
Verification of Large Industrial
Circuits Using SAT Based

Reparameterization and Automated
Abstraction-Refinement

Pankaj Chauhan

Ph.D. Thesis Proposal

Computer Science Dept., Carnegie Mellon University

[J C B I] – p.1/49

Challenges for a Symbolic Model
Checker

• State, transition relation representation
• Characteristic function based

• Non-characteristic function based

• Image Computation
• State Space Traversal
• Abstraction/Refinement

[J C B I] – p.2/49

State Exploration is the Key

• Bounded model checking (BMC) the first step
for finding bugs in the large industrial circuits

• BMC is also a key element of automatic
abstraction-refinement algorithms

• For large circuits, even BMC fails[Chauhan et al.

FMCAD’02, Kroening et al. VMCAI’03]

[J C B I] – p.3/49

Scope of the Thesis

Increase the capacity of state exploration
engines by leveraging efficient SAT procedures.
• Image computation algorithms using SAT

based enumeration
• Symbolic simulation
• Abstraction-refinement

[J C B I] – p.4/49

SAT Based Image Computation

[J C B I] – p.5/49

Basic Reachability Algorithm

Img(S(x)) = ∃x, i.T (x, i, x′) ∧ S(x)

REACHABILITY(S0)
Sreach ← φ

i← 0

while (Si 6= φ) {
Sreach ← Sreach ∪ Si

Si+1 ← Img(Si)\Sreach

i← i+ 1

}
return Sreach

s0 s1 s2 sk

sreach

. . .

[J C B I] – p.6/49

DPLL Style SAT Flowchart

A={}

Empty
Clause?

Conflict?

A is total? SAT

UNSAT

Deduce
conflict clause

literal to A
Branch: add a

[J C B I] – p.7/49

SAT Based Reachability

A SAT Solver checks the validity of ∃X, Y.f(X, Y).

• Representation: Si and Sreach as DNF cubes
• Computing Images: Enumerate satisfying cubes
⇒ compute ∃X.f(X, Y).

• Detection of Fixed Point: At least one satisfying
cube

[J C B I] – p.8/49

SAT Based Images

Enumerate cubes in next state (x′) variables to the formula

Si−1(x) ∧ T (x, i, x′) ∧ ¬Sreach(x
′)

• Convert Si−1 and T to CNF using
intermediate variables.

• Sreach in DNF⇒ ¬Sreach in CNF
• Add each satisfying assignment as to Si and

in the SAT as blocking clause

[J C B I] – p.9/49

Problems

• Time complexity
• To many cubes to enumerate, each cube

represents one state in Si.
• Space complexity
• Storage of cubes expensive and redundant
• Cubes can be merged

[J C B I] – p.10/49

Solving Time Problem

Given an assignment from SAT, reduce the
number of assigned literals⇒ Cube Enlargement

• Circuit based heuristic to propagate free
variables to infer the next state variable
assignments that can be safely ignored

• An enlarged cube represents multiple states
• Enlarged cube is added as a blocking clause

[J C B I] – p.11/49

Solving Space Problem

x1 ∧ x5 ∧ x6

x1 ∧ x5 ∧ ¬x6

}

can be combined to form x1 ∧ x5

• Due to Sreach constraint, x1 ∧ x5 ∧ x6 ∧ x8 can
never arise.

• Therefore, sufficient to check merging with
cubes that have the same set of variables

[J C B I] – p.12/49

Solving Space Problem

A hash table based data structures to efficiently
add a newly enumerated cube.
• For each added clause, use a hash table to

find clauses with the same set of variables
• A smaller hash to find clauses differing only in

one literal.

Can use zDDs or other data structure.

[J C B I] – p.13/49

Relative Runtime v/s BDD

[J C B I] – p.14/49

Space Savings

[J C B I] – p.15/49

SAT Enumeration Summary

• Algorithm is relatively unaffected by the
number of variables to be quantified.

• Important to reduce the number of cubes to
enumerate.

• The biggest bottleneck is the clausal
representation.

[J C B I] – p.16/49

Work in Progress

• Benchmarking on processor designs of
McMillan et al. CAV’02, Lahiri et al. CAV’02

• Use of interpolation proofs for non-clausal
representation.

[J C B I] – p.17/49

SAT Based Reparameterization

[J C B I] – p.18/49

Characteristic Functions

V = {v1, v2}

S = {01, 10}

Characteristic function of S is

X (V) = (v1 ∧ ¬v2) ∨ (¬v1 ∧ v2).

S is given by

S = {V |X (V) = 1}

[J C B I] – p.19/49

Parametric
Representation[CM’90]

For S = {01, 10}

f1(p1) = p1

f2(p1) = ¬p1

Or

h1(p1, p2) = p1 ∨ p2

h2(p1, p2) = ¬p2 ∧ ¬p2

p1 f1 f2

0 0 1

1 1 0

p1 p2 h1 h2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

[J C B I] – p.20/49

Parametric
Representation[CM’90]

For S = {01, 10}

f1(p1) = p1

f2(p1) = ¬p1

Or

h1(p1, p2) = p1 ∨ p2

h2(p1, p2) = ¬p2 ∧ ¬p2

p1 f1 f2

0 0 1

1 1 0

p1 p2 h1 h2

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1 0

[J C B I] – p.20/49

Parametric Representation

If S(V) is represented parametrically with a
vector of n functions
F (P) = (f1(P), f2(P), . . . , fn(P)) over k
parameters P = (p1, p2, . . . , pk), then

S(V) =



















V |∃P.











v1 = f1(P) ∧

v2 = f2(P) ∧
... ∧

vn = fn(P)





























.

[J C B I] – p.21/49

Parametric⇒ Characteristic

A parametric representation can be easily
converted to a characteristic function by using
the following equation.

X (V) = ∃P.











v1 ↔ f1(P) ∧

v2 ↔ f2(P) ∧
... ∧

vn ↔ fn(P)











[J C B I] – p.22/49

Parametric Representation in
Symbolic Simulation

II I I1 2 m3

n
mf (I)

f (I)m
2

1f (I)m

0
nf (I)

f (I)0
n

f (I)0
0

If Im = I0 ∪ I1 ∪ . . . ∪ Im, then after m steps of
symbolic simulation,

Sf(V) = {V |∃Im.v1 = f1(I
m) ∧ . . . ∧ vn = fn(I

m)}

[J C B I] – p.23/49

Parametric Representation in
Symbolic Simulation

Problems:

• The number of parameters, |Im|, gets larger
and larger with the number of simulation
steps.

• Functions f1, f2, ... keep on getting bigger and
bigger.

[J C B I] – p.24/49

Reparameterization

• Find functions h1(P), h2(P), . . . , hn(P) in
parameters P , such that |P | � |Im| and
Sh(V) = Sf(V).

• It has been shown that a set of vectors in n
variables can be represented by parametric
functions of n variables.

• We would like |P | ≤ n.

[J C B I] – p.25/49

Reparameterization

• Find functions h1(P), h2(P), . . . , hn(P) in
parameters P , such that |P | � |Im| and
Sh(V) = Sf(V).

• It has been shown that a set of vectors in n
variables can be represented by parametric
functions of n variables.

• We would like |P | ≤ n.

[J C B I] – p.25/49

Reparameterization

• Find functions h1(P), h2(P), . . . , hn(P) in
parameters P , such that |P | � |Im| and
Sh(V) = Sf(V).

• It has been shown that a set of vectors in n
variables can be represented by parametric
functions of n variables.

• We would like |P | ≤ n.

[J C B I] – p.25/49

Reparameterization Algorithm

• The algorithm computes functions
h1(P), h2(P), . . . , hn(P) in that order.

• hi(p1, . . . , pi). This means that hi depends on the first i
parameters only. The parantheses denote the
arguments to the function in the rest of the talk.

• We think of each new parameter pi as free variable for
the ith state bit vi.

[J C B I] – p.26/49

Reparameterization Algorithm

• The algorithm computes functions
h1(P), h2(P), . . . , hn(P) in that order.

• hi(p1, . . . , pi). This means that hi depends on the first i
parameters only. The parantheses denote the
arguments to the function in the rest of the talk.

• We think of each new parameter pi as free variable for
the ith state bit vi.

[J C B I] – p.26/49

Reparameterization Algorithm

• The algorithm computes functions
h1(P), h2(P), . . . , hn(P) in that order.

• hi(p1, . . . , pi). This means that hi depends on the first i
parameters only. The parantheses denote the
arguments to the function in the rest of the talk.

• We think of each new parameter pi as free variable for
the ith state bit vi.

[J C B I] – p.26/49

A Known Decomposition
[CM’90]

hi(p1, . . . , pi) = h1

i (p1, . . . , pi−1)∨pi ·h
c
i(p1, . . . , pi−1).

where,
• h1

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 1

• h0

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 0

• hc
i(p1, . . . , pi−1): Boolean condition under

which vi is free to choose any value

[J C B I] – p.27/49

A Known Decomposition
[CM’90]

hi(p1, . . . , pi) = h1

i (p1, . . . , pi−1)∨pi ·h
c
i(p1, . . . , pi−1).

where,
• h1

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 1

• h0

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 0

• hc
i(p1, . . . , pi−1): Boolean condition under

which vi is free to choose any value

[J C B I] – p.27/49

A Known Decomposition
[CM’90]

hi(p1, . . . , pi) = h1

i (p1, . . . , pi−1)∨pi ·h
c
i(p1, . . . , pi−1).

where,
• h1

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 1

• h0

i (p1, . . . , pi−1): Boolean condition under
which vi is forced to 0

• hc
i(p1, . . . , pi−1): Boolean condition under

which vi is free to choose any value

[J C B I] – p.27/49

A Known Decomposition
[CM’90]

For S = {01, 10}, suppose h1(p1) = p1, then
p1 = 0⇒ v1 = 0⇒ v2 = 1. Thus, h1

2
(p1) = ¬p1.

Moreover,

hc
i = ¬(h1

i ∨ h
0

i) = ¬h1

i ∧ ¬h
0

i

i.e., h1

i , h
0

i and hc
i are mutually exclusive and com-

plete.

[J C B I] – p.28/49

Computing h1
i and hci

Restriction Function

ρi(p1, . . . , pi−1, I
m) =

i−1
∧

j=1

hj(p1, . . . , pj) = fj(I
m)

Set of input vectors for which the functions f1 to
fi−1 compute the same values as those
computed by h1 to hi−1 for the given parameter
assignment p1, p2, . . . , pi−1.

Note that ρ1 = 1.

[J C B I] – p.29/49

Computing h1
i and hci

h1

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 1

h0

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 0

Reparameterization is very expensive with

BDDS, even with an altogether different set union

based approach.

[J C B I] – p.30/49

Computing h1
i and hci

h1

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 1

h0

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 0

Reparameterization is very expensive with

BDDS, even with an altogether different set union

based approach.

[J C B I] – p.30/49

Computing h1
i and hci

h1

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 1

h0

i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = 0

Reparameterization is very expensive with

BDDS, even with an altogether different set union

based approach.

[J C B I] – p.30/49

High Level Algorithm
ORDEREDREPARAM(f̄(Im) = (f1(I

m), . . . , fn(Im))
for i = 1 to n

ρi ← 1

for j = 1 to i− 1

ρi ← ρi ∧ (hj = fj)

h1
i ← ∀I

m.(ρi ← fi = 1)

h0
i ← ∀I

m.(ρi ← fi = 0)

hc
i ← ¬(h1

i ∨ h
0
i)

hi ← h1
i ∨ (pi ∧ h

c
i)

endfor

return (h1(P), h2(P), . . . , hn(P))

[J C B I] – p.31/49

SAT Based Enumeration

hα
i (p1, . . . , pi−1) = ∀Im.ρi(p1, . . . , pi−1, I

m)→ fi(I
m) = α

= ¬∃Im.¬ (ρi(p1, . . . , pi−1, I
m)→ fi(I

m) = α)

= ¬∃Im.ρi(p1, . . . , pi−1, I
m) ∧ fi(I

m) 6= α

• SAT based enumeration computes ¬hα
i in DNF, thus h1

i

and h0
i are in CNF.

• Enumerates on ρi(p1, . . . , pi−1, I
m) to compute both ¬h1

i

and ¬h0
i in a single call.

Incremental SAT is the key to the performance.

[J C B I] – p.32/49

Incremental SAT

Enumeration formula for hα
i is very similar to the

formula for hα
i−1

.

• Remove blocking clauses and the conflict
clauses derived from them from ρi−1.

• Add clauses for hi−1 = fi−1, repeat

[J C B I] – p.33/49

Experimental Results

ckt # regs # inp bug bmc fmcad symbot symbot symbot # reps

len time bug time time max len time

D2+ 94 11 15 18 79 32 221 1000 8

D5+ 343 7 32 15 38.2 17 127 1000 13

D24 223 47 10 5 8 7 543 1000 9

D6 161 16 20 289 833 145 64 1000 5

D18 498 247 28 6834 9955 1698 56 3000 7

D20 532 30 14 2349 1947 574 89 3000 9

IUp1 4494 361 true 3000* 3350 - 183 3000 45

IUp2 4494 361 true 3000* 712 - 183 3000 45

* BMC could complete only 39 steps of simulation before running out of space

+ BDD based symbolic simulator could do only these two circuits.

[J C B I] – p.34/49

Runtime for Bug Finding

[J C B I] – p.35/49

Simulation Depth v/s BMC

[J C B I] – p.36/49

Ongoing and Future Work

• Counterexample generation
• Safety property checking
• Handling of general transition constraints,

SMV style INVAR, TRANS
• Effect of variable orders, not as severe as

BDDs

[J C B I] – p.37/49

Ongoing and Future Research

• Improve enumeration algorithm
• Effects of variable ordering on parameterized

representation
• Proving properties true?

[J C B I] – p.38/49

Abstraction Refinement

[J C B I] – p.39/49

CEGAR Loop

1. Generate an initial abstraction function h.

2. Build abstract machine M̂ based on h.
Model check M̂ . If M̂ |= ϕ, then M |= ϕ.
Return TRUE.

3. If M̂ 6|= ϕ, check the counterexample on
the concrete model. If the counterexample is
real, M 6|= ϕ. Return FALSE.

4. Refine h, and go to step 2.

[J C B I] – p.40/49

Preservation Theorem
Let M̂ be an abstraction of M corresponding to the
abstraction function h, and p be a propositional formula
that respects h. Then

M̂ |= AGp⇒M |= AGp

p p p

ppp

p

p

~p

~p

p p p p ~p

[J C B I] – p.41/49

Refinement

p p p

ppp

~p

~p

p p p ~p

~p

~p

~p

Bad
States

States
Dead

[J C B I] – p.42/49

Refinement

• Spurious transition because deadend states
and bad states lie in the same abstract state.

• Refinement : Put deadend and bad states in
separate abstract states.

p

p

p

p

p

p

~p

~p ~p

~p

p p p p ~p ~p

[J C B I] – p.43/49

Refinement Using SAT Conflict
Analysis

• The SAT formula

ψm = {〈s1 . . . sm〉 | I(s1)∧
m−1
∧

i=1

R(si, si+1)∧
m
∧

i=1

h(si) = ŝi}

describes the set of paths corresponding to the
abstract counterexample

• We solve ψm with a SAT solver

• For a spurious counterexample, ψm is unsatisfiable

[J C B I] – p.44/49

Refinement Using SAT Conflict
Analysis

SAT solvers record the important reasons for the
unsatisfiability during the SAT check by Boolean constraint
propagation and implication graphs.

We proposed[FMCAD’02] two methods to identify
important variables by analysing conflicts generated during
the SAT check

• Heuristically score the variables during the SAT check

• Identify important variables by conflict dependency
graphs

[J C B I] – p.45/49

Experimental Results for
Refinement by Conflict Analysis

Apart from the smaller IU circuits shown earlier, these
techniques are able to handle large D series circuits and
an IU circuit with 5000 latches.

circuit # regs ctrex CSMV Heuristic Score Dependency

length time time iters # regs time iters # regs

D2 105 15 152 105 10 51 79 11 39

D5 350 32 1,192 29 3 16 38.2 8 10

D6 177 20 45,596 784 24 121 833 48 90

D18 745 28 >4 hrs 12,086 69 346 9,995 142 253

D20 562 14 >7 hrs 1,493 56 281 1,947 74 265

D24 270 10 7,850 14 1 6 8 1 4

IU-p1 4855 true - 9,138 22 107 3,350∗ 13 19

IU-p2 4855 true - 2,820 7 36 712 6 13

[J C B I] – p.46/49

Ongoing and Future Work

• Use symbolic simulation with SAT based
reparameterization to simulate abstract
counterexamples

• Derive refinement information from the partial
simulation

• Extend the method for liveness checking
using safety checking as in Biere et al.
STTT’03

[J C B I] – p.47/49

Expected Thesis Contributions

• SAT based enumeration algorithms for image
computation

• Powerful symbolic simulator to simulate deep
large circuits with thousands of latches

• Completeness of property checking via
automated SAT based abstraction-refinement

[J C B I] – p.48/49

Timeline

• Feb’04:

• June’04:

• Sept’04:

[J C B I] – p.49/49

	Challenges for a Symbolic Model Checker
	State Exploration is the Key
	Scope of the Thesis
	
	Basic Reachability Algorithm
	DPLL Style SAT Flowchart
	SAT Based Reachability
	SAT Based Images
	Problems
	Solving Time Problem
	Solving Space Problem
	Solving Space Problem
	Relative Runtime v/s BDD
	Space Savings
	SAT Enumeration Summary
	Work in Progress
	
	Characteristic Functions
	Parametric Representation[CM'90]
	Parametric Representation
	Parametric $Rightarrow $ Characteristic
	Parametric Representation in Symbolic Simulation
	Parametric Representation in Symbolic Simulation
	Reparameterization
	Reparameterization Algorithm
	A Known Decomposition [CM'90]
	A Known Decomposition [CM'90]
	Computing h_i^1 and h_i^c
	Computing h_i^1 and h_i^c
	High Level Algorithm
	SAT Based Enumeration
	Incremental SAT
	Experimental Results
	Runtime for Bug Finding
	Simulation Depth v/s BMC
	Ongoing and Future Work
	Ongoing and Future Research
	
	CEGAR Loop
	Preservation Theorem
	Refinement
	Refinement
	Refinement Using SAT Conflict Analysis
	Refinement Using SAT Conflict Analysis
	Experimental Results for Refinement by Conflict Analysis
	Ongoing and Future Work
	Expected Thesis Contributions
	Timeline

