
Memory Hierarchies for Quantum Data

Dean Copseyz, Mark Oskiny, Frederic T. Chongz, Isaac Chuang� and Khaled Abdel-Ghaffarz

zUniversity of California at Davis
yUniversity of Washington

�Massachusetts Institute of Technology

Abstract

Computing with quantum states may be the most efficient
approach to solving some problems which take exponen-
tial time on conventional computers. Quantum states,
however, are short-lived without constant error correction
involving tremendous overheads. We propose to reduce
these overheads by storing quantum data in a hierarchical
structure. Large groups of quantum bits can be encoded
together to reduce overhead in mass storage, but smaller
groups are needed to support the working set of a compu-
tation.

1 Introduction

Quantum computation seeks to exploit the physics of
quantum phenomena to achieve computation that scales
exponentially with data size. The basic building block is
a quantum bit, referred to as a qubit, is represented by
nanoscale physical properties such as nuclear spin. Scal-
able quantum computation, however, cannot be achieved
without extremely powerful error correction. In nature,
quantum phenomena occur at extremely small scales. En-
vironmental noise causes large scale systems to behave
with the classical physics that we are all accustomed to
seeing in everyday life. To build a quantum computer
with thousands or even millions of quantum bits requires
substantial effort to overcome environmental noise.

In fact, only recently have usable codes been developed
and sustainable quantum computation been shown to be
possible [Ste96a]. The key is to allow the basic operations
of quantum computing to be applied directly to coded data
without decoding and re-encoding the data. Such codes
have made possible the Threshold Theorem: as long as
the probability of error of each operation on a quantum
computer is less than some constant (estimated to be as
high as 10�4), scalable quantum computers can be built
using faulty components[KLZ98, Pre98, ABO97].

Existing error correction codes were developed primar-
ily as theoretical constructs to enable the ground-breaking
work that led to the Threshold Theorem. These codes are

actually applied recursively to achieve the desired level of
reliability. Unfortunately, the temporal and spatial over-
heads of such schemes is tremendous [OCC02].

The goal of this paper is to reduce the overhead of error
correction for one major component of a quantum com-
puter – the memory system. We observe that many quan-
tum operations necessary for computation are not needed
when storing bits in the memory system. This allows us
to use lower overhead codes in memory and revert back
to higher overhead codes for a “working set” of quantum
data. This basic premise allows us to design a set of codes
for a quantum memory hierarchy. The remainder of this
paper describes work-in-progress towards this goal.

In the next section we provide the reader with some
background material on quantum algorithms, primitive
operations, error correction methods and teleportation.
Using this prior work in quantum research, we examine
a quantum memory hierarchy in Section 3 and then dis-
cuss future work and conclusions.

2 Background

While a bit in a classical computer represents either zero
or one, a quantum bit can be thought to simultaneously
represent both states. More precisely, the state of a qubit is
described by probability amplitudes, which only turn into
probabilities upon external observation. Unlike classical
probabilistic computation, probabilities for different com-
putational pathways can cancel each other out through
interference, because the amplitudes are complex values
(i.e, real/imaginary pairs). The actual probabilities are de-
termined by the square of the amplitudes.

The key is that quantum computers directly manipu-
late probability amplitudes to perform a computation, and
multiple qubits form vectors that can represent 2n ampli-
tudes with n qubits. In other words, a two-qubit vector si-
multaneously represents each of the states j00i, j01i, j10i,
and j11i with some probability when measured. Each ad-
ditional qubit in a qubit vector doubles the number of am-
plitudes represented. The work of a quantum computer is
to manipulate these qubit vectors and their associated am-

plitudes in a useful manner. Manipulation of these qubit
vectors leads to what is often called quantum parallelism,
a useful way to begin thinking about what gives quan-
tum computers such high potential speedups over classi-
cal computers. The difficulty is that we generally cannot
look at the answer until the end of a computation, and
then we only get a single random value from the vec-
tor! More precisely, measuring a qubit vector collapses
it into a probabilistic classical bit vector, yielding a single
state randomly selected from the exponential set of possi-
ble states. For this reason, quantum computers are best at
“promise” problems – applications which use some hid-
den structure in a problem to find an answer which can be
easily verified.

Designers of quantum algorithms must be very clever
about how to get useful answers out of their computations.
One method is to iteratively skew probability amplitudes
in a qubit vector until the desired value is near 1 and
the other values are close to 0. This is used in Grover’s
algorithm for searching an unordered list of n elements
[Gro96]. The algorithm goes through

p
n iterations, at

which point a qubit vector representing the keys can be
measured. The desired key is found with high probability.

Another option in a quantum algorithm is to arrange the
computation such that it does not matter which of many
random results is measured from a qubit vector. This
method is used in Shor’s algorithm for prime factorization
of large numbers [Sho94], which is built upon the quan-
tum Fourier transform, an exponentially fast version of the
classical discrete Fourier transform. Essentially, the fac-
torization is encoded within the period of a set of highly
probable values, from which the desired result can be ob-
tained no matter what value is measured. Since prime fac-
torization of large numbers is the basis of many modern
cryptographic security systems, Shor’s algorithm has re-
ceived much attention.

2.1 Basic Quantum Operations

Figure 1 gives a few basic quantum operations that we will
use in our quantum architecture. These include one-bit
operations such as the Hadamard, bit-flip, and phase-flip;
as well as the two-bit controlled-not. These are given in
both their circuit representation and their matrix represen-
tation. The matrix representation involves multiplying the
operator times the amplitude vector of the quantum states.
C2

i gives the probability of state i (denoted with the nota-

2
1

10 −

10

2
1

0100 + +

10 11+

X Gate
Bit−flip, Not

Z Gate
Phase−flip

Controlled Not
Controlled X

CNot

H Gate
Hadamard

=

=

=

=

+

+0

X

Z

H

X

α
β

α
β

α
β

βα

αβ

α−β

ba

d c

1
1

−1
1

0
0

0
0

0
0

1 0
0 1

0
0
0

0
0

0
0

0
1

1

−1
1 1
1

a
b

α+β

c
d

Figure 1: Basic quantum operations

00 10
2
+ 00 11

2
00 +

H

Figure 2: Creating a “cat” state

tion jii) and the sum of all these probabilities must equal
one. Preserving this sum is equivalent to conserving en-
ergy and requires that all operations be reversible.

The bit-flip exchanges the probabilities of the two
states, while the phase flip changes the sign between them.
The Hadamard takes the two states and “mixes” them to
a “halfway” state. The controlled-not does a bit-flip if
the control qubit is 1. These basic gates, along with the
measurement of qubits, form the basic operations used for
data transport.

Figure 2 shows the entanglement of two qubits in a
Schrödinger “cat” state, also known as a Bell state or an
EPR state after Bell, Einstein, Podolsky and Rosen, who
were among the first to investigate such states. The val-
ues of the two qubits are tied together: whatever value is
measured for the first qubit will also be measured for the
second qubit. The amplitudes for j01i and j10i are zero.

2.2 Quantum Error Correction

Quantum phenomena are constantly evolving with time.
Atoms decay. Electrons change orbitals by absorbing or
emitting photons. Magnetic spin states of nuclei flip due
to external magnetic fields. A system cannot be isolated
to the point where it is completely stable. Hence, if two
qubits are in an entangled state, they will eventually de-
cohere due to entanglements with the environment.

H H0

1Ψ Ψ

2Ψ Ψ

Z

X

X

1
 ’

2
 ’

12

Figure 3: Measuring Z12, the phase difference between
	2 and 	1

Quantum error correction has much in common with its
classical counterpart. A logical qubit is encoded redun-
dantly in a number of physical qubits. The syndrome of
the physical qubits can be measured to determine whether
an error may need to be corrected. One difficulty in quan-
tum codes, however, is that the physical qubits can not be
measured without destroying their state.

We can get around this by using an ancillary zero qubit,
shown in Figure 3, which is interacted (using an H-gate,
or “mixing” operation) with the original physical qubit,
j	i. The ancillary qubit extracts information about the
error within j	i, but no information about the data value
of j	i itself. A simple analogy is imagine the XOR oper-
ation of two bits; the result is whether or not the two bits
are different (e.g. error), but not any information about
the bits absolute value. We can then measure the ancilla
to determine the syndrome of j	i. What is interesting is
that j	i is not unaffected by this interaction and measure-
ment. The measurement collapses the waveform in the
error-syndrome basis, and the resulting j	0i is either the
correct value, the value with the opposite phase, the value
inverted, or the value inverted with the opposite phase. So
syndrome measurement actually accomplishes two tasks:
the syndrome is measured and the continuous errors are
transformed into discrete errors which are easy to fix us-
ing a Z-gate. Table 1 gives a simple example of how these
fixes are done for a 3-qubit Shor code [Sho95], where Zij

is -1 if the i-th and j-th qubits differ in phase, +1 other-
wise. Since errors can occur in both phase and amplitude,
we perform a similar operation using X gates to measure
and correct amplitude. To have both amplitude and phase
correction at the same time, however, the Shor code re-
quires that 1 logical qubit to be encoded into 3 bits for
phase correction, then those 3 bits need to each be en-
coded into 3 bits for amplitude correction, resulting in a
9-bit code.

Shor’s code, based on the classical error correction

Z01 Z12 Error Type Action

+1 +1 no error no action
+1 -1 bit 3 flipped flip bit 3
-1 +1 bit 1 flipped flip bit 1
-1 -1 bit 2 flipped flip bit 2

Table 1: Phase correction for a 3-qubit code

H

H

H

H

Z

Z

Z Ψ

Ψ

Ψ

1A

0A

2Ψ

1Ψ

0Ψ

12Z

01Z

X

X

X

X

2
 ’

1
 ’

0
 ’

Figure 4: Syndrome Measurement for 3-bit Code

method of repetition, is termed a [[9; 1; 3]] code: nine
physical qubits, encoding one logical qubit, with a Ham-
ming distance of three. (A code with a distance of d is able
to correct (d � 1)=2 errors.) Shortly after Shor demon-
strated the [[9; 1; 3]] code, he and Calderbank[CS96],
and independently Steane[Ste96b], showed how to create
quantum error correction codes based on classical codes.
One such code is the [[7; 1; 3]] code attributed to Steane.
Further refinements and generalizations led to stabilizer
codes, such as the [[5; 1; 3]] code [LMPZ96], which is the
smallest (densest) known encoding of a single qubit, and
the [[8; 3; 3]] code [Ste96c, Got96, ACS97], the densest
three-qubit code.

As mentioned above, errors in quantum circuits are not
limited to full phase or bit flips, but can be any complex-
valued linear combination of the two. However, when the
error syndrome is measured, the state of the qubits is col-
lapsed in the error syndrome basis: measuring the error
effectively quantizes it so that only X , Z, and XZ opera-
tors need be applied to correct it.

Qubits are subject to decoherence when they interact
with the environment. Applying an operator to a qubit is
just such an interaction. It would be nice to be able to ap-
ply operators in such a manner that any errors introduced
could be corrected. In fact, if operators could be applied
to encoded qubits, any errors introduced by the operator
could be detected and corrected. The Calderbank-Shor-

Steane (CSS) codes have a nice property: operators can
be applied on the encoded (logical) bits by applying rel-
atively simple operators on the encoding (physical) bits.
For example, to apply an X operator on a qubit encoded
by the [[7; 1; 3]] code, simply apply the X operator on
each physical qubit. The same is true for the Z, H , Y
(= iXZ), and CNot operators. The S (rotate by �=4) op-
erator requires applying ZS. The last operator required to
create a universal set 1, the T (rotate by �=8) operator, re-
quires a slightly more complicated procedure. But as long
as the probability of an error, p, is below a certain thresh-
old, 1=c (about 10�4 for the [[7; 1; 3]] Steane code), any
number of operations may be performed with an overall
probability of error of cp2.

If a logical qubit is encoded in n physical qubits, it is
possible to encode each of those n qubits with an m-qubit
code to produce an mn encoding. Such concatenation of
codes can reduce the overall probability of error even fur-
ther. For example, concatenating the [[7; 1; 3]] with itself
gives an overall probability of error of c(cp2)2. Concate-
nating it k times gives (cp)2

k

=c, while the size of the sim-
ulating circuit increases by dk and the time complexity
increases by tk, where d is increase in circuit complexity
for a single encoding, and t is the increase in operation
time for a single encoding. For a circuit of size p(n), to
achieve an accuracy of �, then k must be chosen such that
[NC00]:

(cp)2
k

c
� �

p(n)

The number of gates (operators) to achieve this result
is O(poly(log p(n)=�)p(n)), provided p is below some
threshold.

2.3 Teleportation

Although many quantum error correction codes could be
used in a quantum computer, converting between them
can be problematic. In fact, conversion between codes can
randomly propagate errors across qubits and compromise
reliability. Fortunately, there is a special way to convert
between codes that avoids this problem. This method in-
volves the quantum primitive of teleportation [GC99]. As
it turns out, teleporation is not only a good way to con-
vert between codes, but it is also a good way to transport

1With a universal set of operators, any quantum operator may be
approximated to any desired accuracy.

|a�

|c�

H
source

target
|a�

|b�

ZX

EPR
Pair

CNOT

Figure 5: Quantum Teleportation

quantum data between the different parts of our memory
system.

Contrary to its science fiction counterparts, quantum
teleportation is not the instantaneous transmission of
information. Rather, it is the re-creation of a quan-
tum state at a destination using some classical bits that
must be communicated along conventional wires or other
mediums. In order for this to work, we need to pre-
communicate an EPR pair. We use the relationship be-
tween the pair to achieve teleportation.

Figure 5 gives a more precise view of the process. We
start with an EPR pair at the source end of the wire. We
separate the pair, keeping one qubit (b) at the source and
transporting the other (c) to the destination (quantum data
transport is denoted by the solid lines). When we want
to send a quantum bit of data (a), we first interact a with
b using a CNot and a Hadamard gate. We then measure
the phase and the amplitude of a (measurement is denoted
by the meters), send the two one-bit results to the desti-
nation classically (classical communication is denoted by
the double lines), and use those results to re-create the
correct phase and amplitude in c such that it takes on the
state of a. The re-creation of phase and amplitude is done
with controlled-X and Z gates, which perform the same
function as the gates described in Figure 1 but contingent
on a classical control bit (the measurements of a).

Note that the original state of a is destroyed once we
take our two measurements. This is consistent with the
“no-cloning” theorem, which states that a quantum state
can not be copied. Intuitively, since c has a special rela-
tionship with b, interacting a with b makes c resemble a,
modulo a phase and/or amplitude error. The two measure-
ments allow us to correct these errors and recreate a at the
destination.

In order to use teleporation to convert between different
error coding schemes, the two halves of our EPR pair are
encoded into the source and destination codes. The source
and destination qubits are then interacted bitwise with the

Recursion Storage Operation Min. time
level (k) overhead overhead overhead

0 1 1 1
1 7 153 5
2 49 23,409 25
3 343 3,581,577 125
4 2,401 547,981,281 625

Table 2: Overhead of recursive error correction for a sin-
gle qubit operation

respective EPR halves just as in the basic teleportation
algorithm. The result is a “quantum wire” which gives
us a means to both transport quantum data and convert
between different error correction codes.

3 Quantum Memory Hiearchy

The previous section introduced a number of quantum
concepts, some theoretical (algorithms, error correction,
teleportation), and some practical (decoherence rates,
primitive operations). Our goal, as architects, is to reason
about and abstract the structural components and organi-
zation of a future quantum processor. To do this, we will
examine the practical aspects, and what challenges will
arise from them. Then by applying the theoretical tools
we can deduce the structure of a quantum processing sys-
tem from the optimization of the underlying tradeoffs.

We focus our attention on Shor’s algorithm. Due to
its exponential speedup over any known classical algo-
rithm for factoring, it is one of the primary motivatations
to study quantum computing. Our goal in this section is
put together an analysis of the spatial and temporal lo-
cality of Shor’s algorithm together with reasonable esti-
mates of quantum device technology to arrive at a system
structure for a quantum computer. One assumption that
we will make is that a quantum processor will compute
in a [[7; 1; 3]] code, or a recursive (concatenated) variant
([[49; 1; 7]], [[343; 1; 15]], etc.). The reason for this is the
relative ease with which most quantum primitives are per-
formed on this code. Table 2 depicts the storage and op-
erational overhead of using these codes. The numbers are
for a single logical qubit, with rows depicting increased
levels of concatenation, and thus additional error correc-
tion capability.

To factor a 1024-bit product of two primes, thereby
breaking 1024-bit RSA encryption, requires roughly

Logical qubit

.

of encoding
First level

. . .

Second level
of encoding

Figure 6: Tree structure of concatenated codes

[[245,1,15]]

qubits

operations
Less complex More complex

code

More physical
Greater density

[[343,1,15]]

teleport

 qubits

Cache Memory
lines pages

Processor

teleport

[[392,3,15]]

Figure 7: Trading computational ease for density

p(n) =520 billion (5:2 � 1011) operations on a quantum
computer. For our calculations we will assume an aggres-
sive, but not overly optimistic quantum device technology
with a decoherence rate per operation of p = 10�6. This
implies that in order to reliably execute Shor’s algorithm
the operations will be performed on logical qubits in a
[[343; 1; 15]] code word (i.e. k, the recursion level is equal
to three).

The underlying architectural question is: should we use
the [[343; 1; 15]] code throughout the quantum processor,
or should we use teleportion as a code-conversion tool and
exploit denser codes for storage and the [[343; 1; 15]] code
only for the computational components of the system? If
we move to a denser code for storage there will be costs,
such as increased access time, and increased structure to
the quantum data.

One method of visualizing a [[343; 1; 15]] code is as a
tree of codes, with each node in the tree being a [[7; 1; 3]]
code (see Figure 6. It is straightforward to replace the top-
most node of this tree with either the [[5; 1; 3]] code or the
[[8; 3; 3] code and thereby generate a [[245; 1; 15]] code or
a [[392; 3; 15]] code. While the number of physical qubits
for the [[392; 3; 15]] code is larger (392 compared to 343),
this code encapsulates 3 logical qubits instead of just 1.
Hence, the overhead per-logical qubit is � 131 (Table 3).

Storage Operation Min. time
Code overhead overhead overhead
none 1 1 1

[[8; 3; 3]] 2.67 276=3 = 92 7
[[8�7; 3; 7]] 18.67 92� 153 = 35
= [[56; 3; 7]] 14; 076

[[8�7�7; 3; 15]] 130.67 14; 076� 153 = 175
= [[392; 3; 15]] 2; 153; 628

Table 3: Overhead of [[8; 3; 3]] concatenated with
[[7; 1; 3]] on a per-qubit basis

We can exploit this denser packing by creating a quan-
tum memory hierarchy that is analogous to classical hi-
erarchies. Instead of a classical cache based upon high-
speed SRAM, we use a “quantum cache” based upon less-
dense error correction codes. This cache (which has a line
size of 3 qubits in this paper) provides the random access
required by the quantum ALU.

Once we have such a cache we will want some method
to efficiently utilize it. Fortunately, like their classical
counterparts, quantum algorithms can be structured to ex-
hibit spatial and temporal locality. The Quantum Fourier
Transform (QFT), integral to Shor’s algorithm can be
blocked, to further increase locality.

Figure 8 shows a nine-bit QFT. In Figure 9, the op-
erators have been reordered so that groups of operators
involve two of three sets of three qubits each. (The X—
X operators “swap” two qubits, and are implemented by
three CNot’s. The Rk gates are “rotate by �=2k” gates.)
In this case, the third set of qubits can be cached while op-
erators are applied to the first and second sets; the first set
is then cached while operators are applied to the second
and third sets, and finally, the second set is cached while
operators are applied to the first and third sets. The three
logical qubits being cached require 392 physical qubits,
compared to 1,029 if they had not been cached, a space
savings of more than 60%.

Operationally, there is considerable savings. The sav-
ings is actually greater than that suggested by Tables 2 and
3. The number of operations required by the [[343; 1; 15]]
code is stated in per-logical operation terms. Since oper-
ators typically are not applied to the cache and memory
(with the exception of teleportation), the overhead is rel-
ative to the refresh rate of the cache. A general assump-
tion is that qubits decohere much more slowly when op-
erations aren’t being applied. So the operational savings
is potentially much more, depending on the properties of

the underlying quantum physical system. If we assume
the decoherence rate for an operation is ten times what it
is for an idle qubit in the same time frame, then the oper-
ational overhead for the [[343; 1; 15]] code is about fifteen
times that of the [[392; 3; 15]] code.

4 Future Work

In this paper, we focused on concatenated and CSS codes
due to their ease of use. Other non-concatenated (flat)
codes exist that are denser and may perform better.

In general, the more qubits encoded together, the higher
the operational overhead. Also, achievable parallelism de-
pends on the ability to get adjacent qubits to interact, since
operators require physical interations. Lastly, the refresh
rate depends on the underlying quantum physical prop-
erties. More overhead can be tolerated with greater par-
allelism or longer times between refreshes (i.e., less envi-
ronmental decoherence per unit time). Thus, the choice of
an error correction code depends on the physical proper-
ties and structure of the underlying quantum phenomena.

As noted above, the quantum Fourier transform is cur-
rently the most important quantum algorithm. More work
needs to be done on the relationship between the physical
structure and properties of quantum computers, and the
impact of cacheing on QFT.

Larger codes in general have more operational over-
head, but work with the [[8; 3; 3]] code indicates that the
per-qubit cost may be less. More investigation needs to
be done on the properties of dense-code operators.

Finally, the current work does not look at enough qubits
to warrant a three-level hierarchy. However, as quantum
algorithms evolve, one can envision a need for thousands
or millions of qubits. At that point, dense coding schemes
become very important. Other codes should be investi-
gated that can provide better density and/or stability. For
example, preliminary work on toric and high-genus sur-
face codes suggests they can be self-stabilizing [DKLP01,
Den00]. Also, quantum codes based on iteratively de-
coded classical codes [MN95] have the promise of being
extremely dense.

5 Conclusion

We envision a hierarchical quantum memory that exploits
temporal and spatial locality to make use of multiple

H

4

9

H

R

R2

8

6

R

R3

7

R

R

R4

H

7

6

H

R

H

5

R2

R

R

4

R3

R

5

3

H

R

R2

2

R

R

H

4R3R2RH

6R 8

4

R

R5

7

R

R

H

5

R3

R

3

4R

2R

R

3

R6

R

2

2

R5

R

R

R

Figure 8: Quantum Fourier transform on nine qubits

H

8

5

R9

H

R

R

RH

5

2

R7

6

R

H

R8

R

4

H

R6

6

R

R

R5

5

3

R

R7

4

R

R

R6

H

2R

3

R3

2

H

R

R4

H

R

2

R5

R

2

2

R2

R

3

R

R3

4R

R

R4

3

H

4R3R2

R

R7 R

Figure 9: Locality in the quantum Fourier transform

levels of error coding. A concatenated code based on
[[7; 1; 3]] could serve for registers on which calculations
are performed. Multi-qubit codes could serve for quantum
data at the cache line granularity. Other denser and more
stable codes could serve for quantum data at the page level
granularity.

Preliminary results on the quantum Fourier transform
algorithm are promising, and warrant further investiga-
tion.

References

[ABO97] D. Aharonov and M. Ben-Or. Fault tolerant
computation with constant error. In Proceed-
ings of the Twenty-Ninth Annual ACM Sympo-
sium on the Theory of Computing, pages 176–
188, 1997.

[ACS97] P. Shor A. Calderbank, E. Rains and
N. Sloane. Quantum error correction and or-
thogonal geometry. Phys. Rev. Lett., 78:405–
409, 1997.

[CS96] A. Calderbank and P. Shor. Good quantum
error-correcting codes exist. Phys. Rev. A,
54:1098, 1996.

[Den00] Eric Dennis. Quantum codes on high-genus
surfaces. 2000.

[DKLP01] Eric Dennis, Alexei Kitaev, Andrew Lan-
dahl, and John Preskill. Topological quantum
memory. 2001.

[GC99] D. Gottesman and I. L. Chuang. Quan-
tum teleportation is a universal computational
primitive. Nature, 402:390–392, 1999.

[Got96] D. Gottesman. A class of quantum error-
correcting codes saturating the quantum ham-
ming bound. Phys. Rev. A, 54:1862–1868,
1996.

[Gro96] L. Grover. A fast quantum mechanical algo-
rithm for database search. In Proc. 28th An-
nual ACM Symposium on the Theory of Com-
putation, pages 212–219, New York, 1996.
ACM Press.

[KLZ98] E. Knill, R. Laflamme, and W. H. Zurek.
Resilient quantum computation. Science,
279(5349):342–345, 1998. arXive e-print
quant-ph/9702058.

[LMPZ96] R. Laflamme, C. Miquel, J.-P. Paz, and W. H.
Zurek. Perfect quantum error correction code.
Phys. Rev. Lett., 77:198, 1996. arXive e-print
quant-ph/9602019.

[MN95] D. J. C. MacKay and R. M. Neal. Good codes
based on very sparse matrices. In Colin Boyd,
editor, Cryptography and Coding. 5th IMA
Conference, number 1025 in Lecture Notes in
Computer Science, pages 100–111. Springer,
Berlin, 1995.

[NC00] M. A. Nielsen and I. L. Chuang. Quan-
tum Computation and Quantum Information.
Cambridge University Press, Cambridge, UK,
2000.

[OCC02] Mark Oskin, Frederic T. Chong, and Isaac L.
Chuang. A practical architecture for reli-
able quantum computers. IEEE Computer,
35(1):79–87, January 2002.

[Pre98] J. Preskill. Fault-tolerant quantum computa-
tion. In H.-K. Lo, T. Spiller, and S. Popescu,
editors, Quantum information and computa-
tion. World Scientific, Singapore, 1998.

[Sho94] P. Shor. Algorithms for quantum computa-
tion: Discrete logarithms and factoring. In
Proc. 35th Annual Symposium on Founda-
tions of Computer Science, page 124, Los
Alamitos, CA, 1994. IEEE Press.

[Sho95] P. Shor. Scheme for reducing decoherence
in quantum computer memory. Phys. Rev. A,
52:2493–2496, 1995.

[Ste96a] A. Steane. Error correcting codes in quantum
theory. Phys. Rev. Lett., 77:793–797, 1996.

[Ste96b] A. Steane. Multiple particle interference and
quantum error correction. Proc. R. Soc. Lon-
don A, 452:2551–76, 1996.

[Ste96c] A. Steane. Simple quantum error correcting
codes. Phys. Rev. Lett., 77:793–797, 1996.

