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Motivation and Goals

• DNA based computing is one possible successor
for conventional silicon technology

• Sticker DNA model was proposed, but tools are
necessary to evaluate the efficiency of DNA
algorithms

• Provide a complete programming environment for
evaluating DNA algorithms

• Attempt to define a high level language that hides
tedious details from the programmers so they can
focus on algorithmic issues

• Evaluate the utility of compilers and simulators in
DNA computation
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Outline

• Background

• Simulator design

• DNA-C language design

• Compiler design issues

• Discussion and Conclusions

What is DNA Computation?

• Single-stranded DNA is a chain of amino
acid bases (A,C,T,G)
– each base has a complement:

• Each strand will bond to a complementary
strand

GCTA ⇔⇔

ACTGTTGCC

TGACAACGG
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DNA Sticker Model
• Use bonded and non-bonded state to encode information

• Each DNA strand is broken up into bits
– unique subsequences (comma-free codes)

• A sticker represents one bit segment and the sticker can only attach at
that position

• If the sticker is attached, the bit is “on”

• A tube contains many strands encoding different values

ATGC TGAA TTTT AAAA
TACG AAAA

Bit 3 Bit 2 Bit 1 Bit 0

Strand

Stickers

1 0 1 0 Encoded Value

Sticker Model II

• Algorithms exist for Minimal Set cover (NP complete) and DES
decryption in polynomial time

• General computation model operates on all possible solutions at once,
effectively trading time for space

• Initial condition is usually a single tube with one strand for each of the
possible solutions called the initial set.

• Ex: Init(3,6) is the set of length-6 strands with all possible binary
combinations of the first 3 bits

000000
000001
000010
000011
000100
000101
000110
000111

uninitialized bits
are used for storing
intermediate results
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Basic Operations

• SET
– Sets a given bit in each strand in the tube
– Add sticker for that bit to the tube.

• RESET
– Clears a given bit in each strand in the tube
– Add anti-stickers to remove the stickers for that bit

• SEPARATE
– Separates one tube into two tubes based on whether or not a given

bit position is on or off
– A probe bonds to all unset strands

• COMBINE
– Combines two tube contents into a single tube.

Implementing XORs

Separate on bit 0

Separate on bit 1

bit 2 = bit 1 ^ bit 0000
001
010
011

001
011

000
010

000 010 001 011

Set bit 2

Combine

101
110

000
101
110

000
101
110
011
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Proposed Machine Architecture

Data Tube

Data Tube

Operator Tube
Pump

•Components
•mixing apparatus
(right)
•Robot arm to bring
the appropriate tubes
to the mixer
•MIPS-like controller
processor
•DataTube rack
•StickerTube rack
•AntiStickerTube rack

Operator Tubes

• Blank
– no operation. Used for move and combine.

• Filter
– Allows only stickers and anti-stickers through.

Used for set and reset.

• Probe
– Catches all the strands not stickered at a given

bit. Used for separate.
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Other Tube Types

• Data Tubes
– Contains the data strands. Some start empty, others

start initialized with the potential solution set.

• Sticker Tubes
– Each sticker tube contains a large number of stickers

for a given bit. Assumed that the sticker tube can be
refilled after each use. Used for set operations.

• AntiSticker Tubes
– Contains a large number of anti-stickers for a given bit.

Used for reset operations.

Simulator GUI
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DNA ISA

• Standard MIPS-like instructions for integer
calculation and branching

• INIT tube_num, r
– r is the register containing the number of bits

• SET tube1, sticker_tube
• RESET tube1, anti_sticker_tube
• COMBINE tube1, tube2

– tube1 gets contents of tube1 and tube2

• SEPARATE tube1, tube2, probe_tube
– tube1 is split into tube1 and tube2 based on the bit that

is operated on by the probe tube.

Simulator Error Models

• Error percentages can be changed in the simulator

• Stickers that fall off
– bit errors

• Strands stuck to the side of the tube
– potential loss of the solution

• Stickers that adhere to the wrong place
– Could cause two bits to be covered.

– Stickers that adhere to close matches
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DNA C

• An ANSI C dialect that can be used for DNA
programming.

• Features chosen based on the needs of proposed
algorithms.

• Two base types: “int” and “tube” and statically
allocated arrays of these types

• Each tube has an array-like syntax
– elements are the individual bits of the DNA strand

• No pointers, no structs and unions.
– A simplification, could exist if type safety was enforced

DNA C declarations

int i,j;

int k[100];

tube l<|64|>;

tube m[64]<|10|>;

tube n; // invalid
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Sample program

void main() {

int I;

tube t1<|64|>;

tube t2<|64|>;

tube t3<|64|>;

t1 init 32; // Init(32,64)

t1<|8|> -> t2 : t3; // separate the strands
// in t1 based on bit 8

// into t2 and t3
for (I = 32; I < 64; I++) {

t2<|I|> = 1; // set the bit true

}

t1 = t2 + t3; // combine

}

Tube Syntax

• Arrays of tubes:
– tube t[8]<|5|> ;
– array of eight tubes containing 5 bit strands named t
– Multidimensional arrays are also allowed.

• Combine tubes:
– t = t + t2;
– t <- t2; t += t2;

– Contents of t2 added to t
• Logical operations (^, |, &,!):

– t<|5|> = t<|3|> ^ t<|4|>;

– Tube must be the same for each operand
• Transfer contents of the tube to another tube:

- t1 = t2
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Tube Syntax (cont.)

• Assign a bit:
– t<|2|> = (I > 45);

– Bits are boolean variables.

• Copy a bit:
– t<|3|> = t<|4|>;

• Separate tube based on bit I:
– t<|I|> -> t_on : t_off;

• Initialize the tube:
– tube init int_val;

Results

• The minimal set covering algorithm as described
in the original paper was implemented in DNA C
and executed for various problem sizes

• The runtime scales exponentially in the simulator,
so it is only suitable for evaluating the algorithms
with reasonably small problem size.
– For minimal set cover and DES encryption, keep set

sizes and key sizes small for debugging, testing, and
refinement, then scale up to full size for actual
computation.
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Results (cont)

# of
bits

Runtime
(secs)

4 27

8 126

16 1306

32 15348

•Minimal Set Covering
Algorithm

•# of bits is the number of
subsets

•30 lines of source vs. 200
lines of assembly

Suggested Compiler
Optimizations

• Improving error performance
– compiler added redundancy

• Tube level parallelism
– each biological step is very slow
– optimization for performance should focus on

minimizing the number of separates, sets, and resets.
– even in a simple XOR conversion, if multiple mixers

are available, the number of steps can be reduced from
4 to 3.

• Tube allocation will be necessary to reuse the
tubes created in intermediate steps.
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Discussion

• We can manipulate the tube data from the C program, but
there is no way to read the strand data into the C code.
– can implement the NAND gate, so all Boolean functions are

realizable, but is this sufficient for all desired applications?

– only feedback available is at the end of the execution
• model might be more robust if an “is tube empty?” operation could be

physically realized

• Optimizing for the least possible strand space, extra spaces
are effectively scratch pads and can be reused.

• Most of the simulation work is embarrassingly data
parallel

Conclusions

• Simulator is a good tool for demonstrating the
concepts of DNA computing.

• Tool should be useful in evaluating whether the
DNA computation model is expressive enough for
our needs.

• DNA-C allows the programmer to focus on
algorithm instead of bit level issues.

• A high level language makes it easy to develop a
library of common routines like sorts.

• Need to evaluate new computation technologies
from a programming perspective.
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