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• Understand and engineer:
– Genetic regulatory networks

– Cell-cell communications
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Programmed Cell Applications
• “Real time” cellular debugger

– detect conditions that satisfy logic statements
– maintain history of cellular events

• Environmental
– sense & respond to complex environmental conditions

• Biomedical
– combinatorial gene regulation with few inputs

• Molecular-scale fabrication
– cellular robots that manufacture complex scaffolds

Programming Cells

proteins

synthesize &
insert plasmid

(plasmid = “user program”)

Biochemical logic circuit

0.5µm
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A Biochemical Inverter

signal = concentration of specific molecules (mRNA)
computation = regulated mRNA and protein synthesis + decay

Outline

• In-vivo digital circuits

• Cellular gates: Inverter, Implies

• BioSPICE circuit simulations & design

• Measuring & modifying “device physics”

• Cell-cell Signaling
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Why Digital?

• We know how to program with it
– Signal restoration + modularity = robust complex circuits

• Cells do it
– Phage λ cI repressor: Lysis or Lysogeny?

[Ptashne, A Genetic Switch, 1992]

– Circuit simulation of phage λ
[McAdams & Shapiro, Science, 1995]

• Also working on combining analog &
digital circuitry

Logic Circuits based on Inverters

• Proteins are the wires/signals
• Promoter + decay implement the gates
• NAND gate is a universal logic element:

– any (finite) digital circuit can be built!
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BioCircuit Computer-Aided Design

SPICE BioSPICE

steady state dynamics intercellular

• BioSPICE: a prototype biocircuit CAD tool
– simulates protein and chemical concentrations
– intracellular circuits, intercellular communication
– single cells, small cell aggregates

“Proof of Concept” Circuits
• Work in BioSPICE simulations [Weiss, Homsy, Nagpal, 1998]

• They work in vivo
– Flip-flop [Gardner & Collins, 2000], Ring oscillator [Elowitz & Leibler, 2000]

• Models poorly predict their behavior
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Actual Behavior of Ring Oscillator
[Elowitz & Leibler, 2000]

The Cellular Gate Library

• Assembled and characterized a library of gates
– Constructed and measured gates using 4 genetic elements

• lac, tet, cI, lux

• Genetic process engineering
– Different elements have widely varying characteristics

• Modify “device physics” of gates until they match

– Created 16 variations of cI in order to match with lac:
• modified repressor/operator affinity

• modified RBS efficiency

• Established component evaluation criteria
– Initially, focused on steady state behavior
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Device Physics in Steady State

Transfer curve:
gain (flat,steep,flat)
adequate noise margins

[input]

“gain”

0 1

[output]

• Curve can be achieved with certain dna-binding proteins
• Inverters with these properties can be used to build complex circuits

“Ideal” inverter

Measuring a Transfer Curve

• Construct a circuit that allows:
– Control and observation of input protein levels

– Simultaneous observation of resulting output levels

“drive” gene output gene

R YFPCFP

inverter

• Also, need to normalize CFP vs YFP
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The IMPLIES Gate

• Inducers that inactivate repressors:
– IPTG (Isopropylthio-ß-galactoside) Lac repressor

– aTc (Anhydrotetracycline) Tet repressor

• Use as a logical Implies gate: (NOT R) OR I

operatorpromoter gene

RNAP

active
repressor

operatorpromoter gene

RNAP

inactive
repressor

inducerno transcription transcription

Repressor Inducer Output

0 0 1
0 1 1
1 0 0
1 1 1

Repressor
Inducer

Output

Drive Input Levels by Varying Inducer
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Controlling Input Levels

Measuring a Transfer Curve
for lacI/p(lac)
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Transfer Curve Data Points
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Evaluating the Transfer Curve

• Noise margins:
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• Gain / Signal restoration:

high gainhigh gain

* note: graphing vs. aTc
(i.e. transfer curve of 2 gates)

The Cellular Gate Library
Add the cI/λP(R) Inverter

OR1OR2 structural gene

λP(R-O12)

• cI is a highly efficient repressor
cooperative

binding

IPTG

YFP
cI

CFP
lacI
[high]0

(Off) λP(R)P(lac)

• Use lacI/p(lac) as driver

high
gain

cI bound to DNA
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Initial Transfer Curve for cI/λP(R)
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Functional Composition of an Inverter

“clean” signal digital inversionscale input invert signal

ψΑ

φΑ

translation

φΑ

ρΑ

0 10 1 ρΑ

ψΖ

0 1

+ + = ψΖ

ψΑ

“gain”

0 1

+ + =

cooperative
binding

transcription inversion

ψΑ = input mRNA
φΑ = input protein

ρΑ = bound operators
ψΖ = output mRNA

Genetic Process Engineering I:
Reducing Ribosome Binding Site Efficiency

RBS

translation

start

Orig:  ATTAAAGAGGAGAAATTAAGCATG strong
RBS-1:  TCACACAGGAAACCGGTTCGATG
RBS-2:   TCACACAGGAAAGGCCTCGATG
RBS-3: TCACACAGGACGGCCGGATG weak

ψΑ

φΑ

translation
stage

ψΖ

ψΑ

Inversion
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Experimental Results for
cI/λP(R) Inverter with Modified RBS

Genetic Process Engineering II:
Mutating the λP(R) operator

BioSPICE Simulation

orig: TACCTCTGGCGGTGATA
mut4: TACAAAATCTGGCGGTGATA
mut5: TACAAAATAAAATGGCGGTGATA
mut6 TACAGAAGAAGAAGATGGCGGTGATA

OR1

φΑ

ρΑ

cooperative
binding

ψΖ

ψΑ
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Experimental Results for Mutating λP(R)
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Genetic Process Engineering

• Genetic modifications required to make circuit work

• Need to understand “device physics” of gates
– enables construction of complex circuits
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Prediction of Circuit Behavior
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Can the behavior of a complex
circuit be predicted using only the

behavior of its parts?

Cell-cell Signaling
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Intercellular Communications

• Certain inducers useful for communications:
1. A cell produces inducer

2. Inducer diffuses outside the cell

3. Inducer enters another cell

4. Inducer interacts with repressor/activator change signal

(1) (2) (3) (4)

main
metabolism

The Intercellular AND Gate

• Inducers can activate activators:
– VAI (3-N-oxohexanoyl-L-Homoserine lacton) luxR

• Use as a logical AND gate:

operatorpromoter gene

RNAP

inactive
activator

operatorpromoter gene

RNAP

active
activator

inducerno transcription transcription

Output

Activator Inducer Output

0 0 0
0 1 0
1 0 0
1 1 1

Activator

Inducer
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Light organ

Eupryma scolopes

Quorum Sensing

• Cell density dependent gene expression

Example: Vibrio fischeri [density dependent bioluminscence]

The lux Operon LuxI metabolism
autoinducer (VAI)

luxR luxI luxC luxD luxA luxB luxE luxG

LuxR LuxI
(Light)

hv
(Light)

hvLuciferaseLuciferase

P

P

Regulatory Genes Structural Genes



19

Density Dependent Bioluminescence

free living, 10 cells/liter
<0.8 photons/second/cell

symbiotic, 1010 cells/liter
800 photons/second/cell

A positive feedback circuit
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Receiver cells

Circuits for Controlled Sender & Receiver

pLuxI-Tet-8 pRCV-3

VAI VAI

aTc

luxI �VAI

VAI

LuxR
GFPtetR

aTc

0
0

Receiver cellsSender cells

Sender cells

tetRP(tet)
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Time-Series Response to Signal

Fluorescence response of receiver (pRCV-3)
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Characterizing the Receiver

Response of receiver to different levels of VAI extract
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Controlling the Sender’s Signal Strength

Dose response of receiver cells to aTc induction of senders
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receivers senders

overlay

20 µm



23

Summary

• Built and characterized an initial cellular gate
library

• Genetic process engineering
– mutated logic elements to have desired behavior

• Using parts that match, built and tested several
small in-vivo digital circuits
– Reliable circuits with predictable behavior from

reliable components with known behavior

• BioSPICE for circuit design/verification
• Cell-cell signaling to control gene expression
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