
1

A Programming Environment for
DNA Computing

Steve Carroll (IANAB)

University of Illinois at

Urbana-Champaign

Motivation and Goals

• DNA based computing is one possible successor
for conventional silicon technology

• Sticker DNA model was proposed, but tools are
necessary to evaluate the efficiency of DNA
algorithms

• Provide a complete programming environment for
evaluating DNA algorithms

• Attempt to define a high level language that hides
tedious details from the programmers so they can
focus on algorithmic issues

• Evaluate the utility of compilers and simulators in
DNA computation

2

Outline

• Background

• Simulator design

• DNA-C language design

• Compiler design issues

• Discussion and Conclusions

What is DNA Computation?

• Single-stranded DNA is a chain of amino
acid bases (A,C,T,G)
– each base has a complement:

• Each strand will bond to a complementary
strand

GCTA ⇔⇔

ACTGTTGCC

TGACAACGG

3

DNA Sticker Model
• Use bonded and non-bonded state to encode information

• Each DNA strand is broken up into bits
– unique subsequences (comma-free codes)

• A sticker represents one bit segment and the sticker can only attach at
that position

• If the sticker is attached, the bit is “on”

• A tube contains many strands encoding different values

ATGC TGAA TTTT AAAA
TACG AAAA

Bit 3 Bit 2 Bit 1 Bit 0

Strand

Stickers

1 0 1 0 Encoded Value

Sticker Model II

• Algorithms exist for Minimal Set cover (NP complete) and DES
decryption in polynomial time

• General computation model operates on all possible solutions at once,
effectively trading time for space

• Initial condition is usually a single tube with one strand for each of the
possible solutions called the initial set.

• Ex: Init(3,6) is the set of length-6 strands with all possible binary
combinations of the first 3 bits

000000
000001
000010
000011
000100
000101
000110
000111

uninitialized bits
are used for storing
intermediate results

4

Basic Operations

• SET
– Sets a given bit in each strand in the tube
– Add sticker for that bit to the tube.

• RESET
– Clears a given bit in each strand in the tube
– Add anti-stickers to remove the stickers for that bit

• SEPARATE
– Separates one tube into two tubes based on whether or not a given

bit position is on or off
– A probe bonds to all unset strands

• COMBINE
– Combines two tube contents into a single tube.

Implementing XORs

Separate on bit 0

Separate on bit 1

bit 2 = bit 1 ^ bit 0000
001
010
011

001
011

000
010

000 010 001 011

Set bit 2

Combine

101
110

000
101
110

000
101
110
011

5

Proposed Machine Architecture

Data Tube

Data Tube

Operator Tube
Pump

•Components
•mixing apparatus
(right)
•Robot arm to bring
the appropriate tubes
to the mixer
•MIPS-like controller
processor
•DataTube rack
•StickerTube rack
•AntiStickerTube rack

Operator Tubes

• Blank
– no operation. Used for move and combine.

• Filter
– Allows only stickers and anti-stickers through.

Used for set and reset.

• Probe
– Catches all the strands not stickered at a given

bit. Used for separate.

6

Other Tube Types

• Data Tubes
– Contains the data strands. Some start empty, others

start initialized with the potential solution set.

• Sticker Tubes
– Each sticker tube contains a large number of stickers

for a given bit. Assumed that the sticker tube can be
refilled after each use. Used for set operations.

• AntiSticker Tubes
– Contains a large number of anti-stickers for a given bit.

Used for reset operations.

Simulator GUI

7

DNA ISA

• Standard MIPS-like instructions for integer
calculation and branching

• INIT tube_num, r
– r is the register containing the number of bits

• SET tube1, sticker_tube
• RESET tube1, anti_sticker_tube
• COMBINE tube1, tube2

– tube1 gets contents of tube1 and tube2

• SEPARATE tube1, tube2, probe_tube
– tube1 is split into tube1 and tube2 based on the bit that

is operated on by the probe tube.

Simulator Error Models

• Error percentages can be changed in the simulator

• Stickers that fall off
– bit errors

• Strands stuck to the side of the tube
– potential loss of the solution

• Stickers that adhere to the wrong place
– Could cause two bits to be covered.

– Stickers that adhere to close matches

8

DNA C

• An ANSI C dialect that can be used for DNA
programming.

• Features chosen based on the needs of proposed
algorithms.

• Two base types: “int” and “tube” and statically
allocated arrays of these types

• Each tube has an array-like syntax
– elements are the individual bits of the DNA strand

• No pointers, no structs and unions.
– A simplification, could exist if type safety was enforced

DNA C declarations

int i,j;

int k[100];

tube l<|64|>;

tube m[64]<|10|>;

tube n; // invalid

9

Sample program

void main() {

int I;

tube t1<|64|>;

tube t2<|64|>;

tube t3<|64|>;

t1 init 32; // Init(32,64)

t1<|8|> -> t2 : t3; // separate the strands
// in t1 based on bit 8

// into t2 and t3
for (I = 32; I < 64; I++) {

t2<|I|> = 1; // set the bit true

}

t1 = t2 + t3; // combine

}

Tube Syntax

• Arrays of tubes:
– tube t[8]<|5|> ;
– array of eight tubes containing 5 bit strands named t
– Multidimensional arrays are also allowed.

• Combine tubes:
– t = t + t2;
– t <- t2; t += t2;

– Contents of t2 added to t
• Logical operations (^, |, &,!):

– t<|5|> = t<|3|> ^ t<|4|>;

– Tube must be the same for each operand
• Transfer contents of the tube to another tube:

- t1 = t2

10

Tube Syntax (cont.)

• Assign a bit:
– t<|2|> = (I > 45);

– Bits are boolean variables.

• Copy a bit:
– t<|3|> = t<|4|>;

• Separate tube based on bit I:
– t<|I|> -> t_on : t_off;

• Initialize the tube:
– tube init int_val;

Results

• The minimal set covering algorithm as described
in the original paper was implemented in DNA C
and executed for various problem sizes

• The runtime scales exponentially in the simulator,
so it is only suitable for evaluating the algorithms
with reasonably small problem size.
– For minimal set cover and DES encryption, keep set

sizes and key sizes small for debugging, testing, and
refinement, then scale up to full size for actual
computation.

11

Results (cont)

of
bits

Runtime
(secs)

4 27

8 126

16 1306

32 15348

•Minimal Set Covering
Algorithm

•# of bits is the number of
subsets

•30 lines of source vs. 200
lines of assembly

Suggested Compiler
Optimizations

• Improving error performance
– compiler added redundancy

• Tube level parallelism
– each biological step is very slow
– optimization for performance should focus on

minimizing the number of separates, sets, and resets.
– even in a simple XOR conversion, if multiple mixers

are available, the number of steps can be reduced from
4 to 3.

• Tube allocation will be necessary to reuse the
tubes created in intermediate steps.

12

Discussion

• We can manipulate the tube data from the C program, but
there is no way to read the strand data into the C code.
– can implement the NAND gate, so all Boolean functions are

realizable, but is this sufficient for all desired applications?

– only feedback available is at the end of the execution
• model might be more robust if an “is tube empty?” operation could be

physically realized

• Optimizing for the least possible strand space, extra spaces
are effectively scratch pads and can be reused.

• Most of the simulation work is embarrassingly data
parallel

Conclusions

• Simulator is a good tool for demonstrating the
concepts of DNA computing.

• Tool should be useful in evaluating whether the
DNA computation model is expressive enough for
our needs.

• DNA-C allows the programmer to focus on
algorithm instead of bit level issues.

• A high level language makes it easy to develop a
library of common routines like sorts.

• Need to evaluate new computation technologies
from a programming perspective.

13

References

• “DNA Sequences Useful for Computation” by Eric
Baum

• On Applying Molecular Computation To The Data
Encryption Standard by Leonard M. Aldeman, Paul
W. K. Rothemund, Sam Roweis, and Erik Winfree. In
DNA Based Computers: DMACS Workshop, 1996.

• A Sticker Based Model for DNA Computation by Sam
Roweis, Erik Winfree, Richard Burgoyne, Nickolas V.
Chelyapov, Myron F. Goodman, Paul W. K.
Rothemund, and Leonard M. Adleman. In DNA
Based Computers: DMACS Workshop, 1996.

