analyse
falled counterexample and use SAT checker
for deriving refinement information

* McMillan, Amla TACAS’03: Use BMC upto
the length of abstract counterexample, get
unsatisfiability proof from SAT
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Approaches to Automated
Abstraction/Refinement

« Clarke et al., CAV,02, FMCAD’02: Analyse
falled counterexample and use SAT checker
for deriving refinement information

* McMillan, Amla TACAS’03: Use BMC upto
the length of abstract counterexample, get
unsatisfiability proof from SAT

« McMillan, CAV’03: Failed BMC instance
provides interpolation proofs that are used to
simplify fixed-point computation
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BMC Is the Key

 All abstraction/refinement approaches need
to simulate the large concrete state machine.

« Refinement is derived from analysis of some
failed SAT formula.

« Abstract counterexamples can be very long.
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Refinement [Clarket al .]

\ <£> /Bad \ (;p> /

\_ _/ States \_ _~

Spurious transition because deadend states and
bad states lie in the same abstract state.
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Refinement

Put deadend and bad states in separate abstract
states.
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Refinement Using SAT Conflict
Analysis

e The SAT formula

U = {(51. . 5m) | T(s)A A\ Rlsss sis)A A B(s:) = 65}

describes the set of paths corresponding to the
abstract counterexample

* We solve ¢, with a SAT solver

* For a spurious counterexample, 1., Is unsatisfiable
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Refinement Using SAT Conflict
Analysis

SAT solvers record the important reasons for the
unsatisfiability during the SAT check by Boolean
constraint propagation and implication graphs.
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Refinement Using SAT Conflict
Analysis

We proposed two methods [FMCAD’02] to
identify important variables by analysing conflicts
generated during the SAT check

» Heuristically score the variables during the
SAT check

« |dentify important variables by conflict
dependency graphs

Afterwards, the concept of unsatisfiable core was
iIntroduced.
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Reparameterization In
Abstraction-Refinement

* Reparameterization is used for simulating abstract
counterexample(s) on the original machine.
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Reparameterization In
Abstraction-Refinement

* Reparameterization is used for simulating abstract
counterexample(s) on the original machine.

* Once reparameterized, we lose all the original circuit variables upto
that point in the trace.
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Reparameterization In
Abstraction-Refinement

* Reparameterization is used for simulating abstract
counterexample(s) on the original machine.

* Once reparameterized, we lose all the original circuit variables upto
that point in the trace.

* Due to this, the refinement algorithm only reasons about partial
trace, from the point where the last reparameterization was done.
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Reparameterization In
Abstraction-Refinement

Reparameterization is used for simulating abstract
counterexample(s) on the original machine.

Once reparameterized, we lose all the original circuit variables upto
that point in the trace.

Due to this, the refinement algorithm only reasons about partial
trace, from the point where the last reparameterization was done.

Quality of refinement may be worse than plain simulation, but on the
other hand, we can simulate much deeper, a tradeoff.
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Experimental Results for
Abstraction Refilnement

Scatter Plot of Simulation Time

100000

1000 100000
Reparameterization
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Experimental Results for
Abstraction Refilnement

Scatter Plot of Total Verification Time
100000

o
o
@)
<
O
=
T

1000 100000
Reparameterization
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Future Work

« Extend the method for liveness checking
using safety checking, e.g., Biere et al.
STTT'03

» Better refinement strategies for partial
simulations.
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Summary

SAT based enumeration algorithms for image
computation

Powerful symbolic simulator to simulate deep
large circuits with thousands of latches

Completeness of property checking via
automated SAT based abstraction/refinement

BDD based image computation is part of the
thesis, but is not covered in the talk
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Questions?
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Circuit Characteristics

circuit | # latches | # inputs | counterexample length
D6 161 16 20
DYES 498 247 28
D19 285 49 32
D20 532 30 14
M3 334 155 true
M4 744 95 true
M5 316 104 true
IUp1l 4494 361 true
IUp2 4494 361 true
IUpP3 4494 361 true
s3271 116 26 true
s13207 669 31 true
s15850 597 14 true
s38417 1636 28 true
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Experimental Results

ckt 7 refn [req| max |CE| sim. time total time 7 rep
fmcad | sym | fmcad | sym | fmcad | sym fmcad | sym fmcad | sym
D6 48 | 438 39 39 20| 20 438 362 845 718 23
D18 142 | 127 253 | 253 28 | 28 3598 | 2740 9873 8349 56
D19 37| 49 103 | 112 32| 32 4343 1329 14528 12087 95
D20 4| 74 265 | 265 14 14 1359 338 2794 2192 23
M3 58 | 42+ | 128| 874 54 | 54+ 4378 | 2088+ 15306 | >21600+% 3
M4 173 | 941 336 | 184+ 44 | 39¢% 15540 | 4776+ 20327 | >21600+ 21
M5 7 11 30 30 6 10 3427 | 2902 8653 10312 3
IUp1 8t 13 125 19 721 72 33907 | 1295 4877} 4063 117
IUp2 6 6 13 13 22| 22 12938 605 2498 1335 16
IUp3 17| 32 19« 41 52x | 67 | > 21600« | 3022 | > 21600« 5836 325
s3271 32| 32 33 38 43 | 48 117 96 198 174 3
s13207 15 15 23 23 43 | 43 2231 1035 4066 2454 13
15850 8 8 18 18 56 | 36 1643 669 2998 2108 8
s38417 19 19 29 29 53| 53 1347 462 1655 1077 14

1 denotes that the model checking of abstract model timed out, I denotes that the simulation of coun-
terexample failed due to memory limit, and x denotes that the simulation of counterexample timed out.
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State Exploration Is the Key

* Bounded model checking (BMC) the first
step for finding bugs in the large industrial
Circuits

« BMC is also a key element of automatic
abstraction-refinement algorithms

* For large circuits, even BMC falils [chauhaneta
FMCAD’02, Kroening et al. VMCAI’OB]
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DPLL Style SAT Flowchart

K3

Deduce _
Conflict?

conflict clause
Branch: add a
literal to A
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