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Abstract

Non-silicon based computing technologies open new
possibilities for designing electronic circuits which employ
more than two discrete levels of signal. Such circuits, called
multiple-valued logic circuits, have a number of theoreti-
cal advantages over standard binary circuits. In this pa-
per, we give an introduction to alternative to binary number
representations and multiple-valued logic. We discuss pos-
sibilities for implementing multiple-valued functions using
chemically assembled electronic nanotechnology.

1 Introduction

CMOS-based integrated circuit technology is built on the
principle ”a data bit is always zero or one”. This is due in
large part to the availability of simple, cheap and reliable
CMOS transistors with just two stable states: on and off.
However, novel computing technologies based on molecu-
lar electronics, quantum mechanics or biological processes
open interesting possibilities for utilizingmultiple-valued
logic and alternative to binary number systems.

Multiple-valued logic is a generalization of classical
Boolean logic. It provides a theoretical base for designing
electronic circuits with more than two logic levels of signal.
Multiple-valued logic circuits have a number of theoretical
advantages over standard binary circuits. For example, on
and off chip interconnect can be reduced if signals in the cir-
cuit assume four or more levels rather than only two [1]. In
memory design, storing two instead of one bit of informa-
tion per memory cell doubles the density of the memory in
the same die size [2]. Applications using arithmetic circuits
often benefit from using alternatives to binary number sys-
tems. For example, residue and redundant number systems
can reduce or eliminate the ripple-through carries which are
involved in normal binary addition or subtraction, resulting
in high-speed arithmetic operations [3, 4].

In spite of these potential advantages, practicality of

multiple-valued logic design heavily depends on the avail-
ability of circuit realizations which must be competitive
with present-day binary technologies. The attempts to built
integrated circuits employing multi-stable state devices and
signals with more than two discrete levels can be traced
back to 1970, starting from the early works on ternary
designs. Multiple-valued logic circuits have been imple-
mented in bipolar technology, such as integrated injection
logic (I2L) and emitter-coupled logic (ECL), in comple-
mentary metal oxide semiconductor (CMOS) technology
and in n-type MOS technology [5]-[10]. However, with ex-
ceptions of flash [11]-[14] and DRAM [15] memory appli-
cations, silicon-based multiple-valued designs are inferior
to their binary counterparts [16].

The impressive advances of non-silicon based technolo-
gies in recent years brings new hopes for non-binary com-
puting to become a reality. A number of fully func-
tional computing devices employing more than two sta-
ble states have been already proposed, including reso-
nant tunneling transistors (RTT), resonant tunneling diodes
(RTD) [17]-[20], surface tunneling transistors (STT) [21],
[22]. Negative-differential-resistance characteristics which
appear in these devices have clear multiple thresholds and
therefore are very promising for non-binary computing
[23]-[25].

The purpose of this paper is to stimulate the reader’s
interest beyond conventional binary case. We first give
an introduction to alternative to binary number represen-
tations and cover a part of multiple-valued logic theory.
We then look at the possibilities for implementing multiple-
valued logic circuits using molecular electronics. We show
how chemically assembled electronic nanotechnology can
be used for multiple-valued computing. Finally, we con-
clude with a discussion of some open problems.

2 Number representation

This section briefly describes potential advantages of
non-binary number systems. For a more detailed descrip-



tion the reader is referred to [30].
A digital system represents information with discrete

symbols rather than with continuously varying quantity,
as in an analog system. Digital binary systems use two
symbols, 0 and 1, to represent all information. There are
two major conventions for labeling values in a multiple-
valued logic system over a set ofm values. The most com-
mon is 0; 1; 2; : : : ;m � 2;m � 1, extending binary no-
tation in one direction only. It is calledunbalanced(or
unsigned, or positive). The second one requires an odd
m = 2r+1. It extends binary notation in both directions as
�r; 1 � r; : : : ;�1; 0; 1; : : : ; r � 1; r. It is calledbalanced
(or signed).

A string of digits (an�1 : : : a0) over a set ofm values
represents the number

an�1m
n�1 + an�2m

n�2 + : : : a0

For example, in the binary case ofm = 2, ai 2 f0; 1g. In
the ternary case ofm = 3, ai 2 f0; 1; 2g for the unbalanced
system, andai 2 f�1; 0;+1g for the balanced system.

One problem with binary number system is the represen-
tation of negative numbers. There are three common meth-
ods: (1)sign-magnitude, where a sign is attached in front of
the string of digits; (2)1’s complement, where the represen-
tation for a negative number is obtained by subtracting each
digit from 1; (3)2’s complement, where the same technique
as in (2) is used, but with a final addition of 1 to the number.

All three of these techniques suffer from drawbacks.
Both (1) and (2) have two representations for 0 (�0 and
+0), while (3) permits the representation of one more nega-
tive number than positive. Alternatively, in a balanced sys-
tem over a set ofm values, all numbers can be represented
without using an explicit sign. The sign of a number is the
sign of the most significant non-zero digit. Furthermore,
in a balanced ternary system, the negative of a number can
be computed by interchanging all1 by �1 an vice versa.
Hence, by changing the sign of the addend and subtrahend,
we can perform addition and subtraction using the same
hardware.

Another problem with binary number system is that, dur-
ing addition, the sum depends on the carry from lower bits.
Two alternative number systems have been studied to re-
duce or eliminate the ripple-through carries. The first one is
residuenumber system, in which there are no carries be-
tween bits. In such a representation, operations at each
digit occur independently of the other digits, resulting in
fast arithmetic operations [4], [27]. A disadvantage is that
the size of the digits may vary, and thus different circuits
might be needed for processing of different digits.

The second way to represent numbers, allowing to re-
duce the ripple-through carries, isredundantnumber sys-
tem. All numbers except 0 have two or more representations
by a string of digits. This allows us to make carry depen-

dent on the next two lower digits at most, but no other. Fast
multiple-valued arithmetic in redundant balanced number
system as well as in redundant unbalanced number system
have been presented in [3], [29] and [8], [28], correspon-
dently.

3 Multiple-valued functions

A multiple-valued function is a discrete function
whose input and output variables take two or more val-
ues. Formally, ann-variable multiple-valued function
f(x1; : : : ; xn) is a mappingf : Mn ! M , with the vari-
ablesxi taking values from the setM = f0; 1; 2; : : : ;m �
1g.

A popular algebraic system for manipulation of multiple-
valued functions ischain-based Post algebra, correspond-
ing to the first multiple-valued logic developed by Emil Post
in 1921 [31]. It is based on a totally ordered setM of
elements0 < 1 < : : : < m � 1 and use the operations
maximum (MAX), minimum (MIN) and literal. These set
of operations is functionally complete for multiple-valued
functions, meaning that is possible to define any function
overM as a composition of MIN, MAX and literals. Com-
pleteness is essential for any system which is to be used as
a basis for practical logic design. Once a complete set of
functions is identified, any logic circuit can be constructed
from the gates implementing the primitive functions from
this set. Form = 2, chain-based Post algebra reduces to a
Boolean algebra overf0; 1g.

4 Chemically assembled electronic nanotech-
nology

In this section we discuss possibilities for implementing
multiple-valued functions using chemically assembled elec-
tronic nanotechnology.

4.1 Binary case

A promising alternative to CMOS-based technology is
chemically assembled electronic nanotechnology (CAEN)
[26]. CAEN exploits the quantum-mechanical effect of
nanometer-scale devices. The electronic circuits are con-
structed by self-alignment and self-assembly of these small
devices rather than using lithography. A CAEN switch is
a two-terminal device behaving like a diode. Compared to
a CMOS transistor, such a switch uses much less power,
since only a few electrons are used for switching. Moreover,
a two-terminal device can be implemented in CAEN with
inexpensive chemical assembly. On the other hand, three-
terminal electronic nanotechnology devices require precise
alignment to allocate three wires at the device, which makes



them unsuitable for producing real circuits [26]. The logic
functions are implemented in CAEN using two-terminal
configurable switches and diodes only. A consequence is
that no inverters can be build, and therefore all logic sig-
nals should be available in both complemented and non-
complemented form to perform computations.

Due to the constraints associated with the direct assem-
bly of nanometer-scale components, CAEN technology is
unsuitable for fabricating non-regular architectures. In [26],
an regular architecture callednanoFabric, allowing to ex-
ploit the advantages of molecular electronics was intro-
duced. The nanoFabric is a two-dimensional homogeneous
array of interconnectednanoBlocks, which can be config-
ured to implement any logic function. Reconfigurability
of nanoFabric is essential for handling fabrication defects.
Since CAEN-based devices have a much higher defect den-
sity than CMOS-devices, their yield is very low. Thus, post-
fabrication self-diagnosis should first be applied to locate
the defects. Then, the fabric is configured to implement the
desired functionality by routing around the defected spots.

A nanoBlock is a square-shaped molecular array which
can be programmed to implement a 3-input 3-output
Boolean function and its complement. The inputs are placed
on north and east sides of the array and the outputs are
taken from the south and west sides of the array. The func-
tions are implemented by programming the configurable
switches which lie at each intersection of two orthogonal
wires. NanoBlocks can also be used as switches for routing.
In addition to local routing between the nanoBlocks, there
are long-lines that run between the clusters of nanoBlocks to
provide communication over longer distances and promote
scalability.

4.2 Multiple-valued case

Next, we show how nanoFabric can be used to imple-
ment multiple-valued functions. A number of possibilities
for such a generalization exist, depending on which prop-
erties of nanoFabric we would like to preserve. We have
chosen to keep the following features of nanoFabric:

� the architecture is a two-dimensional homogeneous
array;

� it can be configured to implement any logic function;

� only two-terminal devices are used, i.e. diode-resistor
logic;

The third point implies that, as in binary case, no in-
verters are available. First, we discuss what is ”inverter” in
multiple-valued case.

In binary case, inverter implements the complement op-
eration defined byx0 = 1�x, wherex is a Boolean variable
x 2 f0; 1g. It can easily be generalized to the complement

of a multiple-valued variablex 2 f0; 1; 2; : : : ;m � 1g as
x0 = (m � 1) � x. The AND operation can be extended
to a MIN, whose output is the smaller of the two values
of its variables. The set of operationsfAND, NOTg is
known to be functionally complete for Boolean functions
f0; 1gn ! f0; 1g. However, the extended setfMIN, NOTg
is not functionally complete for multiple-valued functions
Mn ! M . For example, it not possible to express the
3-valued 1-variable functionf(x) shown in Figure 1 as a
composition of MIN and NOT.

x f(x)

0 2
1 0
2 0

Figure 1. A function which cannot be ex-
pressed using MIN and NOT.

Our generalization of NOT is not successful because we
are trying to replace the binary NOT by asinglemultiple-
valued NOT. In fact, it is not possible to extend the binary
NOT to any single unary operation which would result in
a functionally complete system in combination with MIN
[32]. To achieve completeness of anm-valued system, a
variablex 2M should havem�1 different ”complements”
rather than just one. Note that, ifm = 2, thenm�1 degen-
erates 1, so in the binary case this phenomena is hidden.

To make anm-valued system functionally complete, we
extend NOT to a set of unary operations which are able to
distinguish between them values of the setM . Such unary
operations can be defined as follows.

Definition 1 A literal of a multiple-valued variablex is a
unary operation defined by

xS =

�
1 if x 2 S

0 otherwise

whereS �M .

If m = 2, then Definition 1 gives usxf1g = x and
xf0g = x0. So, literal is indeed a generalization of NOT.
To simplify the exposition, we omit brackets whenS is a
single-element set, i.e. we writex1 instead ofxf1g.

In binary case, a consequence of the absence of inverters
is that all logic signals should be available in both com-
plemented and non-complemented form [26]. In multiple-
valued case, the absence of literal gates implies that the sig-
nals for all literals have to be available. For example, if
m = 3, then a three-valued variablex should be available
asx0, x1 andx2. Similarly, the output functionf has to be



represented asf0, f1 andf2. This way of computing may
look complicated at first, a further analysis shows that deal-
ing with literals is much easier than dealing with multiple-
valued variables. Moreover, as we show below, it allows
us to implement multiple-valued functions with the same
diode-resistor logic as the one used for Boolean functions
in [26].

Manipulating literals is convenient because a literal is
a characteristic function of typeM ! f0; 1g. Therefore,
the operations on literals are Boolean operations of type
f0; 1gn ! f0; 1g. For example, a sum of two literalsxi+xj

or a product of two literalsxi � xj are binary Boolean op-
erations of typef0; 1g2 ! f0; 1g. Hence, we can define
the sum ”+” as OR and the product ”�” as AND and repre-
sent multiple-valued functions as sum-of-products of liter-
als. Next, we show that these three operations are sufficient
to define an arbitrary multiple-valued input binary-valued
output function of typeMn ! f0; 1g. The proof can be
found in [32, chapter 4].

First, we observe that the constants 0 and 1 can be
defined as0 =

Q
j2M x

j
i and 1 =

P
j2M x

j
i , for any

i 2 f1; 2; : : : ; ng. Next, we extend the Shannon decompo-
sition theorem from binary to multiple-valued case as fol-
lows.

Theorem 1 Every multiple-valued input binary-valued
output functionsMn ! f0; 1g can be decomposed with
respect to a variablexi, i 2 M , as

f(x1; : : : ; xn) =

m�1X
j=0

x
j
i � f jxi=j

wheref jxi=j = f(x1; : : : ; xi�1; j; xi+1; : : : ; xn) are co-
factors off with respect toxi,

P
stands for OR and ”�”

stands for AND.

By subsequently applying Theorem 1, we can decom-
pose ann-variable function with respect to all its vari-
ables and derive the following canonical sum-of-products
expression. Let ”+” = OR, ”�” = AND and L =
fx0; x1; : : : ; xm�1g be the set of literals specified by Defi-
nition 1.

Theorem 2 Every multiple-valued input binary-valued
output functionMn ! f0; 1g has a canonical expression
in terms off+; �; Lg of type

f(x1; : : : ; xn) =

mn�1X
i=0

ci x
i1
1 xi22 : : : xinn

whereci 2 f0; 1g are binary constants, and(i1i2 : : : in) is
them-ary expansion ofi with i1 being the least significant
digit.

For example, the functionf : f0; 1; 2g2 ! f0; 1g shown
in Figure 2 has the following canonical form:

f(x1; x2) = x01x
0
2 + x11x

0
2 + x01x

1
2 + x21x

1
2 + x11x

2
2 + x21x

2
2:

x2nx1 0 1 2
0 1 1 0
1 1 0 1
2 0 1 1

Figure 2. An example function.

The setM ofm elements together with the setA of func-
tions overM and two distinct elements0;1 inM generate a
finite algebrahM ;A;0;1i. For example, the setB = f0; 1g
with the functions AND, OR and NOT generate the Boolean
algebrahB; +; �;0 ; 0; 1i. The constants0 and1 are two par-
ticular elements ofM which have special properties. They
are called thezeroand theunit of the algebra, respectively.
The following result follows directly from Theorem 2.

Theorem 3 The algebrahM ; +; �; L;0;1i, where ”+” is
OR, ”�” is AND, L = fx0; x1; : : : ; xm�1g is the set of liter-
als,0 = 0 and1 = 1, is functionally complete for multiple-
valued input binary-valued output functionsMn ! f0; 1g.

It follows from Theorem 3, that we can implement any
multiple-valued function using the diode-resistor logic sim-
ilar to the one used for Boolean functions in [26]. The dif-
ference is that, instead of using the complemented and non-
complemented values of the signals, we are going to use
the literalsx0; x1; : : : ; xm�1 of the input variables and the
literalsf0; f1; : : : ; fm�1 of the output functions.

Similarly to the operation of the literal over a variable,
xi, the literal over a function,f i, is defined by

f i(x1; : : : ; xn) =

�
1 if f(x1; : : : ; xn) = i

0 otherwise

wherei 2 M is a constant. The literalf i contains the
minterms mapped toi by f(x1; : : : ; xn). So, the input do-
mainMn of f is partitioned intom disjoint sets.

For example, the 3-valuedMIN(x; y) function, whose
defining table is shown in Figure 3, is partitioned into
f0; f1; f2, defined by the following expressions:

f0 = x0 + y0

f1 = x1 � y1 + x1 � y2 + x2 � y1

f2 = x2 � y2

Since, for alli 2 M , f i is of typeMn ! f0; 1g, by
Theorem 3 it can always be expressed in terms of AND, OR
and literals of the variablesx1; : : : ; xn. Furthermore, since



ynx 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

Figure 3. An 3-valued MIN(x,y) function.

all signals for the literals of the variables are available, any
f i can be implemented by the molecular logic array, similar
to the binary molecular logic array proposed in [26].

The implementation of a 3-valued MIN gate in the
molecular logic array is shown in Figure 4. Figure 5 shows
the implementation of a 3-valuedMAX(x; y) gate.

V V VV

0 0
YX

X
2

1

2

1

X

Y

Y
MIN

1

MIN
0

MIN
2

Figure 4. A three-valued MIN gate imple-
mented in the molecular logic array.
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Figure 5. A three-valued MAX gate imple-
mented in the molecular logic array.

Figure 7 shows the implementation of a four-valued
adder. The defining tables for sums(x; y) and carryc(x; y)
are shown in Figure 6. From these tables, we can derive the
following expressions for the output literals:

s(x; y) c(x; y)

ynx 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

ynx 0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1

Figure 6. Defining tables for 4-valued sum and
carry outputs of a four-valued adder.

s0 = x0y0 + x1y3 + x2y2 + x3y1

s1 = x0y1 + x1y0 + x2y3 + x3y2

s2 = x0y2 + x1y1 + x2y0 + x3y3

s3 = x0y3 + x1y2 + x2y1 + x3y0

c0 = x0 + y0 + xf1;2gy1 + x1y2

c1 = xf1;2;3gy3 + xf2;3gy2 + x3y1

c2 = 0
c3 = 0

The literalsc2 andc3 are constant-zero functions. We show
them in the diagram for completeness. The resulting size of
the adder is16 � 16 grid. If we apply conventional tech-
niques to design a binary circuit of the same functionality
(2-bit adder) using9 � 9 grid binary half-adder from [26],
then we get a larger circuit, since three half-adders and a
2-input OR gate have to be used. However, a more detailed
analysis, e.g. using SPICE simulation, is needed to make a
fair comparison of both designs.

5 Conclusion

We gave a brief introduction to non-binary number sys-
tems and covered a part of the theory of multiple-valued
logic related to the design of electronic circuits: multiple-
valued functions, functionally complete sets and multiple-
valued algebraic systems. We discussed possibilities for im-
plementing multiple-valued functions with chemically as-
sembled electronic nanotechnology.

Future work includes making a more detailed compari-
son of multiple-valued and binary designs by modeling and
simulating them using SPICE.

A challenge to practical utilization of multiple-valued
logic is creation of an effective computer-aided design pack-
age. Although some of the concepts and algorithms neces-
sary for such a package have been already developed [33], a
significant amount of research remains to be done to make
it competitive with standard CAD packages.
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Figure 7. A four-valued adder implemented in
the molecular logic array.
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