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 Abstract - Robot photographers have appeared in a variety 
of novelty settings over the past few years and typically have 
exploited rudimentary image-content-based approaches to 
identifying potential photographic subjects.  These approaches 
are primarily limited to human subjects and further progress 
along content-based lines is hamstrung by slow progress on the 
general computer vision problem.    
 
 In this paper, we present a mobile robot system which 
solves the group-picture-framing problem without requiring 
content-based methods.  The system finds photographic sub-
jects based on measurements of motion parallax obtained via 
optical flow during robot movements.  Our method requires 
only sufficient contrast to permit reasonably accurate sparse 
optical flow field estimation and is completely independent of 
any content-based image heuristics.  The result is a working 
mobile robot system that can correctly photograph human and 
non-human subjects in a variety of posed-subject situations, 
and produce well-framed, cropped images for printing on stan-
dard-sized photo paper.  
 
 Index Terms - photography; mobile robot; computer vision; 
picture framing 
 

I. BACKGROUND ON GROUP PHOTOGRAPHY AND THE 
PICTURE-FRAMING PROBLEM DEFINED; RELATED WORK 

Group photography presents a somewhat restricted 
form of the photo composition problem in which the sub-
ject(s) are posed in close proximity to one another and the 
background is of little photographic interest.  Group photo 
subjects generally collaborate with the photographer to pro-
duce a mutually-acceptable image, including cooperation on 
the physical placement of subjects (standing close together), 
their behavior (standing still), and displaying appropriate 
facial expressions (“say cheese!”).   

In this context we define the “picture-framing problem” 
as the selection of a boundary which encloses all visible 
portions of the subjects and as little of the background as 
necessary to avoid visually crowding the subject. From an 
aesthetic perspective it is important that the subject(s) be 
centered within this boundary – that is, that each of the four 
boundary edges be a similar standoff-distance from the sub-
ject (to the extent permitted by the total camera field-of-
view).  It is also necessary to select an appropriate aspect 
ratio to exploit as much of the printed-image area as possi-
ble without clipping important parts of the subject. See Fig. 
1 for an example of picture framing.  This paper describes 
an algorithm which solves the picture-framing problem in 
common real-world environments and exploits that solution 
to produce visually appealing group photos. 

In contrast to group photography, the composition and 
timing of high quality editorial, candid, and art photos de-
pend upon fine shades of image interpretation – subtleties 
beyond the present state of the art in computer vision.  In 
the present work we avoid these sorts of image-content-
based decisions in order to focus our efforts on what can be 
achieved without image interpretation.  An important con-
sequence of this is that the robot photographer presented 
here performs equally well for inanimate and non-human 
subjects as well as for humans.  Thus, this is the first robot 
photographer which can capture all-robot and mixed hu-
man/robot group photos just as effectively as all-human 
ones!  Of course, as the state of the art in automated image 
understanding advances, hybrid image composition strate-
gies will become possible in which the present algorithm 
may play only a partial role.  

Previous “robot photographer” work described in 
[1,2,3] applied face and skin detection techniques and rudi-
mentary principles of image composition to photograph 
people non-interactively in social settings.  However  the 
results depended upon subsequent human culling of “inter-
esting” from “uninteresting” shots and might better be 
termed “serendipitous” than “candid”.   

The Robot Photographer presented in this paper tackles 
a different photographic problem, demonstrating the feasi-
bility of using depth from motion information alone to pro-
duce well-framed group photographs in posed, cooperative 
settings.  Further contributions include a fast, simple rectan-
gle-consensus algorithm to determine subject area from 
such motion data, and a set of heuristics to produce aestheti-

Fig. 1:  The Robot Photographer, and an Example of Picture-Framing 
The cropped, resized image at the upper right is automatically  

produced by the algorithm described in this paper.   
The original source image is shown at the lower right  



cally pleasing cropped images suitable for printing.  Finally, 
results from an implementation of these techniques are pre-
sented and a discussion of broader applicability of the tech-
niques is included.   

II. PHYSICAL CONFIGURATION AND MODUS OPERANDI 

The Robot Photographer (Fig. 1) is designed to be de-
ployed in social situations where the availability of group 
photos provides participants the opportunity to create a me-
mento of their attendance and the others who they meet at 
the occasion.  For instance, we first deployed the Robot 
Photographer at our annual laboratory open house in August 
2004.   

A.  Example Scenario  
A small group gathers in front of the robot.  With a 

mouse-click on an appropriate GUI, which appears on a 
display screen adjacent to the robot, the group requests a 
photo be taken.  Using vision techniques [11], the robot 
ascertains that it has adequate space to maneuver and then 
translates a small distance to the left and to the right while 
observing a broad field of view in the general direction of 
the subjects.  By identifying motion parallax in its field of 
view and clustering parallax velocities the robot identifies 
the boundaries and position of the photographic subject(s).  
The robot then asks the subjects to assume appropriate fa-
cial expressions (“Say Cheese!”), and shoots a full-
resolution photo.  Finally the robot presents the final photo 
to the subjects on an adjacent display screen and asks for 
approval to print the image.   

B.  Hardware Components 
We use a Personal Exploration Rover [4], as shown in 

Fig. 1, as the mobile robot platform for the Robot Photogra-
pher.  The PER robot is configured for omnidirectional 
movement at approximately 3cm/s.  Attached to the robot’s 
upper surface is a high quality digital camera (Canon S60) 
mounted on a tripod.  For purposes of hazard detection a 
small web-cam (Logitech QuickCam Pro IV) with a wide 
field of view lens (Unibrain US2042) is attached to the ro-
bot’s pan-tilt head.  Vision processing for both cameras runs 
on a single adjacent desktop (3.6 GHz Intel® Xeon™) or 
laptop (1.5 GHz Intel® Pentium® M) PC, depending upon 
the deployment situation.  Both cameras are connected via 
USB tether to the PC.  The robot is controlled by commands 
transmitted over a peer-to-peer 802.11b wireless LAN con-
nection.  Although the robot carries a powerful embedded 
microprocessor (400 MHz Intel® PXA250), software com-
patibility issues with the connection to the digital camera as 
well as a desire to incorporate low-latency video in an off-
robot user interface led us to adopt this tethered approach. 

The webcam is used purely for hazard detection via vis-
ual odometry [5,11] and operates at a resolution of 640x480 
pixels, achieving approximately 10 frames per second peak 
frame rate.  All photographic subject selection and 
photography is done with the much higher quality digital 
camera, which uses a Canon-specific extension to the 
standard picture transfer protocol (PTP) that permits the 
shooting and immediate transfer of photos over the USB 
interface, rather than storing them into the camera’s flash 
memory for later retrieval.  This communication is enabled 
through the libptp2 library [6] and custom software based 

on the ptpcanon package [7].  The high-resolution camera 
operates either as a 2592x1944 pixel still camera or in 
“viewfinder” mode as a video camera achieving 5 frames 
per second at a 320x240 pixels.  At both resolutions, JPEG 
compression is applied, with a high compression ratio on the 
viewfinder images and a lower compression ratio on the still 
images.  Because subject selection, framing, and final high-
resolution imaging are performed using the single main 
camera, problems with static parallax such as would arise 
between multiple cameras, a laser ranger and a camera, or 
between a high-resolution camera and a stereo rig are 
avoided.   

Attached to the PC is a color inkjet printer (HP 5550) 
loaded with 5x7 inch photo paper stock.  This stock has 
been preprinted on the reverse side with information about 
the Robot Photographer and the event at which the photos 
are being taken.   

III. SUBJECT-IDENTIFICATION ALGORITHM 

In order to identify photographic subjects the Robot 
Photographer uses a multiple-step process that depends on 
both visual analysis and some degree of subject cooperation 
(specifically, that the subjects hold reasonably still).  The 
algorithm assumes that photographic subjects stand close 
together in a group, are arranged roughly parallel to the im-
age plane of the camera, and allow some depth between 
themselves and unwanted background objects.   

The subject identification process first produces sparse 
relative depth estimates for the entire field of view based on 
motion parallax.  This is accomplished by translating the 
robot and attached camera laterally, i.e., along the image 
plane, and computing the motion parallax from multiple 
frames acquired while moving.  Given the canonical posing 
of group photo subjects described above, and a perspective 
camera, regions corresponding to the subject will have simi-
lar parallax shifts.  By clustering points based on this esti-
mated depth, the subject regions are identified.  Finally, the 
algorithm determines the subject crop rectangle, a best-fit 
bounding box that fully encloses the subject regions.  The 
details of the subject identification process are as follows. 

A.  Motion Parallax Estimation 
Motion parallax provides a strong cue to scene depth.  

Given a moving camera and static environment, parallax can 
be directly measured using optical flow techniques on the 
video stream.  This is the approach taken by the Robot Pho-
tographer, which uses the Lucas-Kanade method [8], im-
plemented in image pyramids as part of the OpenCV com-
puter vision library [9, 10] to estimate optical flow as seen 
through the camera viewfinder.  Even though subpixel 
tracking is performed, optical flow field velocities exhibit 
increasing noise for smaller displacements.  To increase the 
resolution of our depth measurements we consider the cu-
mulative optical flow displacement over five frames rather 
than simply the displacement between the two most recent 
frames.  While this is in principle equivalent to choosing a 
wider stereo baseline or to decimating the incoming video 
sequence (i.e., estimating the flow field at a lower frame 
rate), the intermediate frames allow tracking errors, espe-
cially those due to spatial aliasing in scene areas with regu-
lar patterns, to be minimized.   



For a static scene, depth is inversely proportional to 
relative optical flow field velocity.  Regions containing 
points exhibiting large optical flow vectors will be closer to 
the camera than those with short vectors.  Fig. 2 shows an 
example of this.  The Robot Photographer does not make 
the inverse transformation to depth but instead directly clus-
ters the flow velocity values, as will be described in the next 
section.   

Limited dynamic behavior in the scene (i.e., other mov-
ing entities) can also be accommodated without confusion 
by observing the optical flow field over time.  As particular 
image patches are tracked the direction of the corresponding 
optical flow vectors is observed over several frames.  
Highly inconsistent directions for the same image patch 
serve as an indication of a tracking error or an independ-
ently moving portion of the scene.  The corresponding opti-
cal flow field elements are ignored in the clustering and 
rectangle calculation steps below.  This step assumes a 
smooth motion model for the robot, but an equivalent 
screening step can be performed for non-smooth robot mo-
tion.  

B.  Subject Identification via Depth Clustering 
Given the parallax displacements measured in the pre-

vious step the Robot Photographer proceeds to cluster the 
sparse tracking points used by the optical flow estimation 
process into groups of similar depth points.  The parallax 
displacements are inversely proportional to depth, and so 
the clustering process can be performed directly on the dis-
placement values with no loss of information.  The cluster-
ing is performed according to the procedure in Fig. 3.   

Once every displacement value has been assigned to a 
cluster, the clusters are sorted by decreasing displacement 
values (which corresponds to sorting by increasing depth).  
Given a canonical group photo pose, one would expect the 
subjects to be in the foreground (low depth values), of simi-
lar depth (within same cluster), and occupy a significant 
portion of the overall scene.  Hence, the first cluster in the 
sorted set that includes more than 5% of the total number of 
displacement values (track points) is selected as the subject.  
The 5% criteria helps increase robustness of the subject se-
lection to tracking errors and noise which may not be 
screened out by the flow-direction-consistency criteria dis-
cussed in the previous section.  

C.  Crop-Rectangle Selection 
Having established a cluster of points corresponding to 

the photographic subject, a crop-rectangle is selected which 
exactly encloses all of those points.   

D.  Rectangle-Consensus 
Because steps A-C above may execute as many as fifty 

times during the robot’s short subject-selection movement, a 
mechanism is needed by which the resulting crop rectangles 
can be combined into a “consensus” rectangle.  Using such 
a consensus operation further increases the robustness of the 
subject selection system since although individual candidate 
rectangles may be poorly placed due to jerky robot motion, 
tracking errors, subject, or background movement, the con-
sensus value is still likely to reflect a stable subject bound-
ary in the field of view. Common operators such as average 
or median would not be appropriate when used on rectangle 

bounding coordinates, nor would integrating rectangle en-
closures because the subject “moves” (due to the robot’s 
motion) in the field of view during this process.   

Instead, the Robot Photographer uses a voting scheme 
where crop rectangles of similar dimensions are grouped 
and contribute votes to an assertion that the correct subject 
rectangle is of that size.  (See Fig. 4)  After the robot’s mo-
tion is complete and before the final photo is taken, the most 
recent rectangle from the winning group is taken to be the 
consensus subject rectangle.   

Because the particular chosen rectangle may have been 
found before the end of the robot’s movement, an adjust-
ment must be applied to shift that rectangle a depth-
dependent number of pixels corresponding to the robot’s 
further movement.  (See Fig. 4)  This adjustment is calcu-
lated based on the remaining number of video frames during 
which the robot moved multiplied by the average shift per 
video frame observed in the winning group.  Using this 
method of adjustment avoids the need for any explicit map-
ping between parallax and actual depth in the scene.   

IV. IMAGE FRAMING ALGORITHM 

After identifying the subject region, the robot stops 
moving, asks the subjects to assume appropriate facial ex-
pressions by playing a sampled sound (“Say Cheese”), and 
commands the digital camera to take a high resolution still 
photograph.  Once the camera has captured and transferred 

Fig. 2:  Optical flow vector lengths vary by depth 
Each circle’s intensity indicates the magnitude of the motion parallax 
estimated at that tracking point.  Lighter colors denote greater parallax 
whereas darker circles denote lesser motion parallax.  The two track 

points marked with crosses (on the blank rear wall) are ignored because 
they have exhibited “unsmooth” flow over the recent 7 frames.  

for each displacement value {  
 look for a matching displacement cluster 
   (within 30%);  
 if a matching cluster is found,  
 add this displacement to it,  
 otherwise create a new cluster 
   at this displacement value  
} 

Fig. 3:  Procedure for clustering displacement values 



this image, the system produces a properly framed and 
cropped photograph for printing.  This is a nontrivial step as 
the system must crop the image in an aesthetically pleasing 
manner that both covers the subject area, without crowding 
the subjects, and ensures that the image matches the output 
medium aspect ratio.  The image framing algorithm starts 
with the subject crop rectangle, and modifies it to produce a 
properly framed cropping rectangle for printing.   

A.  Adding Breathing Room 
Closely cropped photographs are often aesthetically 

unpleasing, and most human photographers will include a 
small amount of “breathing room” around the subjects in a 
photo.  The Robot Photographer accomplishes this by 
introducing a factor to control the tightness of the crop.  The 
crop rectangle selected in the previous step is grown by an 
amount corresponding to 10% of the selected rectangle’s 
width.  This expansion is performed equally on all four 
sides of the crop rectangle, that is, the top and bottom of the 
rectangle are also expanded by the fraction of the rectan-
gle’s width, not height.  This ensures that the added “breath-
ing room” is balanced at image corners.  Where the ex-
panded rectangle would exceed the camera field of view, it 
is truncated to the field of view rectangle. This occurs most 
frequently at the bottom edge of an image because many 
subjects extend down to the floor, below the camera’s field 
of view.  

B.  Matching Aspect-Ratios  
Printed photos typically have a standard size related to 

the sizes of photo paper or frames available.  The Robot 
Photographer is designed to print 4x6 inch landscape im-
ages on standard 5x7 inch photo paper with appropriate 

margins and room for a caption.  Ideally, the printed photo 
will use as much of the image area as possible, given the 
selected print margins and layout, with the subject repro-
duced as large as possible.  Unfortunately, as there is no 
guarantee that the subject will closely match the proportions 
of the output medium, an adjustment of the aspect ratio 
(width/height ratio) of the crop rectangle may be necessary.   

Beyond the adjustment for “breathing room,” the crop 
rectangle is never enlarged.  This ensures that the subject 
fills the image frame and no additional distracting back-
ground clutter is added.  Any adjustment to the aspect ratio 
is made by further cropping at the bottom edge of the sub-
ject rectangle.  There are two reasons for this:  First, be-
cause most subjects stand on the ground or are supported by 
something/someone standing on the ground, the bottom 
edge of the camera field of view will often be cut at an arbi-
trary part of the subject or its supporting apparatus.  Thus, 
the bottom edge of the selected crop rectangle will be rela-
tively arbitrary and hence more amenable to adjustment than 
the other edges. Second, in a group photograph, the subject 
width is not generally amenable to adjustment without cut-
ting individuals off.  Similarly, the top edge is often corre-
sponds to the subjects’ heads and should not be cropped 
further.  It is typically least objectionable to crop the lower 
extremities in images of standing subjects, especially human 
ones.   

If the aspect ratio of the selected crop rectangle is 
greater than the aspect ratio of the target printed image (i.e., 
a wide, short subject area), then the full estimated subject 
rectangle is maintained, and the image is scaled to the width 
of the output medium.  This results in additional margin 
above and below the image (Fig. 5a).  The subject is repro-
duced as large as possible without distortion and without 
introducing foreground / background clutter.   

If the aspect ratio of the crop rectangle is somewhat less 
than that of the target printed image (i.e., a compact subject 

a) 

b) 

c) 

Fig. 5:  Adjusting subject crop rectangle to match target aspect ratio 
On the left, the filled/solid rectangles illustrate the full extent of the cam-
era image.  The dotted rectangles show the enclosing bounds around the 

subject established via motion parallax and optical flow.   
On the right, corresponding photo print mockups illustrate the  
resulting cropped and scaled photo using the image framing  

algorithm described in Section IV.   

Fig. 4:  Subject rectangle consensus process 
Each new video frame yields an estimated bounding rectangle for the 
subject (based on the closest major cluster of parallax measurements). 
Around 50 such rectangles are estimated per subject-localization cycle.  
The full set of candidate rectangles for one cycle is shown in (a) and the 

corresponding camera field of view in (b).  The candidate rectangles in (a) 
are spread across the frame because the subject shifts in view due to 

motion parallax.  Because our rectangle-consensus method looks only at 
width and height it is unaffected by this shift.  The dark black rectangle in 
(a) is the resulting consensus subject bounding rectangle.  Inset (c) depicts 
the set of features being tracked on the candidate subject at the end of the 

cycle, and (d) shows the final cropping decision.  

a) Candidate subject 
bounding rectangles 

b) Full field of view 

c) Tracked features in 
candidate subject cluster 

d) Final cropping decision 



similar in proportions to the target photo paper), the bottom 
edge of the subject rectangle is further cropped to until the 
ratios match (Fig. 5b).  This discards the lowermost portion 
of the subject, but ensures that the remaining subject area 
maximally fills the output image frame.   

Finally, if the aspect ratio is substantially less than the 
target print ratio (i.e., the subject area is very tall and nar-
row), then the preceding rules may cut off too much of the 
subject (especially for single human subjects).  Thus, if the 
aspect ratio of the crop rectangle is less than 2/3rds of that 
of the paper, the bottom edge is moved just enough to en-
sure that the output image aspect ratio is no smaller than the 
inverse of the golden mean (Fig. 5c).  The image is scaled to 
match the height of the output medium, which results in 
additional margin on the sides.  This last heuristic permits a 
tall, thin subject to be cropped reasonably and reproduced 
without switching to “portrait” orientation on the paper.  In 
general, such a switch may be preferable to the above rule, 
but the photo paper used with the Robot Photographer is 
preprinted on the reverse side with information about the 
project and we wanted to maintain a consistent orientation 
on both sides of the final print.   

V. COPING WITH HAZARDOUS WORKING CONDITIONS – 
NOT FALLING OFF THE TABLE 

The Robot Photographer’s current incarnation operates 
on top of a table so as to better interact with humans and to 
photograph human subjects from a more pleasing angle.  
But to identify a photographic subject, the robot must move 
around the table.  This means the robot is also in danger of 
falling off the table.  A comparable floor-standing robot 
might need to instead worry about running into obstacles 
such as people, furniture, or walls.  For both of these situa-
tions, hazard detection can be performed using motion par-
allax information.  For our tabletop Robot Photographer we 
take advantage of discontinuities in the motion parallax field 
to detect the table edges and adjust the robot’s position ac-
cordingly before beginning a major movement. This optical-
flow-based mechanism is robust and allows the robot to 
safely detect table edges from a variety of angles and dis-
tances. 

To check for a table edge, we turn the pan/tilt webcam 
attached to the robot in the direction of travel, and then 
command the robot to move a very short distance.  The vi-
sion system estimates optical flow using the images from 
the webcam and looks for a substantial discontinuity in flow 
field velocity over a short angular interval in the field of 
view (see Fig. 6).  The consistent presence of such a discon-
tinuity over a few frames of video is taken as a strong indi-
cation of a precipice, and within approximately 1cm of 
travel, the vision system can accurately determine the loca-
tion of any table edge in the robot’s field of view.  If the 
edge is found too close to the robot to permit the 15cm 
translational movement used in identifying photographic 
subjects, then the robot first maneuvers to get more space 
before attempting to frame the subject. 

VI. OBSERVED PERFORMANCE 

The Robot Photographer has been quite effective at 
producing well-framed and aesthetically pleasing photos of 
posed individuals and groups.  When our assumptions of 

posed, still subjects with a relatively static background are 
valid, the Robot Photographer produces excellent results.  
For instance, in a controlled experiment involving 20 pho-
tograph framing cycles, including 10 attempts at photo-
graphing a single human subject and 10 attempts at photo-
graphing a pair of human subjects, the Robot Photographer 
correctly framed 19 of 20 of the photographs.  The remain-
ing photograph was cropped too widely by approximately 
50%.   

When our assumptions do not hold, photographic per-
formance suffers.  For instance, in actual use at public 
events the Robot Photographer can be confused by inde-
pendent motion in the background, especially when that 
motion is smooth. 

For examples where correct framing is achieved, see 
Figs. 7a, 7b, and 7c, as well as Fig. 1.  The images in Figs. 1 
and 7a are correctly framed, with the subject area slightly 
cropped to match the 3:2 aspect ratio of the output.  Fig. 7a 
in particular illustrates that depth clustering and subject se-
lection are robust to slight variations in subject distance, and 
correctly include both the person kneeling in the foreground 
and those standing behind.  The image in Fig. 7b shows 
good framing for a tall, narrow subject, with preference 
shown to subject coverage and background elimination 
rather than matching the target aspect ratio.  In Fig. 7c, the 
Robot Photographer has correctly distinguished the fore-
ground subject from the individual acting as a support.   

For examples of incorrect framing, see Figs. 7d, 7e, and 
7f.  Fig. 7d shows a situation where background movement 
fools the depth estimation process, and results in the back-
ground regions being identified as subject area.  The prob-
lem arises because the two moving people in the back-
ground cause sufficiently large and smooth optical flow 
fields from their own motion that they confuse the subject 
identification process.  The motion parallax due to inde-
pendent motion is difficult to distinguish from the motion 
parallax due to the robot’s own motion.  In the image shown 
in Fig. 7e, the camera field of view includes non-subjects 

Fig. 6:  Precipice detection using optical flow vectors 
Each circle’s intensity indicates the velocity of the optical flow field at 
that tracking point.  Lighter shades indicate higher velocities and darker 

shades indicate lower velocities.  Depth from the camera is inversely 
correlated to optical flow field velocity in this case and precipice detec-

tion is accomplished by looking for significant discontinuities in the 
flow velocities. (such as occur at the table edge in this example)  



that are coplanar with the true subject.  Due to its similar 
depth, the non-subject material is clustered with the subject, 
resulting in a poorly cropped photo.  A modification to our 
clustering technique to account for spatial distance as well 
as parallax field magnitude might improve this particular 
case.  Finally, for particularly flat subject regions, or overly 
cluttered backgrounds, there may be an insufficient number 
of tracking points on the main subject or parts of the sub-
ject.  This results in either a completely misidentified sub-
ject area, or a selected subject region that only partially cov-
ers the main subject, producing over-cropped results as in 
Fig. 7f.   

VII. CONCLUSION 

This paper has introduced a mobile robot system that 
solves the picture framing problem by exploiting specific 

characteristics of posed group photos and applying optical 
flow and motion parallax techniques.  The subject of a 
photo is identified, framed, and the image correspondingly 
cropped without resorting to the analysis of image content 
or an attempt to resolve the general image understanding 
problem.  As a result, the Robot Photographer presented 
here works relatively well for both human and nonhuman 
subjects, and does not require heuristics or training specific 
to potential subjects.   

While we do not expect the Robot Photographer to put 
professional photographers out of a job, it does achieve rea-
sonable photographic performance.  Further improvements 
in framing may be achieved by developing a hybrid ap-
proach that uses the motion-based techniques explored here 
in conjunction with the more traditional content-based tech-
niques to more accurately identify the subject area across a 
wider range of scenes than with either type of algorithm 
alone. One potential picture quality refinement that is made 
possible by our technique is the selection of lens aperture 
based on subject depth range information to ensure suffi-
cient depth of field, while simultaneously minimizing the 
shutter time to avoid motion blur of the subject.  (Rather 
than simply relying on the arbitrary programmed exposure 
mode of the camera).  Finally, the subject identification and 
framing techniques described here may also be more gener-
ally useful in scenarios with less restricted robot motion, 
such as in an exploration rover.  Such a robot can certainly 
use our framing techniques to generate well-cropped images 
of features photographed, but may also be able to apply our 
techniques to the converse problem—positioning itself to 
ensure a subject is well-framed in the camera view.   
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Fig. 7:  Examples of successful (a,b,c) and unsuccessful (d,e,f) photo-
graphs taken by the Robot Photographer 

Images are shown before and after automatic cropping 

f) 

e) 

d) 

c) 

b) 

a) 


