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Abstract. We compare samples of tweets from the Twitter Streaming
API constructed from different connections that tracked the same pop-
ular keywords at the same time. We find that on average, over 96% of
the tweets seen in one sample are seen in all others. Those tweets found
only in a subset of samples do not significantly differ from tweets found
in all samples in terms of user popularity or tweet structure. We con-
clude they are likely the result of a technical artifact rather than any
systematic bias.
Practically, our results show that an infinite number of Streaming API
samples are necessary to collect “most” of the tweets containing a popu-
lar keyword, and that findings from one sample from the Streaming API
are likely to hold for all samples that could have been taken. Method-
ologically, our approach is extendible to other types of social media data
beyond Twitter.

1 Introduction

A common method for collecting data from Twitter is to provide a set of key-
words representative of a current event or trend to the “Streaming API”1. The
Streaming API provides only a portion of the tweets matching the proscribed
keywords2, but delivers these messages in near-real time.

The Streaming API provides “enough” data for most analyses. However, sit-
uations do arise where this is not the case. For example, this limit is generally
assumed to be too low when the research is aimed at testing data-hungry algo-
rithms for pattern identification [1]. Additionally, in disaster situations, a given
sample from the Streaming API may only contain peripheral chatter from the
greater Twitter-sphere, therefore missing the relatively small number of tweets
sent by victims. Recent work also suggests that even where a researcher does not

1 https://dev.twitter.com/docs/streaming-apis
2 We find it provides on the order of 50 tweets per second, though the more common

assumption is that it provides no more than 1% of the entire volume of all tweets
sent within a particular interval.
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want more data, her sample from the Streaming API may be a biased represen-
tation of the full data [2]. Consequently, datasets that have been pulled from the
Streaming API and analyzed as representative of the entire collection of relevant
tweets may lead to inaccurate conclusions.

The simplest solution to these issues is to get the full set of tweets pertaining
to a given keyword set via the “Twitter Firehose”. However, Firehose access
is often prohibitively expensive. Consequently, the most popular way to access
Twitter data is to use the Streaming API and ignore or design around these
limitations [3]. As boyd and Crawford [4, pg. 669] note, however, “[i]t is not
clear what tweets are included in. . . different data streams. . . Without knowing,
it is difficult for researchers to make claims about the quality of the data that
they are analyzing”. Our work addresses three important open questions in this
area:

– RQ1: How different are Streaming API samples from others taken at the
same time tracking the same keywords?

– RQ2: Can one obtain more tweets by employing multiple Streaming API
samples?

– RQ3: If Streaming API samples are different, do the features of tweets shared
across samples differ from those that are not?

To address these issues, we use a pool of five connections to the Streaming
API to track the same popular keywords at the same time. We repeat this process
several times with different terms to test the robustness of our findings. With
respect to RQ1, on average over 96% of the tweets captured by any sample are
captured by all samples. This differs significantly from what is expected under
uniform sampling of the full set of relevant tweets, a quantity we derive. Thus,
it appears that Twitter provides nearly the same sample to all Streaming API
connections tracking the same term at the same time.

Given the magnitude of the overlap across samples, it is not surprising that
with respect to RQ2, a practitioner would need nearly an infinite number of
Streaming API samples to capture the full set of tweets on a popular topic.
However, this does not rule out the possibility that the small percentage of tweets
unique to each sample are somehow different from those seen by all. To this end,
and with respect to RQ3, we compare tweets found by different subsets of our
five connections. Across metrics covering user popularity and tweet structure,
we find no practically interesting differences in tweets seen in different numbers
of samples. Rather, the only difference observed relates to the time tweets are
delivered within sub-intervals of the sampling period (described below). We take
this as evidence that Streaming API samples are slightly different only because
of a technical artifact in how Twitter constructs samples on the fly.

Our results have two important practical implications. First, we show that
research conducted on a single sample of the Streaming API is likely to generalize
to any other Streaming API sample taken at the same time tracking the same
terms. Second, we show that if one desires more data than the Streaming API
provides and is not willing to pay for it, trying to obtain more tweets using
more Streaming API connections on the same keyword is not a feasible solution.
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Beyond these practical implications, the methodology used here is applicable to
similar questions regarding the quality and quantity of data obtained via other
social media APIs.

2 Related Work

Geo-spatial filters, network-based sampling algorithms [5] and user-based sam-
pling [6], amongst several other approaches, have all been used to capture data
from Twitter. Interest has also increased recently in how to perform sampling
effectively under the constraints imposed by Twitter [7, 3], leading to innovative
solutions for capturing more complete data. However, it still appears that the
most common method for extracting data from Twitter is simply to specify a set
of manually-defined keywords to the Streaming API and capture the resulting
messages. Thus, we focus on this sampling methodology here.

There are only two articles we are aware of that explicitly consider bias across
samples on Twitter. In [8], the authors compare a sample from the Streaming
API to one collected from the Search API3, stating “[t]he alternative to com-
paring samples to the full stream of information is to compare the two available
API specifications: streaming and search”. This characterization of the options
available for study is not, in our opinion, complete. In understanding biases that
may exist across APIs, one must first understand potential biases of each API
individually, as is done here. More recently, [2] found that the set of tweets re-
turned from a Streaming API sample provided aggregate network, topic and
hashtag based metrics that did not comply with those computed on the full set
of tweets matching the proscribed parameters that were sent during the sampled
same time period. Our work complements their efforts by showing that findings
would almost surely have extended to any sample from the Streaming API that
might have been taken at that time.

3 Methodology

Answering our three research questions required that we draw multiple, simul-
taneous samples of tweets from the Streaming API using identical keywords as
search terms. Because drawing each sample from the API required a unique
Twitter user, we obtained access to five accounts for the purposes of this ex-
periment. We used the Twitter API as of November 15, 2013 and carried out
all connections to it using Hosebird4, Twitter’s open-source library for accessing
the Streaming API.

We ran all five Streaming API connections simultaneously for two hours for
each of the configurations listed in Table 1. Each configuration was run twice
for a total of fourteen independent sampling periods. The configurations tested
include adding a non-sensical term (“thisisanonsenseterm”) to each connection,

3 https://dev.twitter.com/docs/api/1.1
4 https://github.com/twitter/hbc
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Keywords Staggered Keywords Staggered Keywords Staggered

the no the yes i no
the, thisisanonsenseterm no be no the, i, be no
the, {user name} no
Table 1. The configurations tested in our experiment. Note each is run twice. All runs
are in a separate two-hour period with all five connections.

adding different terms (specifically, the name of the Twitter account for the given
connection) to each connection, using multiple keywords as opposed to just one
and staggering the starting time of the different connections by .15 seconds to
alter sampling intervals. While one would never be interested in the keyword
sets shown in Table 1, ongoing work on disasters suggests samples taken here
are of comparable size to collections of disaster-related tweets collected in the
few hours after a natural disaster.

After generating our samples and before analysis, we checked to ensure that
there were no disconnections from the API during sampling (occasionally, Twit-
ter will disconnect users from the API and make them re-connect). This infor-
mation, along with all code and public data for the present work, can be found
at https://github.com/kennyjoseph/sbp 14.

4 Results

T The set of all tweets in the interval matching any keyword being tracked
C The set of samples of T obtained via our Streaming API connections
Lt,c Random variable denoting the likelihood that a tweet t ∈ T is in any c ∈ C
Xt Random variable denoting the number of samples in C in which we see tweet t
n The size of each sample in C
σn The standard deviation of n across C

Table 2. Variables used in this section.

Table 2 shows the variables we consider throughout this section- note that
each variable is defined for each individual run configuration. Across thirteen of
the fourteen configurations, n was almost exactly 367K for all c ∈ C. Indeed,
averaged across all configurations, σn ≈ 7 tweets. For the theoretical derivations
that follow, we thus use the simplifying assumption that n is constant across all
c. The one configuration in which n was not close to 367K was one of the two
configurations using the term “be”, where we captured only around 335K tweets.
This presumably occurred because the sample was taken early in the morning
(EST), when the volume of English tweets was low.

Values of n̄
|T | , the mean percentage of all relevant tweets captured in a given

configuration, ranged from .06-.30 across all runs except for this outlier, where
the value raises to .94. The size of T is determined by making use of the “limit
notice”5 from the Streaming API, a property not available in previous studies
[2, 8, 3] and one that consequently warrants mention. Approximately once per
second, the Streaming API sends a limit notice (instead of a tweet) detailing
how many tweets matching the given keywords have been skipped because of
rate limiting since the connection began.

5 https://dev.twitter.com/docs/streaming-apis/messages#Limit notices limit
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Fig. 1. The empirical distribution of Xt (red) versus the theoretical distribution (cyan)
presented as box plots of values for the different configurations.

4.1 RQ1: How different are Streaming API samples from others
taken at the same time?

One way to understand how different samples are from each other is to compare
to a theoretical baseline of how different we would expect them to be if all c
provided an independent, uniform sample of T . Under this assumption, it follows
that ∀ t, c, Lt,c ∼ Bernoulli( n

|T | ). That is, the likelihood we get any tweet in T

in a given c is equal to the number of tweets in the sample divided by the
number of all tweets matching our keywords. Since Xt =

∑
c∈C Lt,c, we can say

that ∀ t, Xt ∼ Binomial(|C|, n
|T | ). For all of the values of n

|T | except for our one

outlier, we would thus expect the probability of a tweet appearing in exactly Xt

samples to decrease rapidly as Xt increases.

Figure 1 shows the distribution governing Xt as two sets of box plots6. Cyan-
colored box plots depict the range of possible theoretical values taken on across
run configurations, while red denotes the same information for the empirical
data. Data falling outside the inter-quartile range depicted by the box plots are
shown as points. The theoretical values for each configuration are determined

by via the binomial distribution, where the second parameter is set to |C|
5|T | , the

mean size of the five samples. Because the estimated shape of the distribution was
different for each configuration, box plots are used for the theoretical distribution
as opposed to showing a single probability density function.

As is clear, the empirical data is not binomially distributed. Over 96% of
the tweets found by any c were found by all c, something that would occur
on average less than .000001% of the time if sampling were to occur randomly.
Even in the most extreme outlier case described above, where n ≈ |T | and we
would thus expect “most” tweets to be seen by all samples, odds of this were
still much higher in the real data than would be theoretically expected under
uniform sampling. This shows the value in comparing to a theoretically derived
result and perhaps best of all indicates that one should expect samples taken at
the same time on the same terms to be nearly identical, regardless of the size of
T .

6 Xt = 0, the likelihood that no c observes t, is not shown
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4.2 RQ2: Can one obtain more tweets simply by employing multiple
Streaming API samples?

Given that Twitter makes money selling their data, it is not particularly surpris-
ing that Streaming API samples are almost identical. Again, a theoretical com-

parison is of use to prove this point. Equation 1 below derives E[
∑

t∈T I 6=0(Xt)

|T | ],

the expected proportion of tweets in T that we will get with |C| samples, under
the assumption of random sampling. Note that in this quantity, I6=0(Xt) is the
indicator function that is 1 if and only if Xt > 0 and is 0 otherwise. Line 1
of Equation 1 uses the law of iterated expectations. Line 2 uses the fact that
E[I6=0(Xi)] = P (Xi 6= 0). Line 3 substitutes in the value for P (Xt = 0), which
equals the odds that a single c does not see a given tweet raised to the |C|th
power.

E[

∑
t∈T I6=0(Xt)

|T |
] =

∑
t∈T E[I6=0(Xt)]

|T |

=

∑
t∈T P (Xt 6= 0)

|T |
=

∑
t∈T 1− P (Xt = 0)

|T |

=

∑
t∈T (1− (1− n

|T | )
|C|)

|T |
= 1− (1− n

|T |
)|C| (1)

Using the result of Equation 1, we can compute that under random sampling
we would need only 12 connections to capture more than 95% of the full stream
when n

|T | ≈ .23, the average across all configurations. Alternatively, we can use

empirical data to find n+ |T | ∗ E[P (Xt=1)]
|C| , the expected number of unique tweets

we will get when |C| > 1. Using this empirical estimate, one million connections
to the Streaming API would provide us with only approximately 25% of the full
data. Thus, the answer to RQ2 for all practical situations is simply “no”.

4.3 RQ3: Do the features of tweets shared across samples differ
from those that are not?

RQ3 asked how tweets unique to a subset of C differ from those observed in all
samples in C. While there are only a limited number of these tweets, systematic
differences between them and tweets seen in all samples could still bias analyses.
Figure 2a shows summary statistics with 95% confidence intervals for the number
of hashtags, URLs and mentions per tweet and the logarithm of follower and
followee counts of users for tweets having different values of Xt (across all runs).
While differences are statistically significant, they are so small in magnitude in
each metric that they are not of practical interest. In addition, values show no
obvious pattern across Xt that would indicate a systematic bias in which tweets
are sent to which number of Streaming API connections.

Further support for the lack of such a systematic bias comes from Figure
2b, which plots histograms of the “position” metric calculated for each tweet for
each value of Xt. The position metric specifies the number of tweets after a limit



7
Log Num. Follwers Log Num. Followed By Num. Hastags Num URLs Num. Mentions

5.67

5.68

5.69

5.70

5.71

5.67

5.68

5.69

5.70

0.265

0.270

0.275

0.280

0.285

0.290

0.1550

0.1575

0.1600

0.1625

0.1650

0.725

0.730

0.735

0.740

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Xt

va
lu

e

Xt=1 Xt=2 Xt=3 Xt=4 Xt=5

0

5000

10000

15000

0

2500

5000

7500

0

4000

8000

12000

0

5000

10000

15000

0

50000

100000

150000

200000

0 1020304050 0 1020304050 0 1020304050 0 1020304050 0 1020304050
Position in stream after rate limit notice

co
un

t

Fig. 2. a) Top row; Comparison of metrics for tweets seen by a different number of
connections (each metric is a different plot). 95% confidence intervals are given using
the standard error and assuming normality b) Bottom row; histogram for the position
metric for all tweets with a given value of Xt. Each value of Xt is a different plot

notice before each tweet is seen. Thus, for example, tweets with a position metric
of 1 were the first tweet to be seen after a limit notice in a particular connection.
Figure 2b shows the position metric for the range 0-50, which encompasses 96%
of the tweets received. As we can see, tweets seen by all samples are almost
equally likely to be seen any time after a limit notice. In contrast, tweets seen
by a subset of C are disproportionately likely to be seen right before or after a
limit notice.

This observation holds when ignoring tweets sent in the first and last few
minutes of the overall sampling period, showing that the observation is unrelated
to start-up or shutdown time differences across streams. While outside of the
range of 0-50, distributions for the metric are much more similar across values of
Xt, differences within this range suggest that tweets seen by a particular subset
of C may simply be a technical artifact in how Twitter constructs samples for
the Streaming API between rate limit notices.

5 Conclusion

The present work gives evidence that Streaming API samples are not a uniform
sample of all relevant tweets- rather, Twitter’s technological infrastructure in-
cludes the capacity to send all connections tracking the same keywords approx-
imately the same result. Because of this, using a larger number of Streaming
API connections to track a particular keyword will not significantly increase
the number of tweets collected. Other sampling methodologies, like user-based
approaches [9, 6], may therefore be vital if one is to capture an increased num-
ber of tweets without resorting to purchasing data. Unfortunately, future work is
needed to better understand what biases these approaches themselves introduce,
and how much more data they really allow one to obtain. We also show that the
few tweets unique to particular samples from the Streaming API are similar at a
practical level to those seen in all samples. This holds across metrics associated
with user popularity and several measures of tweet structure.
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Differences between Streaming API samples consequently appear to be both
slight and uninteresting. However, our work should not be taken as an indication
that the Streaming API is in and of itself a random sample- it is entirely possible
that Twitter holds out tweets from all Streaming API samples. Our findings are
also restricted in that we run all samples on a single IP in a single location, use
a very particular set of keywords and do not test other features of the Streaming
API, such as searching via bounding boxes. While Twitter has stated that IP
restrictions are not used and we expect our work to extend to other approaches
to using the Streaming API, future work is still needed.

Regardless, efforts here and those we have built on lead the way to interesting
future work on providing error bars for data from Twitter and sites with similar
rate limiting techniques, for example on network metrics and the number of
“needles in a haystack” we are likely to miss in disaster scenarios. As Twitter
is more likely to further restrict their data than to provide more of it for free,
such research is critical in our understanding of findings resulting from this
increasingly popular social media site [1].
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