Expectation Maximization Mixture Models

Class 10. Oct 2, 2012

11755/18797

Understanding (and Predicting) Data

- Many different data streams around us
- We process, understand and respond
- What is the response based on?

Oct 2, 2012

11755/18797

Understanding (and Predicting) Data

- Many different data streams around us
- We process, understand and respond
- What is the response based on?
 - □ The data we observed
 - Underlying characteristics that we inferred

Oct 2, 2012 11755/18797

Understanding (and Predicting) Data

- Many different data streams around us
- We process, understand and respond
- What is the response based on?
 - □ The data we observed

Underlying characteristics that we inferred

Modeled using latent variables

Oct 2, 2012

1755/18797

Examples

Stock Market

Market sentiment as a latent variable?

Oct 2, 2012 11755/18797

Examples

Sports

What skills in players should be valued?

Sidenote: For anyone interested, Baseball as a Markov Chain

Oct 2, 2012 11755/18797

Examples

- Many audio applications use latent variables
 - Signal Separation
 - Voice Modification
 - Music Analysis
 - Music and Speech Generation

Oct 2, 2012 11755/10

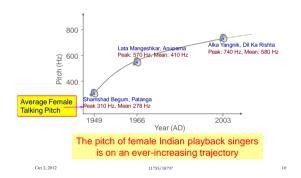
A Strange Observation

Comments on the high-pitched singing

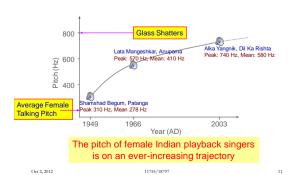
- Sarah McDonald (Holy Cow): ".. shrieking..."
- Khazana.com: ".. female Indian movie playback singers who can produce ultra high frequncies which only dogs can hear clearly.."
- www.roadjunky.com: ".. High pitched female singers doing their best to sound like they were seven years old .."

Oct 2, 2012 11755/18797

A Strange Observation



A Disturbing Observation



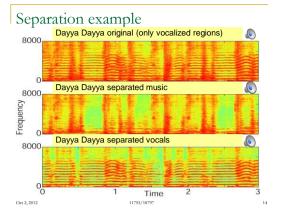
Lets Fix the Song

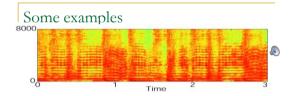
- The pitch is unpleasant
- The melody isn't bad
- Modify the pitch, but retain melody
- Problem:
 - Cannot just shift the pitch: will destroy the music
 - The music is fine, leave it alone
 - Modify the singing pitch without affecting the music

"Personalizing" the Song

- Separate the vocals from the background music
 - Modify the separated vocals, keep music unchanged
- Separation need not be perfect
 - Must only be sufficient to enable pitch modification of vocals
 - Pitch modification is tolerant of low-level artifacts
 - For octave level pitch modification artifacts can be undetectable.

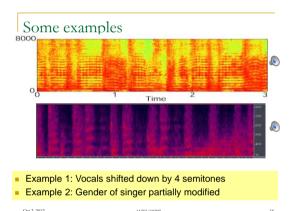
Oct 2, 2012 11755/18797 13





Example 1: Vocals shifted down by 4 semitones

Oct 2, 2012 11755/18797 15



Techniques Employed

- Signal separation
 - Employed a simple latent-variable based separation method
- Voice modification
 - Equally simple techniques
- Will consider the underlying methods over next few lectures
- Extensive use of Expectation Maximization

Learning Distributions for Data

- Problem: Given a collection of examples from some data, estimate its distribution
 - Basic ideas of Maximum Likelihood and MAP estimation can be found in Aarti/Paris' slides
 - Pointed to in a previous class
- Solution: Assign a model to the distribution
- Learn parameters of model from data
- Models can be arbitrarily complex
- Mixture densities, Hierarchical models.
- Learning can be done using Expectation Maximization

2.2012 11755/18797 17 Oct 2.2012 11755/18797

A Thought Experiment

63154124

- A person shoots a loaded dice repeatedly
- You observe the series of outcomes
- You can form a good idea of how the dice is loaded
- Figure out what the probabilities of the various numbers are for dice
- P(number) = count(number)/sum(rolls)
- This is a maximum likelihood estimate
 - Estimate that makes the observed sequence of numbers most probable

Oct 2, 2012 11755/18797

Generative Model

- The data are generated by draws from the distribution
 - □ I.e. the generating process draws from the distribution
- Assumption: The distribution has a high probability of generating the observed data
 - Not necessarily true
- Select the distribution that has the highest probability of generating the data
 - Should assign lower probability to less frequent observations and vice versa

Oct 2, 2012 11755/18797

The Multinomial Distribution

 A probability distribution over a discrete collection of items is a Multinomial

P(X : X belongs to a discrete set) = P(X)

- E.g. the roll of diceX: X in (1,2,3,4,5,6)
- Or the toss of a coinX: X in (head, tails)

Oct 2, 2012 11755/18797

Maximum Likelihood Estimation: Multinomial

Probability of generating (n₁, n₂, n₃, n₄, n₅, n₆)

$$P(n_1, n_2, n_3, n_4, n_5, n_6) = Const \prod_i p_i^{n_i}$$

- Find p₁,p₂,p₃,p₄,p₅,p₆ so that the above is maximized
- Alternately maximize

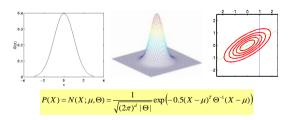
$$\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_{i} n_i \log(p_i)$$

- Log() is a monotonic function
 argmax_x f(x) = argmax_x log(f(x))
- Solving for the probabilities gives us
 Requires constrained optimization to ensure probabilities sum to 1

EVENTUALLY ITS JUST COUNTING!

2,2012 11/55/18/9/ 22

Segue: Gaussians



- Parameters of a Gaussian:
 - $\ \square$ Mean μ , Covariance Θ

Maximum Likelihood: Gaussian

 Given a collection of observations (X₁, X₂,...), estimate mean μ and covariance Θ

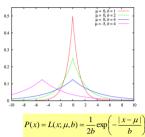
$$\begin{split} P(X_1, X_2, \dots) &= \prod_i \frac{1}{\sqrt{(2\pi)^d \mid \Theta \mid}} \exp \left(-0.5(X_i - \mu)^T \Theta^{-1}(X_i - \mu) \right) \\ &\log \left(P(X_1, X_2, \dots) \right) &= C - 0.5 \sum_i \left(\log \left(\mid \Theta \mid \right) + (X_i - \mu)^T \Theta^{-1}(X_i - \mu) \right) \end{split}$$

■ Maximizing w.r.t μ and Θ gives us

$$\mu = \frac{1}{N} \sum_{i} X_{i} \qquad \Theta = \frac{1}{N} \sum_{i} (X_{i} - \mu)(X_{i} - \mu)^{T}$$

ITS STILL JUST COUNTING!

Laplacian



Parameters: Mean μ, scale b (b > 0)

Oct 2, 2012 11755/18797

Maximum Likelihood: Laplacian

• Given a collection of observations $(x_1, x_2,...)$, estimate mean μ and scale b

$$\log(P(x_1, x_2,...)) = C - N\log(b) - \sum_{i} \frac{|x_i - \mu|}{b}$$

Maximizing w.r.t μ and b gives us

$$\mu = \frac{1}{N} \sum_{i} x_i \qquad b = \frac{1}{N} \sum_{i} |x_i - \mu|$$

Oct 2, 2012 11755/18797 26

Dirichlet (from wikipedia) log of the density as we change a from a 2(3, 0.3, 0.3) to (2.0, 2.0, 2.0) keeping all the individual at sequal to each other: $\sigma(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4)$ $P(X) = D(X; \alpha) = \prod_{i=1}^{n} \Gamma(\alpha_i)$

- Parameters are αs
- Determine mode and curvature

Oct 2, 2012 11755/18797

Maximum Likelihood: Dirichlet

• Given a collection of observations $(X_1, X_2,...)$, estimate α

$$\log(P(X_1, X_2,...)) = \sum_{j} \sum_{i} (\alpha_i - 1) \log(X_{j,i}) + N \sum_{i} \log(\Gamma(\alpha_i)) - N \log\left(\Gamma\left(\sum_{i} \alpha_i\right)\right)$$

- No closed form solution for α s.
- Needs gradient ascent
- Several distributions have this property: the ML estimate of their parameters have no closed form solution

Oct 2, 2012 11755/18797 28

Continuing the Thought Experiment

63154124.

112

- Two persons shoot loaded dice repeatedly
 The dice are differently loaded for the two of them
- We observe the series of outcomes for both persons
- How to determine the probability distributions of the two dice?

Oct 2, 2012 11755/18797 29

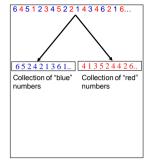
Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number

645123452214346216...

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red

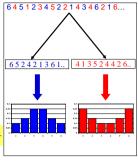


Oct 2, 2012

Estimating Probabilities

- Observation: The sequence of numbers from the two dice
 - As indicated by the colors, we know who rolled what number
- Segregation: Separate the blue observations from the red
- From each set compute probabilities for each of the 6 possible outcomes

 $P(number) = \frac{\text{no. of times number was rolled}}{}$ total number of observed rolls



Oct 2, 2012

A Thought Experiment

- 63154124.. Now imagine that you cannot observe the dice yourself
- Instead there is a "caller" who randomly calls out the outcomes
 - 40% of the time he calls out the number from the left shooter, and 60% of the time, the one from the right (and you know this)
- At any time, you do not know which of the two he is calling out
- How do you determine the probability distributions for the two dice?

Ort 2 2012 11755/18797

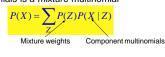
A Thought Experiment

- How do you now determine the probability distributions for the two sets of dice ...
- .. If you do not even know what fraction of time the blue numbers are called, and what fraction are red?

A Mixture Multinomial

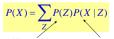
- The caller will call out a number X in any given callout IF
 - He selects "RED", and the Red die rolls the number X

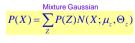
 - □ He selects "BLUE" and the Blue die rolls the number X
- P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue)
- E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue)
- A distribution that combines (or mixes) multiple multinomials is a mixture multinomial



11755/18797

Mixture Distributions





Mixture weights Component distributions

- Mixture distributions mix several component distributions Component distributions may be of varied type
- Mixing weights must sum to 1.0
- Component distributions integrate to 1.0
- Mixture distribution integrates to 1.0

Maximum Likelihood Estimation

- For our problem:
- $P(X) = \sum_{Z} P(Z)P(X \mid Z)$
- □ Z = color of dice
- $P(n_1,n_2,n_3,n_4,n_5,n_6) = Const \prod_{\mathbf{v}} P(X)^{n_X} = Const \prod_{\mathbf{v}} \left(\sum_{\mathbf{Z}} P(\mathbf{Z}) P(X\mid \mathbf{Z}) \right)^{n_X}$
- Maximum likelihood solution: Maximize
 - $\log(P(n_1, n_2, n_3, n_4, n_5, n_6)) = \log(Const) + \sum_{\chi} n_{\chi} \log\left(\sum_{Z} P(Z)P(X \mid Z)\right)$
- No closed form solution (summation inside log)!
 - In general ML estimates for mixtures do not have a closed form
 - □ USE EM!

Oct 2, 2012

11755/18797

Expectation Maximization

- It is possible to estimate all parameters in this setup using the Expectation Maximization (or EM) algorithm
- First described in a landmark paper by Dempster, Laird and Rubin
 - Maximum Likelihood Estimation from incomplete data, via the EM Algorithm, Journal of the Royal Statistical Society, Series B, 1977
- Much work on the algorithm since then
- The principles behind the algorithm existed for several years prior to the landmark paper, however.

ct 2, 2012 11755/18797

Expectation Maximization

- Iterative solution
- Get some initial estimates for all parameters
 - Dice shooter example: This includes probability distributions for dice AND the probability with which the caller selects the dice
- Two steps that are iterated:
 - Expectation Step: Estimate statistically, the values of unseen variables
 - Maximization Step: Using the estimated values of the unseen variables as truth, estimates of the model parameters

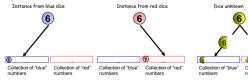
Oct 2, 2012 11755/18797 3

EM: The auxiliary function

- EM iteratively optimizes the following auxiliary function
- $Q(\theta, \theta') = \Sigma_Z P(Z|X, \theta') \log(P(Z, X \mid \theta))$
 - Z are the unseen variables
 - □ Assuming Z is discrete (may not be)
- θ' are the parameter estimates from the previous iteration
- θ are the estimates to be obtained in the current iteration

Oct 2, 2012 11755/18797

Expectation Maximization as counting



- Hidden variable: Z
 - $\hfill \square$ Dice: The identity of the dice whose number has been called out
- If we knew Z for every observation, we could estimate all terms
 By adding the observation to the right bin
- Unfortunately, we do not know Z it is hidden from us!
- Solution: FRAGMENT THE OBSERVATION

Oct 2, 2012 11755/18797 41

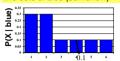
Fragmenting the Observation

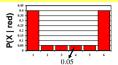
- EM is an iterative algorithm
 - At each time there is a current estimate of parameters
- The "size" of the fragments is proportional to the a posteriori probability of the component distributions
 - The a posteriori probabilities of the various values of Z are computed using Bayes' rule:

$$P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{P(X)} = CP(X \mid Z)P(Z)$$

Every dice gets a fragment of size P(dice | number)

- Hypothetical Dice Shooter Example:
- We obtain an initial estimate for the probability distribution of the two sets of dice (somehow):





 We obtain an initial estimate for the probability with which the caller calls out the two shooters (somehow)

Oct 2 2012

Expectation Maximization

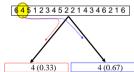
- Hypothetical Dice Shooter Example:
- Initial estimate:
 - □ P(blue) = P(red) = 0.5
 - $P(4 \mid blue) = 0.1, for P(4 \mid red) = 0.05$
- Caller has just called out 4
- Posterior probability of colors:

 $P(red \mid X = 4) = CP(X = 4 \mid Z = red)P(Z = red) = C \times 0.05 \times 0.5 = C0.025$ $P(blue \mid X = 4) = CP(X = 4 \mid Z = blue)P(Z = blue) = C \times 0.1 \times 0.5 = C0.05$

Normalizin g: P(red | X = 4) = 0.33; P(blue | X = 4) = 0.67

, 2012

Expectation Maximization



Expectation Maximization

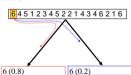
 Every observed roll of the dice contributes to both "Red" and "Blue"

Oct 2, 2012 11755/18797 45

Oct 2, 2012 11755/18797

Expectation Maximization

 Every observed roll of the dice contributes to both "Red" and "Blue"



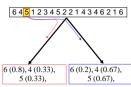
Expectation **Maximization**

 Every observed roll of the dice contributes to both "Red" and "Blue"

Oct 2, 2012 11755/18797 47

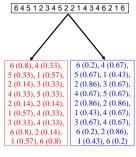
Oct 2, 2012 11755/18797

 Every observed roll of the dice contributes to both "Red" and "Blue"



Expectation Maximization

 Every observed roll of the dice contributes to both "Red" and "Blue"



Oct 2, 2012

1755/18707

11755/18797

Expectation **Maximization**

- Every observed roll of the dice contributes to both "Red" and "Blue"
- Total count for "Red" is the sum of all the posterior probabilities in the red column
 - **7.31**
- Total count for "Blue" is the sum of all the posterior probabilities in the blue column
 - **10.69**
 - Note: 10.69 + 7.31 = 18 = the total number of instances

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
4 5	.33	.67
1	.57	.43
2	.14	.86
1 2 3 4 5 2 2 1 4 3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69
		51

Expectation **Maximization**

- Total count for "Red": 7.31
- Red:

Oct 2, 2012

□ Total count for 1: 1.71

Called	D(rodIV)	D/blucIV)
	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2 3	.14	.86
	.33	.67
5 2 2	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Oct 2, 2012

11755/18797

Expectation Maximization

- Total count for "Red": 7.31
- Red:
 - □ Total count for 1: 1.71
 - □ Total count for 2: 0.56

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
1 2 3 4	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2 1 4	.14	.86
2	.14	.86
1	.57	.43
	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
1	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red": 7.31
- Red:
 - Total count for 1: 1.71Total count for 2: 0.56
 - Total count for 2: 0.56Total count for 3: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Oct 2, 2012

11755/18797

7.31 10.09

- Total count for "Red": 7.31
- Red:
 - □ Total count for 1: 1.71
 - □ Total count for 2: 0.56
 - □ Total count for 3: 0.66
 - □ Total count for 4: 1.32

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5 1 2 3 4 5 2 2 2 1	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
	.33	.67
3	.33	.67
4	.33	.67
6 2 1	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red": 7.31
- Red:
 - □ Total count for 1: 1.71
 - □ Total count for 2: 0.56
 - □ Total count for 3: 0.66
 - □ Total count for 4: 1.32 □ Total count for 5: 0.66

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
	.33	.67
4	.33	.67
4 5 2 2 1	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6 2 1	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Oct 2, 2012 11755/18797

Expectation **Maximization**

- Total count for "Red": 7.31
- Red:
- □ Total count for 1: 1.71
- □ Total count for 2: 0.56
- □ Total count for 3: 0.66
- □ Total count for 4: 1.32
- □ Total count for 5: 0.66
- □ Total count for 6: 2.4

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
5 1 2 3 4 5 2 2 1	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1 6	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red": 7.31
- Red:
 - □ Total count for 1: 1.71
 - □ Total count for 2: 0.56
 - □ Total count for 3: 0.66
 - □ Total count for 4: 1.32
 - □ Total count for 5: 0.66
- Total count for 6: 2.4
- Updated probability of Red dice: P(1 | Red) = 1.71/7.31 = 0.234
 - P(2 | Red) = 0.56/7.31 = 0.077 □ P(3 | Red) = 0.66/7.31 = 0.090
- P(4 | Red) = 1.32/7.31 = 0.181
 P(5 | Red) = 0.66/7.31 = 0.090
- □ P(6 | Red) = 2.40/7.31 = 0.328

;	.8	.2
	.33	.67
;	.33	.67
	.57	.43
!	.14	.86
1	.33	.67
ļ	.33	.67
	.33	.67
!	.14	.86
	.14	.86
	.57	.43
ļ	.33	.67
3	.33	.67
ļ	.33	.67
i	.8	.2
	.14	.86
	.57	.43
i	.8	.2
	7.31	10.69

Called P(red|X) P(blue|X)

Expectation Maximization

- Total count for "Blue": 10.69
- Blue:
 - □ Total count for 1: 1.29

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1 2 3 4	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
2 2 1 4	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue": 10.69
- Blue:
 - □ Total count for 1: 1.29
 - □ Total count for 2: 3.44

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

- Total count for "Blue": 10.69
- Blue:
 - □ Total count for 1: 1.29
 - □ Total count for 2: 3.44
 - □ Total count for 3: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2 1 4	.14	.86
1	.57	.43
	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
1	.14	.86
	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue": 10.69
- Blue:
 - □ Total count for 1: 1.29
 - □ Total count for 2: 3.44
 - □ Total count for 3: 1.34
 - □ Total count for 4: 2.68

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2 3	.14	.86
	.33	.67
4	.33	.67
5 2 2 1	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
	.33	.67
3	.33	.67
4	.33	.67
6 2	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Oct 2, 2012 11755/18797

Expectation **Maximization**

- Total count for "Blue": 10.69
- Blue:
 - □ Total count for 1: 1.29
 - □ Total count for 2: 3.44
 - □ Total count for 3: 1.34 □ Total count for 4: 2.68
 - □ Total count for 5: 1.34

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
4 5 1 2 3 4 5 2 2 2 1 4 3 4	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
	.33	.67
6	.8	.2
6 2 1	.14	.86
	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Blue": 10.69
- Blue:
- □ Total count for 1: 1 29
- □ Total count for 2: 3.44
- □ Total count for 3: 1.34 □ Total count for 4: 2.68
- □ Total count for 5: 1.34
- □ Total count for 6: 0.6

6	.8	.2
4 5 1 2 3 4 5 5 2 2 2 1 4 4 6	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
4	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
2	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Called P(red|X) P(blue|X)

Expectation Maximization

- Total count for "Blue": 10.69
- Blue:
 - □ Total count for 1: 1.29 □ Total count for 2: 3.44
 - □ Total count for 3: 1.34
 - □ Total count for 4: 2.68
 - □ Total count for 5: 1.34
 - □ Total count for 6: 0.6

Updated probability of Blue dice:

- P(1 | Blue) = 1.29/11.69 = 0.122
- □ P(2 | Blue) = 0.56/11.69 = 0.322
- □ P(3 | Blue) = 0.66/11.69 = 0.125
- □ P(4 | Blue) = 1.32/11.69 = 0.250
- □ P(5 | Blue) = 0.66/11.69 = 0.125 □ P(6 | Blue) = 2.40/11.69 = 0.056

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5 2 2 1 4	.33	.67
2	.14	.86
2	.14	.86
1	.57	.43
	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
6 2 1	.14	.86
1	.57	.43
6	.8	.2
	7.31	10.69

Expectation Maximization

- Total count for "Red": 7.31
- Total count for "Blue": 10.69
- Total instances = 18
 - □ Note 7.31+10.69 = 18
- We also revise our estimate for the probability that the caller calls out
 - i.e the fraction of times that he calls Red and the fraction of times
- P(Z=Red) = 7.31/18 = 0.41

Red or Blue .86 .43 he calls Blue .43 P(Z=Blue) = 10.69/18 = 0.59 10.69 7.31

The updated values

•	Probability of Red dice:		
		P(1 Red) = 1.71/7.31 = 0.234	
		P(2 Red) = 0.56/7.31 = 0.077	
		$P(3 \mid Red) = 0.66/7.31 = 0.090$	
		P(4 Red) = 1.32/7.31 = 0.181	
	а	P(5 Red) = 0.66/7.31 = 0.090	
		P(6 Red) = 2.40/7.31 = 0.328	

	P(6 Red) = 2.40/7.31 = 0.328
Pı	robability of Blue dice:
	P(1 Blue) = 1.29/11.69 = 0.122
	P(2 Blue) = 0.56/11.69 = 0.322
	P(3 Blue) = 0.66/11.69 = 0.125
	P(4 Blue) = 1.32/11.69 = 0.250
	P(5 Blue) = 0.66/11.69 = 0.125
m	$P(6 \mid Blue) = 2.40/11.69 = 0.056$

P(Z=Red) = 7.31/18 = 0.41
P(Z=Blue) = 10.69/18 = 0.59

Called	P(red X)	P(blue X)
6	.8	.2
4	.33	.67
5	.33	.67
1 2 3	.57	.43
2	.14	.86
3	.33	.67
4	.33	.67
5	.33	.67
2	.14	.86
2 2 1 4	.14	.86
1	.57	.43
	.33	.67
3	.33	.67
4	.33	.67
6	.8	.2
1	.14	.86
1	.57	.43
6	.8	.2

THE UPDATED VALUES CAN BE USED TO REPEAT THE PROCESS. ESTIMATION IS AN ITERATIVE PROCESS

The Dice Shooter Example

Initialize P(Z), $P(X \mid Z)$

- Estimate P(Z|X) for each Z, for each called out number

 Associate X with each value of Z, with weight P(Z|X)
- Associate X with each value of Z, with weight P(Z)3. Re-estimate P(X | Z) for every value of X and Z
- 4. Re-estimate P(Z)
 - If not converged, return to 2

Oct 2, 2012 11755/1879

In Squiggles

- Given a sequence of observations O₁, O₂, ...
 N_x is the number of observations of number X
- Initialize P(Z), P(X|Z) for dice Z and numbers X
- Iterate:
 - □ For each number X:

 $P(Z \mid X) = \frac{P(X \mid Z)P(Z)}{\sum_{x} P(Z')P(X \mid Z')}$

Update:

$$P(X \mid Z) = \frac{\sum_{O \text{ such that } O = X} P(Z \mid X)}{\sum_{O} P(Z \mid O)} = \frac{N_X P(Z \mid X)}{\sum_X N_X P(Z \mid X)}$$

 $P(Z) = \frac{\sum_{X} N_{X} P(Z \mid X)}{\sum_{Z'} \sum_{X} N_{X} P(Z' \mid X)}$

Oct 2, 2012 11755/18797

Solutions may not be unique

- The EM algorithm will give us one of many solutions, all equally valid!
 - The probability of 6 being called out:

 $P(6) = \alpha P(6 \mid red) + \beta P(6 \mid blue) = \alpha P_r + \beta P_h$

- Assigns Pr as the probability of 6 for the red die
- Assigns P_b as the probability of 6 for the blue die
- □ The following too is a valid solution

 $P(6) = 1.0(\alpha P_r + \beta P_b) + 0.0 anything$

- Assigns 1.0 as the a priori probability of the red die
- Assigns 0.0 as the probability of the blue die
- The solution is NOT unique

Oct 2, 2012 11755/18797 70

A More Complex Model

 $P(X) = \sum_{k} P(k) N(X; \mu_k, \Theta_k) = \sum_{k} \frac{P(k)}{\sqrt{(2\pi)^d \mid \Theta_k \mid}} \exp \left(-0.5(X - \mu_k)^T \Theta_k^{-1}(X - \mu_k) \right)$

- Gaussian mixtures are often good models for the distribution of multivariate data
- Problem: Estimating the parameters, given a collection of data

Oct 2, 2012 11755/18797 71

Gaussian Mixtures: Generating model

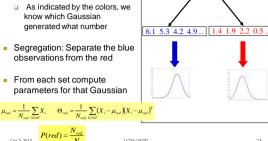
 $P(X) = \sum_{k} P(k)N(X; \mu_k, \Theta_k)$

- The caller now has two Gaussians
 - At each draw he randomly selects a Gaussian, by the mixture weight distribution
 - □ He then draws an observation from that Gaussian
 - Much like the dice problem (only the outcomes are now real numbers and can be anything)

Estimating GMM with complete information

6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5 ...

- Observation: A collection of numbers drawn from a mixture of 2 Gaussians
- observations from the red
- From each set compute



Fragmenting the observation

- The identity of the Gaussian is not known!
- Solution: Fragment the observation
- Fragment size proportional to a posteriori probability

 $P(k \mid X) = \frac{P(X \mid k)P(k)}{\sum_{k} P(k')P(X \mid k')} = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k} P(k')N(X; \mu_k, \Theta_k)}$

Expectation **Maximization**

- Initialize P(k), μ_k and Θ_k for both Gaussians
 - Important how we do this
 - Typical solution: Initialize means randomly, ⊕k as the global covariance of the data and P(k) uniformly
- Compute fragment sizes for each Gaussian, for each observation

Number	P(red X)	P(blue X)
6.1	.81	.19
1.4	.33	.67
5.3	.75	.25
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
4.9	.66	.34
0.5	.05	.95

$P(k \mid X) = $	$P(k)N(X; \mu_k, \Theta_k)$
$I(\kappa \mid \Lambda) =$	$\sum P(k')N(X;\mu_{k'},\Theta_{k'})$
	k'

Expectation Maximization

- Each observation contributes only as much as its fragment size to each statistic
- Mean(red) = (6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 1.9*0.41 + 4.2*0.64 + 2.2*0.43 + 4.9*0.66 + 0.5*0.05)/ (0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05= 17.05 / 4.08 = 4.18

Number	P(red X)	P(blue X)
6.1	.81	.19
1.4	.33 .75	.67
6.1 1.4 5.3 1.9 4.2		.25 .59 .36
1.9	.41	.59
4.2	.64	.36
2.2	.43	.57
2.2 4.9 0.5	.66	.57 .34 .95
0.5	.05	.95
	4.08	3.92

Var(red) = ((6.1-4.18)²*0.81 + (1.4-4.18)²*0.33 + ((6.1-4.18)* 0.81 + (1.4-4.18) *0.33 + (1.9-4.18)2*0.41 + (4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 + (4.9-4.18)2*0.66 + (0.5-4.18)2*0.05) / (0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05)

 $P(red) = \frac{4.08}{8}$

Oct 2, 2012

EM for Gaussian Mixtures

- 1. Initialize P(k), μ_k and Θ_k for all Gaussians
- 2. For each observation X compute a posteriori probabilities for all Gaussian

$$P(k \mid X) = \frac{P(k)N(X; \mu_k, \Theta_k)}{\sum_{k'} P(k')N(X; \mu_k, \Theta_{k'})}$$

Update mixture weights, means and variances for all Gaussians

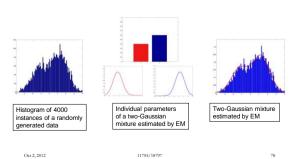
$$P(k) = \frac{\sum_{X} P(k|X)}{N}$$

$$\mu_k = \frac{\sum_{X} P(k|X) X}{\sum_{X} P(k|X)}$$

If not converged, return to 2

EM estimation of Gaussian Mixtures

An Example



- The same principle can be extended to mixtures of other distributions.
- E.g. Mixture of Laplacians: Laplacian parameters become

$$\mu_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) x \qquad b_{k} = \frac{1}{\sum_{x} P(k \mid x)} \sum_{x} P(k \mid x) \mid x - \mu_{k}$$

 In a mixture of Gaussians and Laplacians, Gaussians use the Gaussian update rules, Laplacians use the Laplacian rule

Oct 2, 2012 11755/18797 7

Solve this problem:

- Caller rolls a dice and flips a coin
- He calls out the number rolled if the coin shows head
- Otherwise he calls the number+1
- Determine p(heads) and p(number) for the dice from a collection of ouputs
- Caller rolls two dice
- He calls out the sum
- Determine P(dice) from a collection of ouputs

Oct 2, 2012 11755/18797 8

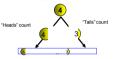
- The EM algorithm is used whenever proper statistical analysis of a phenomenon requires the knowledge of a hidden or missing variable (or a set of hidden/missing variables)
 - □ The hidden variable is often called a "latent" variable
- Some examples:
 - Estimating mixtures of distributions

Expectation Maximization

- Only data are observed. The individual distributions and mixing proportions must both be learnt.
- Estimating the distribution of data, when some attributes are missing
- Estimating the dynamics of a system, based only on observations that may be a complex function of system state

Oct 2, 2012 11755/18797

The dice and the coin



Unknown: Whether it was head or tails

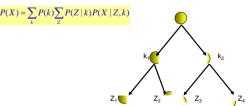
Oct 2, 2012 11755/18797

The two dice

- Unknown: How to partition the number
- Count_{blue}(3) += P(3,1 | 4)
- Count_{blue}(2) += P(2,2 | 4)
- Count_{blue}(1) += P(1,3 | 4)

Oct 2, 2012 11755/18797 83

Fragmentation can be hierarchical



- E.g. mixture of mixtures
- Fragments are further fragmented..
 - Work this out

More later

- Will see a couple of other instances of the use of EM
- Work out HMM training
 - □ Assume state output distributions are multinomials
 - Assume they are Gaussian
 - Assume Gaussian mixtures

Oct 2, 2012 11755/18797