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Abstract—Modern software systems provide many configura-
tion options which significantly influence their non-functional
properties. To understand and predict the effect of configuration
options, several sampling and learning strategies have been
proposed, albeit often with significant cost to cover the highly
dimensional configuration space. Recently, transfer learning has
been applied to reduce the effort of constructing performance
models by transferring knowledge about performance behavior
across environments. While this line of research is promising to
learn more accurate models at a lower cost, it is unclear why
and when transfer learning works for performance modeling. To
shed light on when it is beneficial to apply transfer learning, we
conducted an empirical study on four popular software systems,
varying software configurations and environmental conditions,
such as hardware, workload, and software versions, to identify
the key knowledge pieces that can be exploited for transfer
learning. Our results show that in small environmental changes
(e.g., homogeneous workload change), by applying a linear
transformation to the performance model, we can understand
the performance behavior of the target environment, while for
severe environmental changes (e.g., drastic workload change) we
can transfer only knowledge that makes sampling more efficient,
e.g., by reducing the dimensionality of the configuration space.

I. INTRODUCTION

Highly configurable software systems, such as mobile apps,
compilers, and big data engines are increasingly exposed to
end users and developers on a daily basis for varying use cases.
Users are interested not only in the fastest configuration, but
also in whether the fastest configuration for their applications
also remains the fastest when the environmental situation has
been changed. For instance, a mobile developer might be
interested to know if the software that she has configured
to consume minimal energy on a testing platform will also
remain energy efficient on the users’ mobile platform; or, in
general, whether the configuration will remain optimal when
the software is used in a different environment (e.g., with a
different workload, on different hardware).

Performance models have been extensively used to learn
and describe the performance behavior of configurable sys-
tems [10], [11], [13], [15], [17], [19], [27], [35]–[37], [44],
[47], [48]. However, the exponentially growing configuration
space, complex interactions, and unknown constraints among
configuration options often make it costly and difficult to
learn an accurate and reliable performance model. Even worse,
existing techniques usually consider only a single environment,
since the exponential number of configurations is already a
hard problem to encounter. That is, a learned performance
model is accurate only for the learned environment. Recently,
the use of transfer learning has been suggested to decrease the
cost of learning by transferring knowledge about performance
behavior across environments [7], [21], [42]. Similar to human

beings that learn from previous experience and transfer the
learning to accomplish new tasks easier, here, knowledge
about performance behavior gained with high effort in one
environment can be reused effectively to learn models for
changed environments with much lower cost. While this line of
research is promising to learn accurate models at low cost, it is
unclear why and when transfer learning works for performance
modeling and analysis in highly configurable systems.

To understand the why and when, in this paper, we conduct
an exploratory empirical study, comparing performance behav-
ior of highly-configurable systems across environmental condi-
tions (changing workload, hardware, and software versions), to
explore what forms of knowledge can commonly be exploited
for performance modeling and analysis. Specifically, we ex-
plore how performance models across the source and target of
an environmental change are related. This relatedness across
environments gives us insights to consolidate common knowl-
edge that is shared implicitly between the two environments,
from knowing entire performance distributions, to knowing
about the best or invalid configurations, to knowing influential
configuration options, to knowing about important interactions.
This common knowledge enables transfer learning from the
source to the target environment [32], [41].

More specifically, we explore several hypotheses about the
notion of common knowledge across environments including
(i) workload, (ii) hardware, and (iii) version changes. Our
hypotheses start with very obvious relationships that can be
easily exploited, but range toward more subtle relationships
(e.g., influential options or invalid regions remain stable) that
can be explored with more advanced transfer learning tech-
niques yet to be developed. We tested our hypotheses across
36 environmental changes in 4 configurable systems that have
been selected purposefully covering different severities and
varieties. For instance, we selected simple hardware changes
(by changing computing capacity) to more severe changes (by
changing hardware from an isolated machine to an unstable
cloud machine as well as changes in workload and version).

Our results indicate that some knowledge about performance
of highly-configurable systems can be transfered in even the
most severe environmental changes we explored, and that
transfer learning is actually easy for many environmental
changes. We observed that in small environmental changes,
we can frequently transfer performance models linearly across
environments, while for severe environmental changes, we can
still transfer partial knowledge, e.g., information about influen-
tial options or regions with invalid configurations, that can still
be exploited in transfer learning, for example to avoid certain
regions when exploring a configuration space. Overall, our
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results are encouraging to explore transfer learning further for
building performance models, showing broad possibilities of
applying transfer learning beyond the relatively small changes
explored in existing work (e.g., small hardware changes [42],
low fidelity simulations [21], similar systems [7]).

In summary, our contributions are the following:
• We formulate a series of hypotheses to explore the

presence and nature of common, transferable knowledge
between a source and a target environment, ranging from
easily exploitable relationships to more subtle ones.

• We empirically investigate performance models of 4
configurable systems before and after 36 environmental
changes. We performed a thorough exploratory analysis
to understand why and when transfer learning works.

• We discuss general implications of our results for perfor-
mance modeling of configurable software systems.

II. INTUITION

Understanding the performance behavior of configurable
software systems can enable (i) performance debugging [12],
[36], (ii) performance tuning [14], [16], [17], [26], [27],
[30], [39], [42], [44], (iii) design-time evolution [2], [20], or
(iv) runtime adaptation [9]–[11], [15], [21], [22]. A common
strategy to build performance models is to use some form
of sensitivity analysis [34] in which the system is executed
repeatedly in different configurations and machine learning
techniques are used to generalize a model that explains the
influence of individual options or interactions [13], [36], [42].

In this paper, we are interested in how a performance model
for a configurable system changes when we deploy the system
in a different environment. To this end, we distinguish between
configuration options – parameters that users can tweak inside
the system to select functionality or make tradeoffs among
performance, quality, and other attributes – and environment
changes – differences in how the system is deployed and used
in terms of workload, hardware, and version. If a performance
model remains relatively stable across environments (e.g., the
top configurations remain the top configurations, the most in-
fluential options and interactions remain most influential), we
can exploit this stability when learning performance models
for new environments. Instead of learning the model from
scratch, we can reuse knowledge gathered previously for other
environments in a form of transfer learning [7], [32], [41].
That is, we can develop cheaper, faster and more accurate
learning techniques for performance models that allow us to
make predictions and optimizations of performance for highly
configurable systems in changing environments [21].

For example, consider an update to faster hardware. We
would often expect that the system will get faster, but will
do so in a nearly uniform fashion. However, we may expect
that options that cause a lot of I/O operations (e.g., a backup
feature) may benefit less from a faster CPU than other options;
so not all environment changes will cause uniform changes. If
transfer across hardware is indeed usually easy, this encour-
ages, for example, scenarios in which we learn performance
models offline on cheap hardware and transfer it to the real
system with few expensive measurements for adjustment.

The question we ask in this paper is what kind of knowledge
can frequently be exploited across environment changes in
practice, with simple or more advanced forms of transfer

learning. Specifically, we ask whether there exists common
information (i.e., transferable/reusable knowledge) that applies
to both source and target environments of configurable systems
and therefore can be carried over across environments.

A. Environmental changes
Let us first introduce what do we mean by environment,

the key concept that is used throughout this paper. An
environmental condition for a configurable system, in this
work, is determined by its hardware, workload, and software
version. (i) Hardware: The deployment configuration in which
the software system is running. The performance behavior
of the system under study can differ when it is deployed
on a different hardware with different resource constraints.
(ii) Workload: The input of the system on which it operates
on. The performance behavior of the system can vary under
different workload conditions. (iii) Version: The state of the
code base at a certain point in time. When part of the system
undergoes some updates (e.g., when a library that is used in
the system boosts its performance in a recent version update),
the overall performance of the system will change. Of course,
other environmental changes might be possible as well (e.g.,
changes to the programming language by which a system is
implemented). But, we limit this study to this selection as
we consider the most important and common environmental
changes in practice.

B. Preliminary concepts
In this section, we provide formal definitions of four con-

cepts that we use throughout this study. The formal notations
enable us to concisely convey concepts throughout the paper.

1) Configuration and environment space: Let Ci indicate
the i-th configuration option of a system A, which is either
enabled or disabled (the definitions easily generalize to non-
boolean options with finite domains). The configuration space
is mathematically a Cartesian product of all configuration
options C = Dom(C1)⇥ · · ·⇥Dom(Cd), where Dom(Ci) =

{0, 1} and d is the number of options. A configuration of a
system is then a member of the configuration space where all
the options are assigned to a specific value in their domain.

We describe an environmental condition e by 3 variables
e = [h, w, v] drawn from a given environment space E =

H ⇥ W ⇥ V , where each member represents a set of possible
values for the hardware h, workload w, and system version
v. We use notation ec : [h, w1 ! w2, v] as shorthand for an
environment change from workload w1 to workload w2 where
hardware and version remain stable.

2) Performance model: Given a software system A with
configuration space C and environment space E , a performance
model is a black-box function f : C ⇥ E ! R that maps each
configuration c 2 C in an environment e 2 E to a real number
corresponding to the performance of the system. To construct
a performance model, we run A in a fixed environmental
condition e 2 E on various configurations ci 2 C, and record
the resulting performance values yi = f(ci, e) + ✏i where
✏i ⇠ N (0, �i) is the measurement noise corresponding to
a normal distribution with zero mean and variance �2

i . The
training data for learning a performance model for system A
in environment e is then Dtr = {(ci, yi)}n

i=1, where n is the
number of measurements.
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3) Performance distribution: Let us now define another
concept that helps us to investigate the relatedness across
environments. We can and will compare the performance
models, but a more relax representation that allows us to
assess the potentials for transfer learning is the empirical
performance distribution. The performance distribution is a
stochastic process, pd : E ! �(R), that defines a probability
distribution over performance measures for each environmen-
tal conditions. To construct a performance distribution for a
system A with configuration space C, similarly to the process
of deriving the performance models, we run A on various
configurations ci 2 C, for a specific environmental condition
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [4] (in the
same way as histograms are constructed in statistics).

4) Influential option: At the level of individual configu-
ration options, we will be interested in exploring whether
options have an influence on the performance of the system
in either environment; not all options will have an impact
on performance in all environments. We introduce the notion
of a influential option to describe a configuration option that
has a statistically significant influence on performance. That
is, when comparing the pairs of configuration in which this
option is enabled and disabled respectively, an influential
option has a consistent effect to speed up or slow down the
program, beyond random chance. Specifically, we test whether
the influence of a options is statistically significant.

5) Options interaction: The performance influence of in-
dividual configuration options may not compose linearly. For
example, while encryption will slow down the system due to
extra computations and compression can speed up transfer over
a network, combining both options may lead to surprising
effects because encrypted data is less compressible. In this
work, we will look for interactions of configuration options as
nonlinear effects where the influence of two options combined
is different from the sum of their individual influences [36],
[37], where this difference is statistically significant across all
configurations that differ only in these two options.

6) Invalid configuration: We consider a configuration as
invalid if it causes a failure in the system or produce an
unacceptable performance.

C. Transferable knowledge

As depicted in Figure 1, any sort of knowledge that can be
extracted from the source environment and can contribute to
the learning of a better model (i.e., faster, cheaper, more accu-
rate, or more reliable) in the target environment is considered
as a “transferable knowledge” (or reusable knowledge [1]).
There are several things we can transfer: (i) classification or
regression models, (ii) dependency graphs that represent the
dependencies among configurations, and (iii) option interac-
tions in order to prioritize certain regions in the configuration
space. For transferring the extracted knowledge, we need a
transfer function that transforms the source model to the target
model: tf : f(·, es) ! f(·, et). In its simplest form, it can
be a linear mapping that transforms the source model to the
target: f(·, et) = ↵ ⇥ f(·, es) + �, where ↵, � need to be
learned using few observations from both environments.

Target (Learn)Source (Given)
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Understanding the performance behavior of configurable
software systems can enable (i) performance debugging, (ii)
performance tuning, (iii) design-time evolution, or (iv) runtime
adaptation [11]. We lack empirical understanding of how the
performance behavior of a system will vary when the environ-
ment of the system changes. Such empirical understanding will
provide important insights to develop faster and more accurate
learning techniques that allow us to make predictions and
optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =

W ⇥H ⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that
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optimizations of performance for highly configurable systems
in changing environments [10]. For instance, we can learn
performance behavior of a system on a cheap hardware in a
controlled lab environment and use that to understand the per-
formance behavior of the system on a production server before
shipping to the end user. More specifically, we would like to
know, what the relationship is between the performance of a
system in a specific environment (characterized by software
configuration, hardware, workload, and system version) to the
one that we vary its environmental conditions.

In this research, we aim for an empirical understanding of
performance behavior to improve learning via an informed
sampling process. In other words, we at learning a perfor-
mance model in a changed environment based on a well-suited
sampling set that has been determined by the knowledge we
gained in other environments. Therefore, the main research
question is whether there exists a common information (trans-
ferable/reusable knowledge) that applies to both source and
target environments of systems and therefore can be carried
over from either environment to the other. This transferable
knowledge is a case for transfer learning [10].

Let us first introduce different changes that we consider
in this work: (i) Configuration: A configuration is a set of
decisions over configuration options. This is the primary vari-
ation in the system that we consider to understand performance
behavior. More specifically, we would like to understand
how the performance of the system under study will be
influenced as a result of configuration changes. This kind of
change is the primary focus of previous work in this area
[18], [19], [26], [9], however, they assumed a predetermined
environment (i.e., a specific workload, hardware, and software
version). (ii) Workload: The workload describes the input of
the system on which it operates on. The performance behavior
of the system can vary under different workload conditions.
(iii) Hardware: The deployment configuration in which the
software system is running. The performance behavior of the
system under study can differ when it is deployed on a differ-
ent hardware with different resource constraints. (iv) Version:
The version of a software system or library refers to the state
of the code base at a certain point in time. When part of
the system undergoes some updates, for example, when a
library that is used in the system boosts its performance in
a recent version update, the overall performance of the system
will change. Of course, other environmental changes might be
possible as well (e.g., changes to the operating system). But,
we limit this study to this selection as we consider the most
important and common environmental changes in practice.

A. Preliminary concepts

In this section, we provide formal definitions of four con-
cepts that we use throughout this study. The formal notations
enable us to concisely convey concept throughout the paper.

1) Configuration and environment space: Let Fi indicate
the i-th feature of a configurable system A which is either
enabled or disabled and one of them holds by default. The
configuration space is mathematically a Cartesian product of
all the features C = Dom(F1) ⇥ · · · ⇥ Dom(Fd), where
Dom(Fi) = {0, 1}. A configuration of a system is then
a member of the configuration space (feature space) where
all the parameters are assigned to a specific value in their
range (i.e., complete instantiations of the system’s parameters).
We also describe an environment instance by 3 variables
e = [w, h, v] drawn from a given environment space E =

W ⇥H ⇥V , where they respectively represent sets of possible
values for workload, hardware and system version.

2) Performance model: Given a software system A with
configuration space F and environmental instances E , a per-
formance model is a black-box function f : F ⇥ E ! R
given some observations of the system performance for each
combination of system’s features x 2 F in an environment
e 2 E . To construct a performance model for a system A
with configuration space F , we run A in environment instance
e 2 E on various combinations of configurations xi 2 F , and
record the resulting performance values yi = f(xi)+ ✏i, xi 2
F where ✏i ⇠ N (0, �i). The training data for our regression
models is then simply Dtr = {(xi, yi)}n

i=1. In other words, a
response function is simply a mapping from the input space to
a measurable performance metric that produces interval-scaled
data (here we assume it produces real numbers).

3) Performance distribution: For the performance model,
we measured and associated the performance response to each
configuration, now let introduce another concept where we
vary the environment and we measure the performance. An
empirical performance distribution is a stochastic process,
pd : E ! �(R), that defines a probability distribution over
performance measures for each environmental conditions. To
construct a performance distribution for a system A with
configuration space F , similarly to the process of deriving
the performance models, we run A on various combinations
configurations xi 2 F , for a specific environment instance
e 2 E and record the resulting performance values yi. We then
fit a probability distribution to the set of measured performance
values De = {yi} using kernel density estimation [2] (in the
same way as histograms are constructed in statistics). We have
defined this concept here because it helps us to investigate the
similarity of performance distributions across environments,
allowing us to assess the potentials for transfer learning across
environments.

4) Transfer learning across environments: Let us assume
fs(c) corresponds to the response functions in the source
environment es 2 E , and g = ft(c) refers to the response
of the target environment et 2 E . Transfer learning [22]
is a learning mechanism that exploits an additional source
of information apart from the standard training data in et:
knowledge that can be gained from the source environment
es. The aim of transfer learning is to improve learning that

Extract Reuse

f(·, es) f(·, et)

Fig. 1: Transfer learning from source to target environment.

III. RESEARCH QUESTIONS AND METHODOLOGY

A. Research questions

The overall question that we answer in this paper is “why
and when does transfer learning work for configurable soft-
ware systems?” Our hypothesis is that performance models in
source and target environments are usually somehow “related.”
To understand the notion of relatedness that we commonly
find for environmental changes in practice, we explore several
research questions (each later with several hypotheses), start-
ing with explorations of very strong notions of relatedness
(e.g., linear relationships) toward weaker ones (e.g., stability
of influential options):

RQ1: Does the performance behavior stay consistent across
environments? (Section IV)

If we can establish with RQ1 that linear changes across
environments are common, this would be promising for trans-
fer learning because even simple linear transformations can
be applied. Even if not all environment changes may be
amendable to this easy transfer learning, we explore what
kind of environment changes are more amendable than others.

RQ2: Is the influence of configuration options on perfor-
mance consistent across environments? (Section V)

For cases in which easy changes explored in RQ1 are
not possible, RQ2 explores information that can be exploited
for transfer learning at the level of individual configuration
options. Specifically, we explore how commonly the influential
options remain stable across environment changes.

RQ3: Are the interactions among configuration options
preserved across environments? (Section VI)

In addition to individual options in RQ2, RQ3 explores
interactions among options, that, as described above, can often
be important for explaining the effect of performance varia-
tions across configurations. Again, we explore how commonly
interactions are related across environment changes.

RQ4: Are the configurations that are invalid in the source
environment with respect to non-functional constraints also
invalid in the target environment? (Section VII)

Finally, RQ4 explores an important facet of invalid con-
figurations: How commonly can we transfer knowledge about
invalid configurations across environments? Even if we cannot
transfer much structure for the performance model otherwise,
transferring knowledge about invalid parts of the configuration
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space can focus learning in the target environment on the
relevant parts of the configuration space.

B. Methodology
Design: We investigate changes of performance models

across environments. Therefore, we need to establish the per-
formance of a system and how it is affected by configuration
options in multiple environments. To this end, we measure
the performance of each system using standard benchmarks
and repeated the measurements across a large number of
configurations. We then repeat this process for several changes
to the environment: using different hardware, using different
workloads, and using different versions of the system. Finally,
we perform the analysis of relatedness by comparing the
performance and how it is affected by configuration options
in one environment against the performance measured in
other environments. We perform a total of 36 comparisons
of environment changes.

Analysis: For answering the research questions, we for-
mulate different assumptions about the relatedness of the
source and target environments as hypotheses – from more
stronger to more relaxed assumptions. For each hypothesis,
we define one or more metrics and analyze 36 environment
changes in four subject systems described below. For each
hypothesis, we discuss how commonly we identify this kind
of relatedness and whether we can identify classes of envi-
ronment changes for which this relatedness is characteristic.
If we find out that for an environmental change a stronger
assumption holds, it means that a more informative knowledge
is available to transfer.

Severity of environment changes: We purposefully select
environment changes for each subject system with the goal
of exploring many different kinds of changes with different
expected severity of change. With a diverse set of changes,
we hope to detect patterns of environment changes that have
similar characteristics with regard to relatedness of perfor-
mance models. We expect that less severe changes lead to
more related performance models that are easier to exploit in
transfer learning than more severe ones. For transparency, we
recorded the expected severity of the change when selecting
environments, as listed in Table II, on a scale from small
change to very large change. For example, we expect a small
variation where we change the processor of the hardware to
a slightly faster version, but expect a large change when we
replace a local desktop computer by an unstable cloud virtual
machine. Since we are neither domain experts nor developers
of our subject systems, recording the expected severity allows
us to estimate how well intuitive judgments can eventually be
made about suitability for transfer learning and it allows us to
focus our discussion on surprising observations.

C. Subject systems
In this study, we selected four different configurable soft-

ware systems from different domains, with different func-
tionalities, and written in different programming languages
(cf. Table I). All systems are configurable with at least 10
configuration options.

SPEAR is an industrial strength bit-vector arithmetic deci-
sion procedure and a Boolean satisfiability (SAT) solver. It
is designed for proving software verification conditions and

it is used for bug hunting. We considered a configuration
space with 14 options that represent heuristics for solving the
problems and therefore affect the solving time. We measured
how long it takes to solve a SAT problem in all 16,384 configu-
rations in multiple environments: four different SAT problems
with different difficulty serve as workload, measured on three
hardware system, with two versions of the solver as listed in
Table II. The difficulty of the workload is characterized by the
SAT problem’s number of variables and clauses.

x264 is a video encoder that compresses video files with
a configuration space of 16 options to adjust output quality,
encoder types, and encoding heuristics. Due to the size of the
configuration space, we measured a subset of 4000 sampled
randomly configurations. We measured the time needed to
encode three different benchmark videos on two different
hardware systems and for three versions as listed in Table II.
Each benchmark consists of a raw video with different quality
and size and we expect that options related to optimizing
encoding affect the encoding time differently. We judged
expected severity of environmental changes based on the
difference between quality and size of benchmark videos.

SQLite is a lightweight relational database management
system, embedded in several browsers and operating systems,
with 14 configuration options that change indexing and fea-
tures for size compression useful in embedded systems, but
have performance impact. We expect that some options affect
certain kinds of workload (e.g., read-heavy rather than write-
heavy workloads) more than others. We have measured 1000
randomly selected configurations on two hardware platforms
for two versions of the database system; as workload, we have
considered four variations of queries that focus on sequential
reads, random reads, sequential write, and batch writes.

SaC is a compiler for high-performance computing based
on stateless arrays [33]. The SaC compiler implements a
large number of high-level and low-level optimizations to tune
programs for efficient parallel executions configurable with 50
options controlling optional optimizer passes such as function
inlining, constant folding, and array elimination. We measure
the execution time of a program (i.e., the workload in this
context) compiled with different 71,267 randomly selected
configurations to assess the performance impact of SaC’s
options. As workloads, we select 10 different demo programs
shipped with SaC, each computationally intensive, but with
different characteristics. Workloads include Monte Carlo al-
gorithms such as pfilter with multiple optimizable loops as
well as programs heavily based on matrix operations like
srad. We did not explore hardware or version changes for this
system because measuring this large number of configurations
required already several weeks despite parallelization over 10
identical machines, and the cost of additional variations would
be prohibitive.

To account for measurement noise, we have measured each
configuration of each system and environment 3 times and
used the mean for the analyses. While many performance and
quality measures can be analyzed, our primary performance
metric is wall-clock execution time, which is captured differ-
ently for each systems in Table I: execution time, encoding
time, query time, analysis time.
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TABLE I: Overview of the real-world subject systems.

System Domain d |C| |H| |W | |V |
SPEAR SAT solver 14 16 384 3 4 2
x264 Video encoder 16 4 000 2 3 3
SQLite Database 14 1 000 2 14 2
SaC Compiler 50 71 267 1 10 1

d: configuration options; C: configurations; H: hardware environments; W : analyzed
workload; V : analyzed versions.

IV. PERFORMANCE BEHAVIOR CONSISTENCY (RQ1)
Here, we investigate the relatedness of the source and target

environments in the entire configuration space. We start by
testing the strongest assumptions about the relatedness of
source and target environments, which would enable an easy
transfer learning (H1.1). We expect that the first hypothesis
holds only for simple environmental changes. Therefore, we
subsequently relax the hypothesis to test whether and when the
performance distributions of source and target environments
become similar (H1.2), and whether the ranking of configura-
tions (H1.3) and the ranking of the top/bottom configurations
(H1.4) stay consistent across environments.
H1.1: The relation of the source response to the target is a
constant or proportional shift.
Importance. If the target response is related to the source
by a constant or proportional shift, it is trivial to understand
the performance behavior for the target environment using the
model that has already been learned in the source environment:
We need to linearly transform the source model to get the
target model. We expect a linear shift if a central hardware
device affecting the functionality of all configuration options
homogeneously, changes such as the CPU, or homogeneous
workload change. Previous studies demonstrated the existence
of such cases where they trained a linear transformation to
derive the target model, but only with hardware changes [42].
Metric. Here, we investigate whether f(c, et) = ↵ ⇥
f(c, es) + �, 8c 2 C. We use metric M1: Pearson linear
correlation [4] between f(c, es) and f(c, et) to evaluate this
hypothesis. If the correlation is 1, we can linearly transform
performance across environments. However, due to measure-
ment noise, we do not expect perfect correlation. But, we
consider correlations higher than 0.9 as strong enough that
simple transfer techniques can produce good approximations
for estimating the target performance model.
Results. The result in Table II show very high correlations
for about a third of all studied environmental changes. In
particular, we observe high correlations for hardware changes
and for many workload changes of low expected severity.

Hardware change: Hardware changes often result in near-
perfect correlations except for severe changes where we have
used unstable hardware (e.g., Amazon cloud in ec2). We
investigated why using unstable cloud hardware resulted in
weak linear correlations. We analyzed the variance of the
measurement noise and we observed that the proportion of
the variance of the noise in the source to the target in ec2

is �̄2
ecs

2
/�̄2

ect
2

= 33.39, which is an order of magnitude larger
than the corresponding one in ec1 that is �̄2

ecs
1
/�̄2

ect
1

= 1.51.
This suggests that we can expect a linear transformation across
environments when hardware resources execute in a stable
environment. For transfer learning, this means that we can

reuse measurements from cheaper or testing servers in order to
predict the performance behavior [6]. Moreover, it also means
that virtualization hinders transfer learning such that we might
not be able to distribute measurements to cloud environments.

Workload change: For SPEAR, we observed very strong
correlations across environments where we have considered
SAT problems of different sizes and difficulties. Also, when
the difference among the problem size and difficulty is closer
across environments (e.g., ec3 vs. ec4) the correlation is
slightly higher. This observation has also been confirmed
for other systems as well. For instance, in environmental
instance ec3 in SQLite, where the workload change is write-
heavy from sequential to batch, we have observed an almost
perfect correlation, 0.96, while in the read-heavy workload ec4

(random to sequential read) the correlation is only medium at
0.5. There are two reasons for this medium correlation: First,
the underlying hardware contains an SSD, which has different
performance properties for reading and writing. Second, a
database performs different internal functions when inserting
or retrieving data, which affects performance. This implies that
some environmental conditions may provide a better means for
transfer learning. In environmental change ec12,13 in SaC, we
observe perfect correlations. In these two workload variations,
we measured the runtime of one application (nbody) with two
different input values and it is not surprising to see a perfect
correlation due to the same application logic. This suggests
that when a workload change is not severe, we can expect there
exists a linear transformation between source to the target.

Version change: For SPEAR (ec5,6,7) and x264 (ec5,6,7,8),
the correlations are extremely weak or non existence, while
for SQLite (ec5), it is almost perfect. This can be attributed to
several reasons. One reason is that the optimization features
that are determined by the configuration options for SPEAR

and x264 may undergo a substantial revision from version to
version because these are lab applications and so algorithmic
advancements may significantly improve the way how the
optimization features work. Later, when we investigate the
interactions between configuration options in RQ3, we will
learn that the code updates for SPEAR cause several new
interactions between options. The implication for transfer
learning is that code changes that substantially influence the
internal logic controlled by configuration options may require
a non-linear form of transformation or a complete set of new
measurements in the target environment for those options only.

Insight. For non-severe hardware changes, we can linearly
transfer performance models across environments.

H1.2: The performance distribution of the source is similar to
the performance distribution of the target environment.
Importance. In the previous hypothesis, we investigated the
situation whether the response functions in the source and
target are linearly correlated. In this hypothesis, we consider
a relaxed version of H1.1 by investigating if the performance
distributions are similar. When the performance distributions
are similar, it does not imply that there exists a linear mapping
between the two responses, but, there might be a more
sophisticated relationship between the two environments that
can be captured by a non-linear transfer function.
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Fig. 2: Performance distributions of ec1 (a,b) and ec13 (c,d) in SaC.
(a,c) and (b,d) are the distributions of the source and target.

Metric. We measure M2: Kullback-Leibler (KL) divergence
[8] to compare the similarity between the performance dis-
tributions: Dec

KL(pds, pdt) = ⌃ipds(ci) log

pds(ci)
pdt(ci)

, where
pds,t(·) are performance distributions and ci 2 C. As an
example, we show the performance distributions of ec1 and
ec13 and compare them using KL divergence in Figure 2:
The less the value of KL divergence is, the more similar are
the distributions. We consider two distributions are similar
if Dec

KL(pds, pdt) < 3 (based on recommendations in the
machine learning community [4]) and dissimilar otherwise.
Results. Here, we are interested to find environmental changes
where we did not observe a strong correlation between re-
sponses, but there might be similarities between the perfor-
mance distributions of the environment. For the environmental
changes ec5,6 in SPEAR, ec3�7 in x264, ec4,6 in SQLite, and
ec5,8 in SaC, the performance distributions are very similar
across source and target. This implies that there exist a possi-
bly non-linear transfer function that we can map performance
models across environments. Previous studies demonstrated
the feasibility of highly non-linear kernel functions for transfer
learning in configurable systems [21].

Insight. Even for some severe environmental changes
where there is no linear correlation across performance
models, the performance distributions are similar, showing
the potential for learning a non-linear transfer function.

H1.3: The ranking of configurations stays stable.
Importance. If the ranking of the configurations stays similar,
the response function is then stable across environments. We
can use this knowledge to prioritize certain regions in the
configuration space for optimizations.
Metric. Here, we use rank correlation by measuring the
M3: Spearman correlation coefficient. Intuitively, the Spear-
man correlation between two responses will be high when
observations have a similar rank. We consider rank correlations
higher than 0.9 as strong and suitable for transfer learning.

Results. The results in Table II show that the rank correlations
are high across all hardware changes and small workload
changes. This metric does not provide additional insights
from what we have observed in H1.1. However, in one
environmental change, where due to an excessive measurement
noise, the linear correlation were low, ec2 for SPEAR, the
rank correlation is high. This might hint that when unstable
hardware conditions exist, the overall ranking stay the same.

Insight. The configurations retain their relative perfor-
mance profile across hardware platforms.

H1.4: The top/bottom performer configurations are similar.
Importance. If the top configurations are similar across
environments, we can extract their characteristics and use
that in the transfer learning process. For instance, we can
identify the top configurations from the source and inform an
optimizer [19] to exploit this knowledge in the target while
exploring with a lower priority other regions. The bottom
configurations can be used to avoid corresponding regions
during sampling. Note that this is a more relaxed hypothesis
than H1.3 by concentrating only on a subset of configurations.
Metric. We measure M4/M5: the percentage of top/bottom
configurations in the source that are also top/bottom perform-
ers in the target. Note that we present the results only for the
10th percentile, while other percentile values are calculated
and resulted in similar observations.
Results. The results in Table II show that top/bottom con-
figuration are common across hardware and small workload
changes, therefore, this metric does not provide additional
insights from what we have observed in H1.1.

Insight. Only hardware changes preserve top configura-
tions across environments.

V. SIMILARITY OF INFLUENTIAL OPTIONS (RQ2)
Here, we investigate whether the influence of individual

configuration options on performance stays consistent across
environments. We investigate two hypotheses about the influ-
ence strength (H2.1) and the importance of options (H2.2).
H2.1: The influential options on performance stay consistent.
Importance. In highly dimensional spaces, not all configu-
ration options affect the response significantly. If we observe
a high percentage of common influential options across envi-
ronments, then we need to sample across only a subset of all
configuration options. because we already know that these are
the key options influencing performance.
Metric. In order to investigate the option-specific effects, we
use paired t-test analysis [4] to test if an option leads to any
significant performance change and whether this change is
similar across environments. We measure M6/M7: the number
of influential options in source and target; We also measure
M8/M9: the number of options that agree/disagree.
Results. The results in Table II show that slightly more than
half of the options, for all subject systems, are influential
either in the source or target environments. From the influential
options, a very high percentage are common in both. This can
lead to a substantial reduction for performance measurements:
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we can fix the non-influential options and sample only along
options, which we found influential from the source.

Insight. Only a subset of options are influential and a
large proportion of influential options are preserved.

H2.2: The importance of options stays consistent.
Importance. In machine learning, each decision variable (here
option) has a relative importance to predict the response and
importance of the variables play a key role for in the feature
selection process [4]. Here, we use this concept to determine
the relative importance of configuration options, because in
configurable systems, we face many options that if prioritized
properly, it can be exploited for performance predictions [21].
Metric. We use regression trees [4] for determining the relative
importance of configuration options because (i) they have
been used widely for performance prediction of configurable
systems [13], [42] and (ii) the tree structure can provide
insights into the most essential options for prediction, because
a tree splits on those options first that provide the highest
information gain [13]. We derive estimates of the importance
of options for the trained trees on the source and target by
examining how the prediction error will change as a result of
options. We measure M10: correlation between importance of
options for comparing the consistency across environments.
Results. From Table II, the correlation coefficient between the
importance of options for different environmental changes is
high, and the less severe a change the higher the correlation
coefficients. This confirms out intuition that small changes
in the environment do not affect the influence strength of
an option. Let us now consider some environmental changes
where the correlation between response functions were low
across environments according to M1 and are high according
to M10: ec6,7 in SPEAR, ec3�7 in x264, ec1,2,5,7�11,14 in
SaC. This observation gives further evidence that even though
we did not observe a linear correlation, there might exist a
non-linear relationship. For instance, the influence of options
on performance stay the same, but interactions might change
and are not accounted by a linear model transformation.

Insight. The strength of the influence of configuration
options is typically preserved across environments.

VI. PRESERVATION OF OPTION INTERACTIONS (RQ3)

We state two hypotheses about the preservation of option
interactions (H3.1) and their importance (H3.2).
H3.1: The interactions between configuration options are
preserved across environments.
Importance. In highly dimensional configuration spaces, the
possible number of interactions among options is exponential
in the number of options and it is computationally infeasible
to get measurements aiming at learning an exhaustive number
of interactions. Prior work has shown that a very large portion
of interactions is non-influential [25], [37].
Metric. The main objective here is to evaluate to what extent
the interactions will be preserved from source to target. Here,
we learn step-wise linear regression models; a technique that

has been used for creating performance influence model for
configurable systems [36]. We learn all pairwise interactions,
independently in the source and target environments. We
then calculate the percentage of common pairwise interactions
from the model by comparing the coefficients of the pairwise
interaction terms of the regression models. We concentrated
on pairwise interactions, as they are the most common form
of interactions [25], [37]. We measure: M11: The number of
interactions in the source; M12: The number of interactions
in the target; M13: The number of interactions that agree on
the direction of effects in the source and the target.
Results. The results in Table II show three important observa-
tions: (i) only a small proportion of possible interactions have
an effect on performance and so are relevant (confirming prior
work); (ii) for the large environmental changes, the difference
in the proportion of relevant interactions across environments
is more different, while for smaller environmental changes,
the proportion is almost equal; (iii) a very large proportion of
interactions is common across environments.

The mean percentage of interactions (averaged over all
changes) are 25%, 28%, 10%, 6% for SPEAR, x264, SQLite,

SaC respectively, where 100% would mean that all pairwise
combination of options have a distinct effect on performance.
Also, the percentage of common interactions across environ-
ments is high, 96%, 81%, 85%, 72% for SPEAR, x264, SQLite,

SaC respectively. This result points to an important trans-
ferable knowledge: interactions often stay consistent across
changes. This insight can substantially reduce measurement
efforts to purposefully measure specific configurations.

Insight. A low percentage of potential interactions are
relevant for performance.

H3.2: The effects of interacting options stay similar.
Importance. If the effects of interacting options are similar
across environments, we can prioritize regions in the configu-
ration space based on the importance of the interactions.
Metric. We measure M14: the correlation between the coef-
ficients of the pairwise interaction terms in the linear model
learned independently on the source and target environments
using step-wise linear regression.
Results: The results in Table II reveal a very high and, in
several cases, perfect correlations between interactions across
environments. For several environmental changes where we
previously could not find a strong evidence of transferable
knowledge by previous metrics: ec8 in x264, ec4,6,7 in SQLite

and ec14 in SaC, we observed very strong correlations for
the interactions. The implication for transfer learning is that
a linear transfer function (see H1.1) may not applicable for
severe changes, while a complex transfer function may exist.

Insight. The importance of interactions is typically pre-
served across environments.

VII. INVALID CONFIGURATIONS SIMILARITY (RQ4)
For investigating similarity between invalid configurations

across environments, we formulate two hypotheses about
percentage of invalid configurations and their commonalities
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across environments (H4.1) and the existence of reusable
knowledge that can distinguish invalid configurations (H4.2).
H4.1: The percentage of invalid configurations is similar
across environments and this percentage is considerable.
Importance. If the percentage of invalid configurations is
considerable in the source and target environments, this pro-
vides a motivation to carry any information about the invalid
configurations across environments to avoid exploration of
invalid regions and reduce measurement effort.
Metric. We measure M15/M16: percentage of invalid config-
urations in the source and target, M17: percentage of invalid
configurations, which are common between environments.
Results. The results in Table II show that for SPEAR and
x264, a considerable percentage (⇡ 50%) of configurations
are invalid and all of them are common across environments.
For SaC, approximately 18% of the sampled configurations are
invalid. For some workload changes the percentage of common
invalid configuration is low ( 10%). The reason is that some
options in SaC may have severe effects for some programs to
be compiled, but have lower effects for others.

Insight. A large percentage of configurations is typically
invalid for configurable systems and a large proportion of
invalid configurations are common across environments.

H4.2: A classifier for distinguishing invalid from valid con-
figurations is reusable across environments.
Importance. If there are common characteristics among the
invalid configurations, we can learn a classifier in the source to
identify the invalid configurations and transfer the knowledge
(classifier model) to the target environment to predict invalid
configurations before measuring them.
Metric. We learn a classifier using multinomial logistic regres-
sion [4]. It is a model that is used to predict the probabilities
of being invalid, given a set of configuration options. We
measure M18: the correlation between the coefficients (i.e.,
the probability of the configuration being invalid) of the
classification models that has been leaned independently.
Results. The results in Table II show that for SPEAR and x264,
the correlation between the coefficients are almost perfect. For
SaC, in environmental changes where the common invalid
configurations are high, the correlation between coefficients
is also very high. For two cases, ec6,7 in SPEAR, we
could not find any reusable knowledge previously with other
metrics. Here, we can observe that even when the influence
and interactions of all options change, the region of invalid
configurations may stay the same. This means that we can
avoid measurements (almost half of the space) in the target.

Insight. Information for distinguishing invalid regions can
be transfered across environments.

VIII. DISCUSSION

Based on our analyses of 36 environment changes, we can
now discuss implications and threats to validity.

A. Implications for transfer learning research

This empirical study showed that transfer learning is not
accidental or as a result of over-fit. For the first time, we
provide explanations of when and why transfer learning works
for performance modeling and analysis of highly configurable
systems. While all research questions have positive answers for
some environment changes and negative answers for others,
as discussed above in Section IV–Section VII, the results
align well with our expectations regarding the severity of
change and their correspondence to the type of transferable
knowledge: (i) For small environmental changes, the overall
performance behavior was consistent across environments and
a linear transformation of performance models provide a good
approximations for the target performance behavior. (ii) For
large environmental changes, we found evidence that individ-
ual influences of configuration options and interactions may
stay consistent providing opportunities for a non-linear map-
ping between performance behavior across environments. (iii)
Even for severe environmental changes, we found evidence
of transferable knowledge in terms of reusability of detecting
invalid from valid configurations providing opportunities for
avoiding a large part of configuration space for sampling.

The fact that we could largely predict the severity of change
without deep knowledge about the configuration spaces or
implementations of the subject systems is encouraging in the
sense that others will likely also be able to make intuitive
judgments about transferability of knowledge. For example, a
user of a performance analysis approach estimating low sever-
ity of an environment change can test this hypothesis quickly
with a few measurements and select the right transfer learning
strategy. Transfer learning approaches for easy environment
changes are readily available [7], [21], [42], [49].

For more severe environment changes, more research is
needed to exploit transferable knowledge. Our result show
that that even with severe environmental change, there al-
ways is some transferable knowledge that can contribute to
performance understanding of configurable systems. While
some learning strategies can take existing domain knowledge
into account and could benefit from knowledge about influ-
ential options and interactions [36], [37], it is less obvious
how to effectively incorporate such knowledge into sampling
strategies and how to build more effective learners based on
limited transferable knowledge. While we strongly suspect that
suitable transfer learning techniques can provide significant
benefits even for severe environment changes, more research
is needed to design and evaluate such techniques and compare
it to state of the art sampling and learning strategies. Specifi-
cally, we expect research opportunities regarding (i) Sampling
strategies to exploit the relatedness of source and target to
provide more informative samples exploiting the importance
of specific regions or avoiding invalid regions. (ii) Learning
mechanisms to exploit the relatedness across environments and
learn either a linear or non-linear associations in order to
learn faster, reliable and cheaper models. (iii) Performance
testing and debugging of configurable systems to benefit
from our findings by transferring interesting test cases where
interactions between options that need to be covered.
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B. Threats to validity

1) External validity: We selected a diverse set of subject
systems and a large number of purposefully selected environ-
ment changes, but, as usual, one has to be careful when gen-
eralizing to other subject systems and environment changes.
We actually performed experiments with more environmental
changes and with additional measurements on the same subject
systems (e.g., for SaC we also measured the time it takes to
compile the program not only its execution), but we excluded
those results because they were consistent with the presented
data and did not provide additional insights.

2) Internal and construct validity: Due to the size of
configuration spaces, we could only measure configurations
exhaustively in one subject system and had to rely on sampling
(with substantial sampling size) for the others, which may
miss effects in parts of the configuration space that we did
not sample. We did not encounter any surprisingly different
observation in our exhaustively measured SPEAR dataset.

We operationalized a large number of different measures
through metrics. For each measure, we considered multiple
alternative metrics (e.g., different ways to establish influential
options) but settled usually on the simplest and most reli-
able metric we could identify to keep the paper accessible
and within reasonable length. In addition, we only partially
used statistical tests, as needed, and often compared metrics
directly using more informal comparisons and some ad-hoc
threshold for detecting common patterns across environments.
A different operationalization may lead to different results, but
since our results often have a strong effect size and are largely
consistent across a large number of questions and measures,
we do not expect any changes to the overall big picture.

For building the performance models, calculating impor-
tance of configuration options, and classifying the invalid
configurations, we elected to use different machine learn-
ing models: step-wise linear regression, regression trees, and
multinomial logistic regression. We chose these learner mainly
because they are successful models that have been used in
previous work for performance predictions of configurable
systems. However, these are only few learning mechanisms
out of many that may provide different accuracy and cost.

Measurement noise in benchmarks can be reduced but not
avoided. We performed benchmarks on dedicated systems and
repeated each measurement 3 times. We repeated experiments
when we encountered unusually large deviations.

IX. RELATED WORK

A. Performance analysis of configurable software

Performance modeling and analysis is a highly researched
topic [43]. Researches investigate what models are more suit-
able for predicting performance of the configurable systems,
which sampling and optimization strategies can be used for
tuning these models, and how to minimize the amount of
measurement efforts for model training.

Sampling strategies based on experimental design (such as
Plackett-Burman) have been applied in the domain of con-
figurable systems [13], [35], [36]. The aim of these sampling
approaches is to ensure that we gain a high level of information
from sparse sampling in high dimensional spaces.

Optimization algorithms have also been applied to find
optimal configurations for configurable systems: Recursive
random sampling [46], hill climbing [45], direct search [49],
optimization via guessing [31], Bayesian optimization [19],
and multi-objective optimization [11]. The aim of optimization
approaches is to find the optimal configuration in a highly
dimensional space using only a limited sampling budget.

Machine learning techniques, such as support-vector ma-
chines [47], decision trees [27], Fourier sparse functions [48],
active learning [36] and search-based optimization and evolu-
tionary algorithms [14], [44] have also been used.

Our work is related to the performance analysis research
mentioned above. However, we do not perform a comparison
of different models, configuration optimization or sampling
strategies. Instead, we concentrate on transferring performance
models across hardware, workload and software version.
Transfer learning, in general, is orthogonal to these approaches
and can contribute to make these approaches more efficient for
performance modeling and analysis.

B. Performance analysis across environmental change
Environmental changes have been studied before. For

example, in the context of MapReduce applications [47],
performance-anomaly detection [38], performance predic-
tion based on micro-benchmark measurements on different
hardware [18], consistency-analysis of parameter dependen-
cies [49], and performance prediction of configurable systems
based on hardware variants and similarity search [40].

Recently, transfer learning is used in systems and soft-
ware engineering. For example, in the context of perfor-
mance predictions in self-adaptive systems [21], configuration
dependency transfer across software systems [7], co-design
exploration for embedded systems [5], model transfer across
hardware [42], and configuration optimization [3]. Although
previous work has analyzed transfer learning in the context
of select hardware changes [7], [21], [42], we more broadly
empirically investigate why and when transfer learning works.
That is, we provide evidence why and when other techniques
are applicable for which environmental changes.

Transfer learning has also been applied in software engi-
neering in very different contexts, including defect predic-
tions [24], [28], [29] and effort estimation [23].

X. CONCLUSIONS

We investigated when and why transfer learning works
for performance modeling and analysis of highly config-
urable systems. Our results suggest that performance models
are frequently related across environments regarding overall
performance response, performance distributions, influential
configuration options and their interactions, as well as invalid
configurations. While some environment changes allow simple
linear forms of transfer learning, others have less obvious
relationships but can still be exploited by transferring more
nuanced aspects of the performance model, e.g., usable for
guided sampling. Our empirical study demonstrate the ex-
istence of diverse forms of transferable knowledge across
environments that can contribute to learning faster, better,
reliable, and more important, less costly performance models.
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TABLE II: Results.

RQ1 RQ2 RQ3 RQ4

Environment ES H1.1 H1.2 H1.3 H1.4 H2.1 H2.2 H3.1 H3.2 H4.1 H4.2

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18

SPEAR— Workload (#variables/#clauses): w1 : 774/5934, w2 : 1008/7728, w3 : 1554/11914, w4 : 978/7498; Version: v1 : 1.2, v2 : 2.7
ec1 : [h2 ! h1, w1, v2] S 1.00 0.22 0.97 0.92 0.92 9 7 7 0 1 25 25 25 1.00 0.47 0.45 1 1.00
ec2 : [h4 ! h1, w1, v2] L 0.59 24.88 0.91 0.76 0.86 12 7 4 2 0.51 41 27 21 0.98 0.48 0.45 1 0.98
ec3 : [h1, w1 ! w2, v2] S 0.96 1.97 0.17 0.44 0.32 9 7 4 3 1 23 23 22 0.99 0.45 0.45 1 1.00
ec4 : [h1, w1 ! w3, v2] M 0.90 3.36 -0.08 0.30 0.11 7 7 4 3 0.99 22 23 22 0.99 0.45 0.49 1 0.94
ec5 : [h1, w1, v2 ! v1] L 0.23 0.30 0.35 0.28 0.32 6 5 3 1 0.32 21 7 7 0.33 0.45 0.50 1 0.96
ec6 : [h1, w1 ! w2, v1 ! v2] L -0.10 0.72 -0.05 0.35 0.04 5 6 1 3 0.68 7 21 7 0.31 0.50 0.45 1 0.96
ec7 : [h1 ! h2, w1 ! w4, v2 ! v1] VL -0.10 6.95 0.14 0.41 0.15 6 4 2 2 0.88 21 7 7 -0.44 0.47 0.50 1 0.97
x264— Workload (#pictures/size): w1 : 8/2, w2 : 32/11, w3 : 128/44; Version: v1 : r2389, v2 : r2744, v3 : r2744

ec1 : [h2 ! h1, w3, v3] SM 0.97 1.00 0.99 0.97 0.92 9 10 8 0 0.86 21 33 18 1.00 0.49 0.49 1 1
ec2 : [h2 ! h1, w1, v3] S 0.96 0.02 0.96 0.76 0.79 9 9 8 0 0.94 36 27 24 1.00 0.49 0.49 1 1
ec3 : [h1, w1 ! w2, v3] S 0.65 0.06 0.63 0.53 0.58 9 11 8 1 0.89 27 33 22 0.96 0.49 0.49 1 1
ec4 : [h1, w1 ! w3, v3] M 0.67 0.06 0.64 0.53 0.56 9 10 7 1 0.88 27 33 20 0.96 0.49 0.49 1 1
ec5 : [h1, w3, v2 ! v3] S 0.05 1.64 0.44 0.43 0.42 12 10 10 0 0.83 47 33 29 1.00 0.49 0.49 1 1
ec6 : [h1, w3, v1 ! v3] L 0.06 1.54 0.43 0.43 0.37 11 10 9 0 0.80 46 33 27 0.99 0.49 0.49 1 1
ec7 : [h1, w1 ! w3, v2 ! v3] L 0.08 1.03 0.26 0.25 0.22 8 10 5 1 0.78 33 33 20 0.94 0.49 0.49 1 1
ec8 : [h2 ! h1, w1 ! w3, v2 ! v3] VL 0.09 14.51 0.26 0.23 0.25 8 9 5 2 0.58 33 21 18 0.94 0.49 0.49 1 1

SQLite— Workload: w1 : write � seq, w2 : write � batch, w3 : read � rand, w4 : read � seq; Version: v1 : 3.7.6.3, v2 : 3.19.0
ec1 : [h3 ! h2, w1, v1] S 0.99 0.37 0.82 0.35 0.31 5 2 2 0 1 13 9 8 1.00 N/A N/A N/A N/A
ec2 : [h3 ! h2, w2, v1] M 0.97 1.08 0.88 0.40 0.49 5 5 4 0 1 10 11 9 1.00 N/A N/A N/A N/A
ec3 : [h2, w1 ! w2, v1] S 0.96 1.27 0.83 0.40 0.35 2 3 1 0 1 9 9 7 0.99 N/A N/A N/A N/A
ec4 : [h2, w3 ! w4, v1] M 0.50 1.24 0.43 0.17 0.43 1 1 0 0 1 4 2 2 1.00 N/A N/A N/A N/A
ec5 : [h1, w1, v1 ! v2] M 0.95 1.00 0.79 0.24 0.29 2 4 1 0 1 12 11 7 0.99 N/A N/A N/A N/A
ec6 : [h1, w2 ! w1, v1 ! v2] L 0.51 2.80 0.44 0.25 0.30 3 4 1 1 0.31 7 11 6 0.96 N/A N/A N/A N/A
ec7 : [h2 ! h1, w2 ! w1, v1 ! v2] VL 0.53 4.91 0.53 0.42 0.47 3 5 2 1 0.31 7 13 6 0.97 N/A N/A N/A N/A

SaC— Workload: w1 : srad, w2 : pfilter, w3 : kmeans, w4 : hotspot, w5 : nw, w6 : nbody100, w7 : nbody150, w8 : nbody750, w9 : gc, w10 : cg
ec1 : [h1, w1 ! w2, v1] L 0.66 25.02 0.65 0.10 0.79 13 14 8 0 0.88 82 73 52 0.27 0.18 0.17 0.88 0.73
ec2 : [h1, w1 ! w3, v1] L 0.44 15.77 0.42 0.10 0.65 13 10 8 0 0.91 82 63 50 0.56 0.18 0.12 0.90 0.84
ec3 : [h1, w1 ! w4, v1] S 0.93 7.88 0.93 0.36 0.90 12 10 9 0 0.96 37 64 34 0.94 0.16 0.15 0.26 0.88
ec4 : [h1, w1 ! w5, v1] S 0.96 2.82 0.78 0.06 0.81 16 12 10 0 0.94 34 58 25 0.04 0.15 0.22 0.19 -0.29
ec5 : [h1, w2 ! w3, v1] M 0.76 1.82 0.84 0.67 0.86 17 11 9 1 0.95 79 61 47 0.55 0.27 0.13 0.83 0.88
ec6 : [h1, w2 ! w4, v1] S 0.91 5.54 0.80 0.00 0.91 14 11 8 0 0.85 64 65 31 -0.40 0.13 0.15 0.12 0.64
ec7 : [h1, w2 ! w5, v1] L 0.68 25.31 0.57 0.11 0.71 14 14 8 0 0.88 67 59 29 0.05 0.21 0.22 0.09 -0.13
ec8 : [h1, w3 ! w4, v1] L 0.68 1.70 0.56 0.00 0.91 14 13 9 1 0.88 57 67 36 0.34 0.11 0.14 0.05 0.67
ec9 : [h1, w3 ! w5, v1] VL 0.06 3.68 0.20 0.00 0.64 16 10 9 0 0.90 51 58 35 -0.52 0.11 0.21 0.06 -0.41
ec10 : [h1, w4 ! w5, v1] M 0.70 4.85 0.76 0.00 0.75 12 12 11 0 0.95 58 57 43 0.29 0.14 0.20 0.64 -0.14
ec11 : [h1, w6 ! w7, v1] S 0.82 5.79 0.77 0.25 0.88 36 30 28 2 0.89 109 164 102 0.96 N/A N/A N/A N/A
ec12 : [h1, w6 ! w8, v1] S 1.00 0.52 0.92 0.80 0.97 38 30 22 6 0.94 51 53 43 0.99 N/A N/A N/A N/A
ec13 : [h1, w8 ! w7, v1] S 1.00 0.32 0.92 0.53 0.99 30 33 26 1 0.98 53 89 51 1.00 N/A N/A N/A N/A
ec14 : [h1, w9 ! w10, v1] L 0.24 4.85 0.56 0.44 0.77 22 21 18 3 0.69 237 226 94 0.86 N/A N/A N/A N/A

ES: Expected severity of environmental change (see Sec. III-B): S: small change; SM : small medium change; M : medium change; L: large change; V L: very large change.
SaC workload descriptions: srad: random matrix generator; pfilter: particle filtering; hotspot: heat transfer differential equations; k-means: clustering; nw: optimal matching;
nbody: simulation of dynamic systems; cg: conjugate gradient; gc: garbage collector. Hardware descriptions (ID: Type/CPUs/Clock (GHz)/RAM (GiB)/Disk):
h1: NUC/4/1.30/15/SSD; h2: NUC/2/2.13/7/SCSI; h3:Station/2/2.8/3/SCSI; h4: Amazon/1/2.4/1/SSD; h5: Amazon/1/2.4/0.5/SSD; h6: Azure/1/2.4/3/SCSI
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[21] P. Jamshidi, M. Velez, C. Kästner, N. Siegmund, and P. Kawthekar.
Transfer learning for improving model predictions in highly configurable
software. In Proc. Int’l Symp. Software Engineering for Adaptive and
Self-Managing Systems (SEAMS). IEEE Computer Society, May 2017.
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