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Challenges for a Symbolic Model
Checker

• State, transition relation representation
• Characteristic function based

• Non-characteristic function based

• Image Computation
• State Space Traversal
• Abstraction/Refinement
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State Exploration is the Key

• Bounded model checking (BMC) the first step
for finding bugs in the large industrial circuits

• BMC is also a key element of automatic
abstraction-refinement algorithms

• For large circuits, even BMC fails[Chauhan et al.

FMCAD’02, Kroening et al. VMCAI’03]
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Scope of the Thesis

Increase the capacity of state exploration
engines by leveraging efficient SAT procedures.
• Image computation algorithms using SAT

based enumeration
• Symbolic simulation
• Abstraction-refinement
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SAT Based Image Computation
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Basic Reachability Algorithm

Img(S(x)) = ∃x, i.T (x, i, x′) ∧ S(x)

REACHABILITY(S0)
Sreach ← φ

i← 0

while (Si 6= φ) {
Sreach ← Sreach ∪ Si

Si+1 ← Img(Si)\Sreach

i← i+ 1

}
return Sreach

s0 s1 s2 sk

sreach

. . .
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DPLL Style SAT Flowchart

A={}

Empty
Clause?

Conflict?

A is total? SAT

UNSAT

Deduce
conflict clause

literal to A
Branch: add a
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SAT Based Reachability

A SAT Solver checks the validity of ∃X, Y.f(X, Y ).

• Representation: Si and Sreach as DNF cubes
• Computing Images: Enumerate satisfying cubes
⇒ compute ∃X.f(X, Y ).

• Detection of Fixed Point: At least one satisfying
cube
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SAT Based Images

Enumerate cubes in next state (x′) variables to the formula

Si−1(x) ∧ T (x, i, x′) ∧ ¬Sreach(x
′)

• Convert Si−1 and T to CNF using
intermediate variables.

• Sreach in DNF⇒ ¬Sreach in CNF
• Add each satisfying assignment as to Si and

in the SAT as blocking clause
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Problems

• Time complexity
• To many cubes to enumerate, each cube

represents one state in Si.
• Space complexity
• Storage of cubes expensive and redundant
• Cubes can be merged
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Solving Time Problem

Given an assignment from SAT, reduce the
number of assigned literals⇒ Cube Enlargement

• Circuit based heuristic to propagate free
variables to infer the next state variable
assignments that can be safely ignored

• An enlarged cube represents multiple states
• Enlarged cube is added as a blocking clause
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Solving Space Problem

x1 ∧ x5 ∧ x6

x1 ∧ x5 ∧ ¬x6

}

can be combined to form x1 ∧ x5

• Due to Sreach constraint, x1 ∧ x5 ∧ x6 ∧ x8 can
never arise.

• Therefore, sufficient to check merging with
cubes that have the same set of variables
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Solving Space Problem

A hash table based data structures to efficiently
add a newly enumerated cube.
• For each added clause, use a hash table to

find clauses with the same set of variables
• A smaller hash to find clauses differing only in

one literal.

Can use zDDs or other data structure.
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Relative Runtime v/s BDD
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Space Savings
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SAT Enumeration Summary

• Algorithm is relatively unaffected by the
number of variables to be quantified.

• Important to reduce the number of cubes to
enumerate.

• The biggest bottleneck is the clausal
representation.
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Work in Progress

• Benchmarking on processor designs of
McMillan et al. CAV’02, Lahiri et al. CAV’02

• Use of interpolation proofs for non-clausal
representation.
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SAT Based Reparameterization
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Characteristic Functions

V = {v1, v2}

S = {01, 10}

Characteristic function of S is

X (V ) = (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2).

S is given by

S = {V |X (V ) = 1}
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Parametric
Representation[CM’90]

For S = {01, 10}

f1(p1) = p1

f2(p1) = ¬p1

Or

h1(p1, p2) = p1 ∨ p2

h2(p1, p2) = ¬p2 ∧ ¬p2

p1 f1 f2

0 0 1

1 1 0

p1 p2 h1 h2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0
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Parametric Representation

If S(V ) is represented parametrically with a
vector of n functions
F (P ) = (f1(P ), f2(P ), . . . , fn(P )) over k
parameters P = (p1, p2, . . . , pk), then

S(V ) =



















V |∃P.











v1 = f1(P ) ∧

v2 = f2(P ) ∧
... ∧

vn = fn(P )






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




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Parametric⇒ Characteristic

A parametric representation can be easily
converted to a characteristic function by using
the following equation.

X (V ) = ∃P.











v1 ↔ f1(P ) ∧

v2 ↔ f2(P ) ∧
... ∧

vn ↔ fn(P )










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Parametric Representation in
Symbolic Simulation

II I I1 2 m3

n
mf (I  )

f (I  )m
2

1f (I  )m

0
nf (I )

f (I )0
n

f (I )0
0

If Im = I0 ∪ I1 ∪ . . . ∪ Im, then after m steps of
symbolic simulation,

Sf(V ) = {V |∃Im.v1 = f1(I
m) ∧ . . . ∧ vn = fn(I

m)}
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Parametric Representation in
Symbolic Simulation

Problems:

• The number of parameters, |Im|, gets larger
and larger with the number of simulation
steps.

• Functions f1, f2, ... keep on getting bigger and
bigger.
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Reparameterization

• Find functions h1(P ), h2(P ), . . . , hn(P ) in
parameters P , such that |P | � |Im| and
Sh(V ) = Sf(V ).

• It has been shown that a set of vectors in n
variables can be represented by parametric
functions of n variables.

• We would like |P | ≤ n.

[J C B I] – p.25/49



Reparameterization

• Find functions h1(P ), h2(P ), . . . , hn(P ) in
parameters P , such that |P | � |Im| and
Sh(V ) = Sf(V ).

• It has been shown that a set of vectors in n
variables can be represented by parametric
functions of n variables.

• We would like |P | ≤ n.

[J C B I] – p.25/49



Reparameterization

• Find functions h1(P ), h2(P ), . . . , hn(P ) in
parameters P , such that |P | � |Im| and
Sh(V ) = Sf(V ).

• It has been shown that a set of vectors in n
variables can be represented by parametric
functions of n variables.

• We would like |P | ≤ n.

[J C B I] – p.25/49



Reparameterization Algorithm

• The algorithm computes functions
h1(P ), h2(P ), . . . , hn(P ) in that order.

• hi(p1, . . . , pi). This means that hi depends on the first i
parameters only. The parantheses denote the
arguments to the function in the rest of the talk.

• We think of each new parameter pi as free variable for
the ith state bit vi.
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A Known Decomposition
[CM’90]

hi(p1, . . . , pi) = h1

i (p1, . . . , pi−1)∨pi ·h
c
i(p1, . . . , pi−1).

where,
• h1

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 1

• h0

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 0

• hc
i(p1, . . . , pi−1): Boolean condition under

which vi is free to choose any value
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A Known Decomposition
[CM’90]

For S = {01, 10}, suppose h1(p1) = p1, then
p1 = 0⇒ v1 = 0⇒ v2 = 1. Thus, h1

2
(p1) = ¬p1.

Moreover,

hc
i = ¬(h1

i ∨ h
0

i ) = ¬h1

i ∧ ¬h
0

i

i.e., h1

i , h
0

i and hc
i are mutually exclusive and com-

plete.
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Computing h1
i and hci

Restriction Function

ρi(p1, . . . , pi−1, I
m) =

i−1
∧

j=1

hj(p1, . . . , pj) = fj(I
m)

Set of input vectors for which the functions f1 to
fi−1 compute the same values as those
computed by h1 to hi−1 for the given parameter
assignment p1, p2, . . . , pi−1.

Note that ρ1 = 1.
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Computing h1
i and hci

h1

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 1

h0

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 0

Reparameterization is very expensive with

BDDS, even with an altogether different set union

based approach.
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High Level Algorithm
ORDEREDREPARAM(f̄(Im) = (f1(I

m), . . . , fn(Im))
for i = 1 to n

ρi ← 1

for j = 1 to i− 1

ρi ← ρi ∧ (hj = fj)

h1
i ← ∀I

m.(ρi ← fi = 1)

h0
i ← ∀I

m.(ρi ← fi = 0)

hc
i ← ¬(h1

i ∨ h
0
i )

hi ← h1
i ∨ (pi ∧ h

c
i)

endfor

return (h1(P ), h2(P ), . . . , hn(P ))
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SAT Based Enumeration

hα
i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I

m)→ fi(I
m) = α

= ¬∃Im.¬ (ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = α)

= ¬∃Im.ρi(p1, . . . , pi−1, I
m) ∧ fi(I

m) 6= α

• SAT based enumeration computes ¬hα
i in DNF, thus h1

i

and h0
i are in CNF.

• Enumerates on ρi(p1, . . . , pi−1, I
m) to compute both ¬h1

i

and ¬h0
i in a single call.

Incremental SAT is the key to the performance.
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Incremental SAT

Enumeration formula for hα
i is very similar to the

formula for hα
i−1

.

• Remove blocking clauses and the conflict
clauses derived from them from ρi−1.

• Add clauses for hi−1 = fi−1, repeat
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Experimental Results

ckt # regs # inp bug bmc fmcad symbot symbot symbot # reps

len time bug time time max len time

D2+ 94 11 15 18 79 32 221 1000 8

D5+ 343 7 32 15 38.2 17 127 1000 13

D24 223 47 10 5 8 7 543 1000 9

D6 161 16 20 289 833 145 64 1000 5

D18 498 247 28 6834 9955 1698 56 3000 7

D20 532 30 14 2349 1947 574 89 3000 9

IUp1 4494 361 true 3000* 3350 - 183 3000 45

IUp2 4494 361 true 3000* 712 - 183 3000 45

* BMC could complete only 39 steps of simulation before running out of space

+ BDD based symbolic simulator could do only these two circuits.
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Runtime for Bug Finding
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Simulation Depth v/s BMC
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Ongoing and Future Work

• Counterexample generation
• Safety property checking
• Handling of general transition constraints,

SMV style INVAR, TRANS
• Effect of variable orders, not as severe as

BDDs

[J C B I] – p.37/49



Ongoing and Future Research

• Improve enumeration algorithm
• Effects of variable ordering on parameterized

representation
• Proving properties true?
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Abstraction Refinement
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CEGAR Loop

1. Generate an initial abstraction function h.

2. Build abstract machine M̂ based on h.
Model check M̂ . If M̂ |= ϕ, then M |= ϕ.
Return TRUE.

3. If M̂ 6|= ϕ, check the counterexample on
the concrete model. If the counterexample is
real, M 6|= ϕ. Return FALSE.

4. Refine h, and go to step 2.
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Preservation Theorem
Let M̂ be an abstraction of M corresponding to the
abstraction function h, and p be a propositional formula
that respects h. Then

M̂ |= AGp⇒M |= AGp

p p p

ppp

p

p

~p

~p

p p p p ~p

[J C B I] – p.41/49



Refinement

p p p

ppp

~p

~p

p p p ~p

~p

~p

~p

Bad
States

States
Dead
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Refinement

• Spurious transition because deadend states
and bad states lie in the same abstract state.

• Refinement : Put deadend and bad states in
separate abstract states.

p

p

p

p

p

p

~p

~p ~p

~p

p p p p ~p ~p
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Refinement Using SAT Conflict
Analysis

• The SAT formula

ψm = {〈s1 . . . sm〉 | I(s1)∧
m−1
∧

i=1

R(si, si+1)∧
m
∧

i=1

h(si) = ŝi}

describes the set of paths corresponding to the
abstract counterexample

• We solve ψm with a SAT solver

• For a spurious counterexample, ψm is unsatisfiable
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Refinement Using SAT Conflict
Analysis

SAT solvers record the important reasons for the
unsatisfiability during the SAT check by Boolean constraint
propagation and implication graphs.

We proposed[FMCAD’02] two methods to identify
important variables by analysing conflicts generated during
the SAT check

• Heuristically score the variables during the SAT check

• Identify important variables by conflict dependency
graphs
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Experimental Results for
Refinement by Conflict Analysis

Apart from the smaller IU circuits shown earlier, these
techniques are able to handle large D series circuits and
an IU circuit with 5000 latches.

circuit # regs ctrex CSMV Heuristic Score Dependency

length time time iters # regs time iters # regs

D2 105 15 152 105 10 51 79 11 39

D5 350 32 1,192 29 3 16 38.2 8 10

D6 177 20 45,596 784 24 121 833 48 90

D18 745 28 >4 hrs 12,086 69 346 9,995 142 253

D20 562 14 >7 hrs 1,493 56 281 1,947 74 265

D24 270 10 7,850 14 1 6 8 1 4

IU-p1 4855 true - 9,138 22 107 3,350∗ 13 19

IU-p2 4855 true - 2,820 7 36 712 6 13
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Ongoing and Future Work

• Use symbolic simulation with SAT based
reparameterization to simulate abstract
counterexamples

• Derive refinement information from the partial
simulation

• Extend the method for liveness checking
using safety checking as in Biere et al.
STTT’03
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Expected Thesis Contributions

• SAT based enumeration algorithms for image
computation

• Powerful symbolic simulator to simulate deep
large circuits with thousands of latches

• Completeness of property checking via
automated SAT based abstraction-refinement
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Timeline

• Feb’04:

• June’04:

• Sept’04:
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