
11-755 Machine Learning for Signal Processing

Regression and Prediction

Class 15.  23 Oct 2012

Instructor: Bhiksha Raj
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Matrix Identities

 The derivative of a scalar function w.r.t. a vector 
is a vector

 The derivative w.r.t. a matrix is a matrix
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Matrix Identities

 The derivative of a scalar function w.r.t. a vector 
is a vector

 The derivative w.r.t. a matrix is a matrix
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Matrix Identities

 The derivative of a vector function w.r.t. a vector 
is a matrix

 Note transposition of order
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Derivatives

 In general:  Differentiating an MxN function by a 
UxV argument results in an MxNxUxV tensor 
derivative

23 Oct 2012 11755/18797 5

,

Nx1

UxV

NxUxV

,
Nx1UxV

UxVxN



Matrix derivative identities

 Some basic linear and quadratic identities
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aXXaaXXa dddd TT  )(      )(
X is a matrix, a is a vector.  

Solution may also be XT

)()(   ;  )()( AXXAXAAX dddd  A is a matrix

    aXXaXaa dd TTT 
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A Common Problem

 Can you spot the glitches?
711755/1879723 Oct 2012



How to fix this problem?

 “Glitches” in audio
 Must be detected

 How?

 Then what?

 Glitches must be “fixed”
 Delete the glitch

 Results in a “hole”

 Fill in the hole

 How?
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Interpolation..
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 “Extend” the curve on the left to “predict” the values in 
the “blank” region

 Forward prediction

 Extend the blue curve on the right leftwards to predict 
the blank region

 Backward prediction

 How?

 Regression analysis..



Detecting the Glitch
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 Regression-based reconstruction can be done 
anywhere

 Reconstructed value will not match actual value

 Large error of reconstruction identifies glitches

NOT OKOK



What is a regression

 Analyzing relationship between variables

 Expressed in many forms

 Wikipedia

 Linear regression, Simple regression, Ordinary least 
squares, Polynomial regression, General linear model, 
Generalized linear model, Discrete choice, Logistic 
regression, Multinomial logit, Mixed 
logit, Probit, Multinomial probit, ….

 Generally a tool to predict variables
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Regressions for prediction

 y = f(x; Q) + e

 Different possibilities
 y is a scalar

 Y is real

 Y is categorical (classification)

 y is a vector

 x is a vector
 x is a set of real valued variables

 x is a set of categorical variables

 x is a combination of the two

 f(.) is a linear or affine function

 f(.) is a non-linear function

 f(.) is a time-series model
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A linear regression

 Assumption: relationship between variables is linear
 A linear trend may be found relating x and y

 y = dependent variable

 x = explanatory variable

 Given x, y can be predicted as an affine function of x
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An imaginary regression..
 http://pages.cs.wisc.edu/~kovar/hall.html
 Check this shit out (Fig. 1). 

That's bonafide, 100%-real data, 
my friends. I took it myself over the 
course of two weeks. And this was not 
a leisurely two weeks, either; I busted 
my ass day and night in order to provide 
you with nothing but the best data 
possible. Now, let's look a bit more 
closely at this data, remembering 
that it is absolutely first-rate. Do you see the exponential 
dependence? I sure don't. I see a bunch of crap.

Christ, this was such a waste of my time.
Banking on my hopes that whoever grades this will just look 

at the pictures, I drew an exponential through my noise. I 
believe the apparent legitimacy is enhanced by the fact that I 
used a complicated computer program to make the fit. I 
understand this is the same process by which the top quark was 
discovered.
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Linear Regressions

 y = Ax + b + e

 e = prediction error

 Given a “training” set of {x, y} values: estimate A
and b

 y1 = Ax1 + b + e1

 y2 = Ax2 + b + e2

 y3 = Ax3 + b+ e3

 …

 If A and b are well estimated, prediction error will 
be small
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Linear Regression to a scalar

 Rewrite
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 Define:

eXAy  T

y1 = aTx1 + b + e1

y2 = aTx2 + b + e2

y3 = aTx3 + b + e3



Learning the parameters

 Given training data:  several x,y

 Can define a “divergence”:   D(y,  )

 Measures how much yhat differs from y

 Ideally, if the model is accurate this should be small

 Estimate A, b to minimize D(y,  )
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The prediction error as divergence

 Define the divergence as the sum of the squared 
error in predicting y 18

eXAy  T

y1 = aTx1 + b + e1

y2 = aTx2 + b + e2

y3 = aTx3 + b + e3
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Prediction error as divergence

 y = aTx + e

 e = prediction error

 Find the “slope” a such that the total squared length 
of the error lines is minimized
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Solving a linear regression

 Minimize squared error

 Differentiating  w.r.t A and equating to 0
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An Aside

 What happens if we minimize the perpendicular 
instead?
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Regression in multiple dimensions

 Also called multiple regression

 Equivalent of saying:

 Fundamentally no different from N separate single 
regressions

 But we can use the relationship between ys to our benefit
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y1 = ATx1 + b + e1

y2 = ATx2 + b + e2

y3 = ATx3 + b + e3

yi is a vector

y1 = ATx1 + b + e1

y11 = a1
Tx1 + b1 + e11

y12 = a2
Tx2 + b2 + e12

y13 = a3
Tx3 + b3 + e13

yij = jth component of vector yi

ai = ith column of A

bi = ith component of  b



Multiple Regression

 Differentiating and equating to 0
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A Different Perspective

 y is a noisy reading  of ATx

 Error e is Gaussian

 Estimate A from 
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The Likelihood of the data

 Probability of observing a specific y, given x, for a 
particular matrix A

 Probability of the collection:

 Assuming IID for convenience (not necessary)
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A Maximum Likelihood Estimate

 Maximizing the log probability is identical to 
minimizing the trace
 Identical to the least squares solution
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Predicting an output

 From a collection of training data, have learned A

 Given x for a new instance, but not y, what is y?

 Simple solution:
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Applying it to our problem

 Prediction by regression

 Forward regression

 xt = a1xt-1+ a2xt-2…akxt-k+et

 Backward regression

 xt = b1xt+1+ b2xt+2…bkxt+k +et
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Applying it to our problem

 Forward prediction
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Applying it to our problem

 Backward prediction
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Finding the burst

 At each time

 Learn a “forward” predictor  at

 At each time, predict next sample  xt
est = Si at,kxt-k

 Compute error:  ferrt=|xt-xt
est |2

 Learn a “backward” predict and compute backward error

 berrt

 Compute average prediction error over window, 
threshold
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Filling the hole

 Learn “forward” predictor at left edge of “hole”

 For each missing sample

 At each time, predict next sample  xt
est = Si at,kxt-k

 Use estimated samples  if real samples are not available

 Learn “backward” predictor at left edge of “hole”

 For each missing sample

 At each time, predict next sample  xt
est = Si bt,kxt+k

 Use estimated samples  if real samples are not available

 Average forward and backward predictions
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Reconstruction zoom in

Next 

glitch

Interpolation

result

Reconstruction area

Actual

data

Distorted

signal

Recovered

signal
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Incrementally learning the regression

 Can we learn A incrementally instead?

 As data comes in?

 The Widrow Hoff rule

 Note the structure

 Can also be done in batch mode!
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Predicting a value

 What are we doing exactly?
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 Let
 Normalizing and rotating space

 The rotation is irrelevant

 Weighted combination
of inputs



Relationships are not always linear

 How do we model these?

 Multiple solutions
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Non-linear regression

 y = j(x)+e
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What we are doing

 Finding the optimal combination of various 
function

 Remind you of something?
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Being non-commital: Local Regression

 Regression is usually trained over
the entire data

 Must apply everywhere

 How about doing this locally?

 For any x
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Local Regression

 The resulting regression is 
dependent on x!

 No closed form solution

 But can be highly accurate

 But what is d(x,x’)??
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Kernel Regression

 Actually a non-parametric MAP estimator of y

 Note – an estimator of y, not parameters of regression

 The “Kernel” is the kernel of a parzen window

 But first.. MAP estimators..
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Map Estimators

 MAP (Maximum A Posteriori): Find a “best guess” 
for y (in a statistical sense), given that we know x

y = argmax Y P(Y|x)

 ML (Maximum Likelihood): Find that value of Y 
for which the statistical best guess of X would 
have been the observed X

y = argmax Y P(x|Y)

 MAP is simpler to visualize
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MAP estimation: Gaussian PDF

F1 F0

Assume X 

and Y are

jointly 

Gaussian

The parameters of the

Gaussian are learned from training

data
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Learning the parameters of the 

Gaussian
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Learning the parameters of the 

Gaussian
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MAP estimation: Gaussian PDF

F1 F0

Assume X 

and Y are

jointly 

Gaussian

The parameters of the

Gaussian are learned from training

data
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MAP Estimator for Gaussian RV

Assume X 

and Y are

jointly 

Gaussian

The parameters 

of the Gaussian 

are learned from 

training data

Now we are given an X, but no Y

What is Y?

Level set of
Gaussian
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MAP estimator for Gaussian RV

x0
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MAP estimation: Gaussian PDF

F1
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F1

MAP estimation: The Gaussian at a 

particular value of X

x0
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F1

MAP estimation: The Gaussian at a 

particular value of X

Most likely

value

x0
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MAP Estimation of a Gaussian RV
Y = argmaxy P(y| X) ???
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MAP Estimation of a Gaussian RV
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MAP Estimation of a Gaussian RV
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So what is this value?

 Clearly a line

 Equation of Line:

 Scalar version given; vector version is identical

 Derivation?  Later in the program a bit
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This is a multiple regression

 This is the MAP estimate of
y

 NOT the regression parameter

 What about the ML estimate of y

 Again, ML estimate of y, not regression parameter
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Its also a minimum-mean-squared error 

estimate

 General principle of MMSE estimation:

 y is unknown, x is known

 Must estimate it such that the expected squared error 
is minimized

 Minimize above term
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Its also a minimum-mean-squared error 

estimate

 Minimize error:

 Differentiating and equating to 0:
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For the Gaussian: MAP = MMSE

Most likely

value

is also

The MEAN

value

 Would be true of any symmetric distribution
23 Oct 2012 5911755/18797



MMSE estimates for mixture 

distributions

60

 Let P(y|X) be a mixture density

 The MMSE estimate of y is given by

 Just a weighted combination of the MMSE

estimates from the component distributions
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MMSE estimates from a Gaussian 

mixture
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 Let P(y|x) is also a Gaussian mixture

 Let P(x,y) be a Gaussian Mixture
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MMSE estimates from a Gaussian 

mixture
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MMSE estimates from a Gaussian 

mixture
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 E[y|x] is also a mixture

 P[y|x] is a mixture density
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MMSE estimates from a Gaussian 

mixture
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 A mixture of estimates from individual 

Gaussians



MMSE with GMM: Voice 

Transformation 
- Festvox GMM transformation suite (Toda)               

awb bdl jmk slt

awb

bdl

jmk

slt
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Voice Morphing

 Align training recordings from both speakers

 Cepstral vector sequence

 Learn a GMM on joint vectors

 Given speech from one speaker, find MMSE estimate of the 
other

 Synthesize from cepstra
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A problem with regressions

 ML fit is sensitive
 Error is squared

 Small variations in data  large variations in weights

 Outliers affect it adversely

 Unstable
 If dimension of X >= no. of instances

 (XXT) is not invertible
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MAP estimation of weights

 Assume weights drawn from a Gaussian

 P(a) =  N(0, 2I)

 Max. Likelihood estimate

 Maximum a posteriori estimate
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MAP estimation of weights

 Similar to ML estimate with an additional term
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 P(a) =  N(0, 2I)
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MAP estimate of weights

 Equivalent to diagonal loading of correlation matrix

 Improves condition number of correlation matrix
 Can be inverted with greater stability

 Will not affect the estimation from well-conditioned data

 Also called Tikhonov Regularization 
 Dual form: Ridge regression

 MAP estimate of weights

 Not to be confused with MAP estimate of Y
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MAP estimate priors

 Left:  Gaussian Prior on W

 Right:  Laplacian Prior
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MAP estimation of weights with 

laplacian prior
 Assume weights drawn from a Laplacian

 P(a) =  l-1exp(-l-1|a|1)

 Maximum a posteriori estimate

 No closed form solution

 Quadratic programming solution required

 Non-trivial
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MAP estimation of weights with 

laplacian prior
 Assume weights drawn from a Laplacian

 P(a) =  l-1exp(-l-1|a|1)

 Maximum a posteriori estimate

 …

 Identical to L1 regularized least-squares 
estimation
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L1-regularized LSE

 No closed form solution

 Quadratic programming solutions required

 Dual formulation

 “LASSO” – Least absolute shrinkage and selection 
operator

23 Oct 2012 11755/18797 74

1

1)()('maxargˆ aXayXaya A

 lTTTTC

TTTTC )()('maxargˆ XayXaya A  t
1

asubject   to



LASSO Algorithms

 Various convex optimization algorithms

 LARS: Least angle regression

 Pathwise coordinate descent..

 Matlab code available from web
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Regularized least squares

 Regularization results in selection of suboptimal (in least-
squares sense) solution

 One of the loci outside center

 Tikhonov regularization selects shortest solution

 L1 regularization selects sparsest solution
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LASSO and Compressive Sensing

 Given Y and X, estimate sparse W
 LASSO:   

 X = explanatory variable
 Y = dependent variable
 a = weights of regression

 CS:
 X = measurement matrix
 Y = measurement
 a = data
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An interesting problem: Predicting War!

 Economists measure a number of social 
indicators for countries weekly

 Happiness index

 Hunger index

 Freedom index

 Twitter records

 …

 Question: Will there be a revolution or war next 
week?
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An interesting problem: Predicting War!

 Issues:

 Dissatisfaction builds up – not an instantaneous 
phenomenon

 Usually

 War / rebellion build up much faster

 Often in hours

 Important to predict

 Preparedness for security

 Economic impact
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Predicting War

Given

 Sequence of economic indicators for each week

 Sequence of unrest markers for each week

 At the end of each week we know if war happened or not 
that week

 Predict probability of unrest next week

 This could be a new unrest or persistence of a current 
one
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A Step Aside: Predicting Time Series

 An HMM is a model for time-series data

 How can we use it predict the future?
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Predicting with an HMM

 Given

 Observations O1..Ot

 All HMM parameters

 Learned from some training data

 Must estimate future observation Ot+1

 Estimate must consider entire history (O1..Ot)

 No knowledge of actual state of the process at any 
time
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Predicting with an HMM

 Given O1..Ot

 Compute  P(O1.. Ot,s)

 Using the forward algorithm – computes  a(s,t)
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Predicting with an HMM

 Given P(st=s | O1..t) for all s

 P(st+1 = s | O1..t) =  Ss’ P(st=s’|O1..t)P(s|s’)

 P(Ot+1,s|O1..t) = P(O|s) P(st+1=s|O1..t)

 P(Ot+1|O1..t) = Ss P(Ot+1,s|O1..t) 

= Ss P(O|s) P(st+1=s|O1..t)

 This is a mixture distribution
84
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Predicting with an HMM

 P(Ot+1|O1..t) = Ss P(Ot+1,s|O1..t) 
= Ss P(O|s) P(st+1=s|O1..T)

 MMSE estimate of Ot+1 given O1..t

 E[Ot+1 | O1..t] = Ss P(st+1=s|O1..T) E[O|s]

 A weighted sum of the state means
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Predicting with an HMM

 MMSE Estimate of Ot+1 = E[Ot+1|O1..T]

 E[Ot+1 | O1..t] = Ss P(st+1=s|O1..T) E[O|s]

 If P(O|s) is a GMM

 E(O|s) = Sk P(k|s) k,s

23 Oct 2012 11755/18797 86

 

s k

sksktt wOsPO ,,..11 )|(ˆ 

 




s k

sksk

s

t w
st

st
O ,,

'

1
)',(

),(ˆ 
a

a



Predicting War

 Train an HMM on z = [w, s]

 After the tth week, predict probability distribution:

 P(zt | z1…zt)  =  P(w, z | z1..zt)

 Marginalize out x (not known for next week)

 War?    E[w | z1..zt]
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