A Programming Environment for
DNA Computing

Steve Carroll (IANAB)
University of Illinois at
Urbana-Champaign

Motivation and Goals

* DNA based computing is one possible successor
for conventional silicon technology

» Sticker DNA model was proposed, but tools are
necessary to evaluate the efficiency of DNA
algorithms

* Provide a complete programming environment for
evaluating DNA algorithms

» Attempt to define ahigh level language that hides
tedious details from the programmers so they can
focus on agorithmic issues

» Evauate the utility of compilers and simulatorsin
DNA computation

Outline

Background

Simulator design

DNA-C language design
Compiler design issues
Discussion and Conclusions

What is DNA Computation?

Single-stranded DNA is achain of amino
acid bases (A,C,T,G)

— each base hasacomplement: A=T csG
Each strand will bond to a complementary
strand

Frr i
< TGACAACGG>

DNA Sticker Moddl

Use bonded and non-bonded state to encode information

Each DNA strand is broken up into bits
— unique subsequences (comma-free codes)
A sticker represents one bit segment and the sticker can only attach at
that position
If the sticker is attached, the bit is*on”
A tube contains many strands encoding different values

1 0 1 0 <4— Encoded Value

«ATGC TGAA TTTT AAAA» € Strand
“TACG> Rpiviviviig <4— Stickers

—_— Y Y

Bit3 Bit2 Bitl BitO

Sticker Model 11

Algorithms exist for Minimal Set cover (NP complete) and DES
decryption in polynomial time

General computation model operates on all possible solutions at once,
effectively trading time for space

Initial condition is usually a single tube with one strand for each of the
possible solutions called the initial set.

Ex: Init(3,6) isthe set of length-6 strands with all possible binary
combinations of the first 3 bits

000000
000001
uninitialized bits 000010
are used for storing —> 200911

. . 000100
intermediate results 000101

000110
000111

Basic Operations

o SET

— Setsagiven bit in each strand in the tube

— Add sticker for that bit to the tube.
e RESET

— Clearsagiven bit in each strand in the tube

— Add anti-stickers to remove the stickers for that bit
e SEPARATE

— Separates one tube into two tubes based on whether or not a given
bit position is on or off

— A probe bondsto all unset strands
e COMBINE
— Combines two tube contents into a single tube.

|mplementing XORs

bit2=bit 1" bit0

Separate on bit 0

Proposed Machine Architecture

*Components
*mixing apparatus
(right)
*Robot arm to bring
the appropriate tubes

Data Tube m

to the mixer @ Pump
MIPS-like controller | Operator Tube
jprocessor
sDataTube rack
*StickerTube rack Data Tube
*Anti StickerTube rack
Operator Tubes
» Blank
— no operation. Used for move and combine.
o Filter
— Allows only stickers and anti-stickers through.
Used for set and reset.
* Probe

— Catches all the strands not stickered at agiven
bit. Used for separate.

Other Tube Types

» DataTubes

— Contains the data strands. Some start empty, others
start initialized with the potential solution set.

o Sticker Tubes

— Each sticker tube contains alarge number of stickers
for agiven bit. Assumed that the sticker tube can be
refilled after each use. Used for set operations.

e AntiSticker Tubes

— Contains alarge number of anti-stickers for a given bit.
Used for reset operations.

Simulator GUI

o Dat FREFFFFFF
1 Data TFFFFFFFF
S FTFFFFFFF
o el Fereereer
deoat TFTFFFFFF
FTTFFFFFF
TTTRFFFFF
FFFTFFFFF
TFETFFRFF
FTFTFFFFF
TTETFFFFF
FFTTFFFFF
TETTFFFFF
FTTTFFFFF
TTTTFFFFF

Select Tube

) Data Memory 7550555 s s

3 LOAD_IMM 0 0
45 LOAD_IMM 01
5 LOAD_IMM 0 2
B: LOAD_IMM 2 3
7ILOAD_IMM 1 4
8 LOAD_IMM 2 5
9: LOAD_IMM 2 6
10: LOAD_IMM 8 7
11: SEPARATE D 4 1
12 SEPARATE D 5 3
13 SEPARATE 46 3
14: COMBINE 4 5
15 8ET47T

18 COMBINE 0 4
17: COMBINE 0 8
18 LOAD_IMM 0 8

Applet started

DNA [SA

Standard M1PS-like instructions for integer
calculation and branching

INIT tube num, r
— risthe register containing the number of bits

SET tubel, sticker tube

RESET tubel, anti_sticker_tube
COMBINE tubel, tube2

— tubel gets contents of tubel and tube2
SEPARATE tubel, tube2, probe tube

— tubelissplit into tubel and tube2 based on the bit that
is operated on by the probe tube.

Simulator Error Models

Error percentages can be changed in the ssmul ator
Stickersthat fal off
— bit errors
Strands stuck to the side of the tube
— potential loss of the solution
Stickers that adhere to the wrong place

— Could cause two bits to be covered.
— Stickers that adhere to close matches

DNA C

 An ANSI C diaect that can be used for DNA
programming.
 Features chosen based on the needs of proposed
algorithms.
e Two base types. “int” and “tube’ and statically
alocated arrays of these types
» Each tube has an array-like syntax
— elements are the individual bits of the DNA strand
» No pointers, no structs and unions.
— A simplification, could exist if type safety was enforced

DNA C declarations

inti,;

int k[100];

tube I<|64>;

tube m[64]<|10J>;
tuben; // invalid

Sample program

void main() {
int I;
tube tl<|64]|>;
tube t2<|64]|>;
tube t3<|64]|>;
tl init 32; // Init(32,64)

tl<|8|> -> t2 : t3; // separate the strands
// in tl based on bit 8

// into t2 and t3
for (I = 32; I < 64; I++) {
t2<|I|> = 1; // set the bit true

}

tl = t2 + t3; // combine

Tube Syntax

e Arraysof tubes:
- tube t[8]<|5]|>;
— array of eight tubes containing 5 bit strands named t
— Multidimensional arrays are also allowed.

e Combine tubes:

-t = t + t2;
-t <- t2; t += t2;
— Contents of t2 added to t

e Logical operations (", |, &,!):
- t<|5|> = t<|3|> » t<|4|>;
— Tube must be the same for each operand
e Transfer contents of the tube to another tube:
-tl = t2

Tube Syntax (cont.)

Assign abit:

-t<|2]> = (I > 45);

— Bitsare boolean variables.
Copy ahit:

—t<|3|> = t<|4|>;
Separate tube based on bit I:

- t<|I|> -> t on : t off;
Initialize the tube:

- tube init int val;

Results

The minimal set covering agorithm as described
in the original paper was implemented in DNA C
and executed for various problem sizes

The runtime scales exponentialy in the smulator,
so it isonly suitable for evaluating the algorithms
with reasonably small problem size.

— For minimal set cover and DES encryption, keep set
sizes and key sizes small for debugging, testing, and
refinement, then scale up to full size for actual
computation.

10

Results (cont)

*Minimal Set Covering ﬁii’l Rf;ﬂg"e
Algorithm
4 27
o# of bitsisthe number of
subsets 8 126
30 lines of source vs. 200 16 1306
lines of assembly 32 15348

Suggested Compiler
Optimizations

* Improving error performance
— compiler added redundancy
e Tubelevel parallelism
— each biological step isvery slow
— optimization for performance should focus on
minimizing the number of separates, sets, and resets.

— eveninasimple XOR conversion, if multiple mixers

are available, the number of steps can be reduced from
4t0 3.

* Tube alocation will be necessary to reuse the
tubes created in intermediate steps.

11

Discussion

We can manipulate the tube data from the C program, but
there is no way to read the strand datainto the C code.

— canimplement the NAND gate, so all Boolean functions are
realizable, but isthis sufficient for all desired applications?

— only feedback availableis at the end of the execution
» model might be more robust if an “is tube empty?’ operation could be
physically realized
Optimizing for the least possible strand space, extra spaces
are effectively scratch pads and can be reused.

Most of the simulation work is embarrassingly data
parale

Conclusions

Simulator is agood tool for demonstrating the
concepts of DNA computing.

Tool should be useful in evaluating whether the
DNA computation model is expressive enough for
our needs.

DNA-C allows the programmer to focus on
algorithm instead of bit level issues.

A high level language makesiit easy to develop a
library of common routines like sorts.

Need to evaluate new computation technologies
from a programming perspective.

12

References

“DNA Sequences Useful for Computation” by Eric
Baum

by Leonard M. Aldeman, Paul
W. K. Rothemund, Sam Roweis, and Erik Winfree. In
DNA Based Computers: DMACS Workshop, 1996.

by Sam
Roweis, Erik Winfree, Richard Burgoyne, Nickolas V.
Chelyapov, Myron F. Goodman, Paul W. K.
Rothemund, and Leonard M. Adleman. In DNA
Based Computers: DMACS Workshop, 1996.

13

