Fundamentals of Linear Algebra – part 2

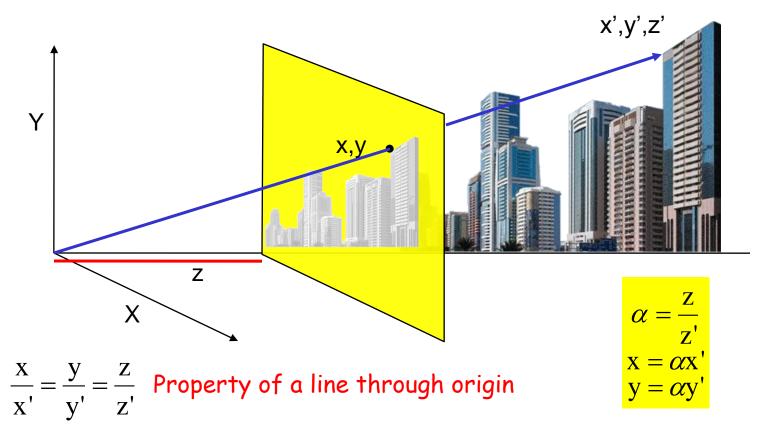
Class 3 4 Sep 2012

Instructor: Bhiksha Raj

Overview

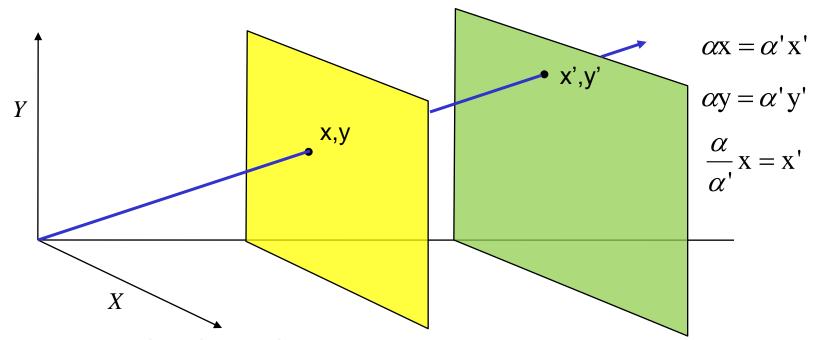
- Vectors and matrices
- Basic vector/matrix operations
- Various matrix types
- Projections
- More on matrix types
- Matrix determinants
- Matrix inversion
- Eigenanalysis
- Singular value decomposition

Central Projection



- The positions on the "window" are scaled along the line
- To compute (x,y) position on the window, we need z (distance of window from eye), and (x',y',z') (location being projected)

Homogeneous Coordinates



- Represent points by a triplet
 - Using yellow window as reference:

$$(x,y) = (x,y,1)$$

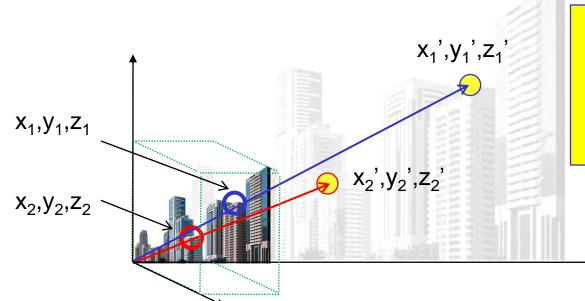
$$(x',y') = (x,y,c') c' = \alpha'/\alpha$$

Locations on line generally represented as (x,y,c)

$$\frac{\alpha}{\alpha'} \mathbf{x} = \mathbf{x'}$$

$$\frac{\alpha}{\alpha'}$$
 y = y'

Homogeneous Coordinates in 3-D



$$\alpha \mathbf{x}_{1} = \alpha' \mathbf{x}_{1}' \qquad \alpha \mathbf{x}_{2} = \alpha' \mathbf{x}_{2}'$$

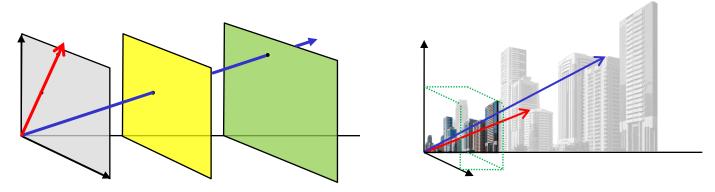
$$\alpha \mathbf{y}_{1} = \alpha' \mathbf{y}_{1}' \qquad \alpha \mathbf{y}_{2} = \alpha' \mathbf{y}_{2}'$$

$$\alpha \mathbf{z}_{1} = \alpha' \mathbf{z}_{1}' \qquad \alpha \mathbf{z}_{2} = \alpha' \mathbf{z}_{2}'$$

- Points are represented using FOUR coordinates
 - □ (X,Y,Z,c)
 - "c" is the "scaling" factor that represents the distance of the actual scene
- Actual Cartesian coordinates:

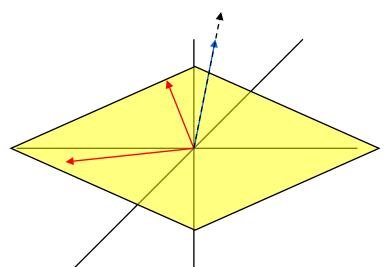
$$\Box$$
 $X_{actual} = X/c$, $Y_{actual} = Y/c$, $Z_{actual} = Z/c$

Homogeneous Coordinates



- In both cases, constant "c" represents distance along the line with respect to a reference window
 - In 2D the plane in which all points have values (x,y,1)
- Changing the reference plane changes the representation
- I.e. there may be multiple Homogenous representations (x,y,c) that represent the same cartesian point (x' y')

Orthogonal/Orthonormal vectors



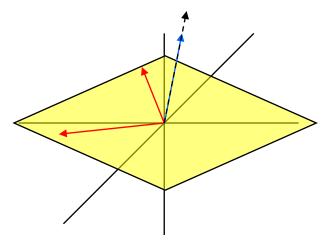
$$A = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$B = \begin{bmatrix} u \\ v \\ w \end{bmatrix}$$

$$A.B = 0$$
 \Rightarrow $xu + yv + zw = 0$

- Two vectors are orthogonal if they are perpendicular to one another
 - \Box A.B = 0
 - A vector that is perpendicular to a plane is orthogonal to every vector on the plane
- Two vectors are orthonormal if
 - They are orthogonal
 - □ The length of each vector is 1.0
 - Orthogonal vectors can be made orthonormal by normalizing their lengths to 1.0

Orthogonal matrices



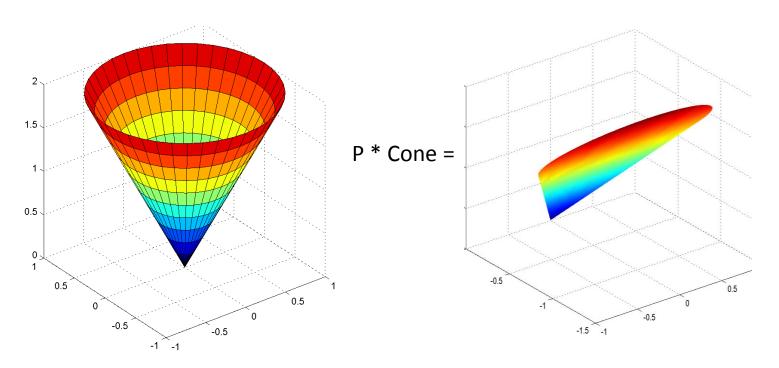
$$\begin{bmatrix}
\sqrt{0.5} & -\sqrt{0.125} & \sqrt{0.375} \\
\sqrt{0.5} & \sqrt{0.125} & -\sqrt{0.375} \\
0 & \sqrt{0.75} & 0.5
\end{bmatrix}$$

- Orthogonal Matrix: $AA^T = A^TA = I$
 - The matrix is square
 - All row vectors are orthonormal to one another
 - Every vector is perpendicular to the hyperplane formed by all other vectors
 - All column vectors are also orthonormal to one another
 - Observation: In an orthogonal matrix if the length of the row vectors is
 1.0, the length of the column vectors is also 1.0
 - □ **Observation**: In an orthogonal matrix no more than one row can have all entries with the same polarity (+ve or –ve)

Orthogonal and Orthonormal Matrices

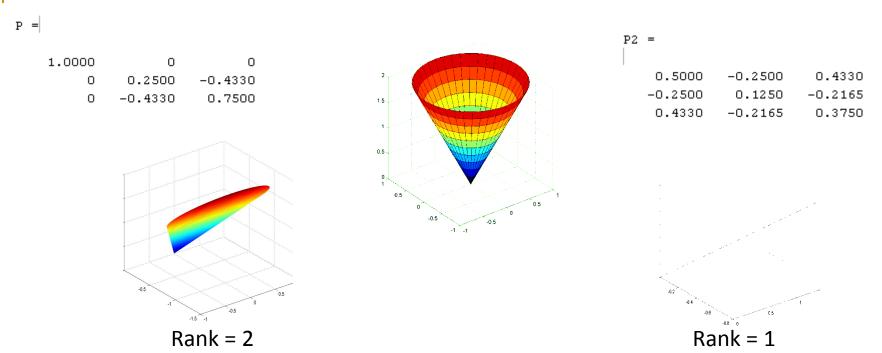
- Orthogonal matrices will retain the length and relative angles between transformed vectors
 - Essentially, they are combinations of rotations, reflections and permutations
 - Rotation matrices and permutation matrices are all orthonormal matrices
- If the entries of the matrix are not unit length, it cannot be orthogonal
 - \Box $AA^T = I$ or $A^TA = I$, but not both
 - \Box AA^T = Diagonal or A^TA = Diagonal, but not both
 - If all the entries are the same length, we can get $AA^T = A^TA = Diagonal$, though
- A non-square matrix cannot be orthogonal
 - \Box AA^T=I or A^TA = I, but not both

Matrix Rank and Rank-Deficient Matrices



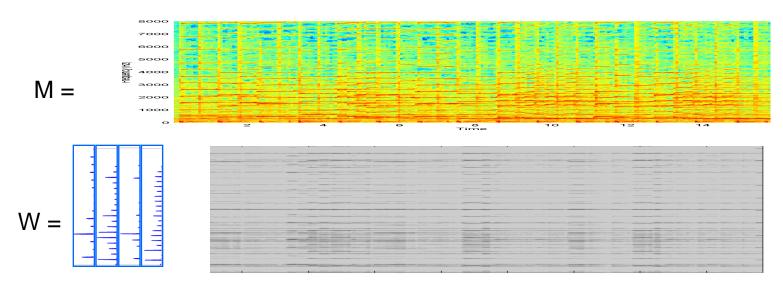
- Some matrices will eliminate one or more dimensions during transformation
 - □ These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Matrix Rank and Rank-Deficient Matrices



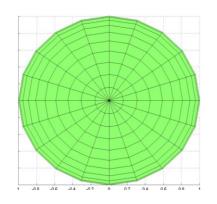
- Some matrices will eliminate one or more dimensions during transformation
 - □ These are *rank deficient* matrices
 - The rank of the matrix is the dimensionality of the transformed version of a full-dimensional object

Projections are often examples of rank-deficient transforms



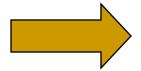
- P = W $(W^TW)^{-1} W^T$; Projected Spectrogram = P*M
- The original spectrogram can never be recovered
 - P is rank deficient
- P explains all vectors in the new spectrogram as a mixture of only the 4 vectors in W
 - □ There are only a maximum of 4 *independent* bases
 - Rank of P is 4

Non-square Matrices

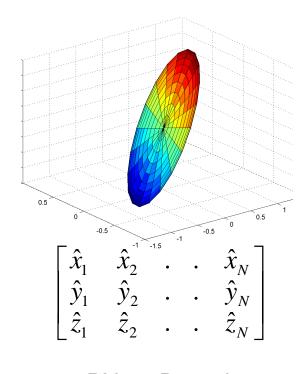


$$\begin{bmatrix} x_1 & x_2 & \dots & x_N \\ y_1 & y_2 & \dots & y_N \end{bmatrix}$$

$$X = 2D$$
 data



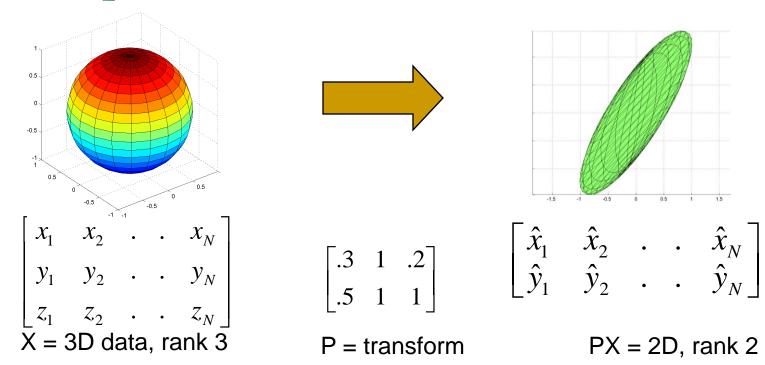
$$P = transform$$



$$PX = 3D$$
, rank 2

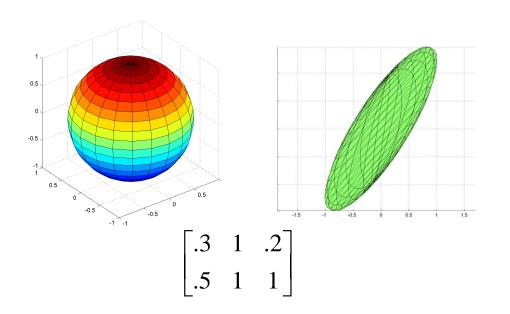
- Non-square matrices add or subtract axes
 - \Box More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data

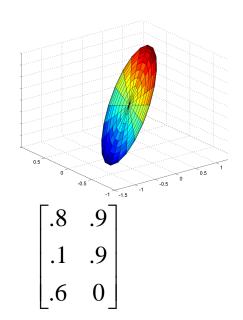
Non-square Matrices



- Non-square matrices add or subtract axes
 - \square More rows than columns \rightarrow add axes
 - But does not increase the dimensionality of the data
 - \Box Fewer rows than columns \rightarrow reduce axes
 - May reduce dimensionality of the data

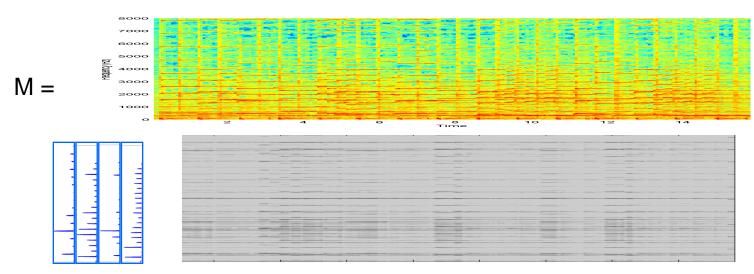
The Rank of a Matrix





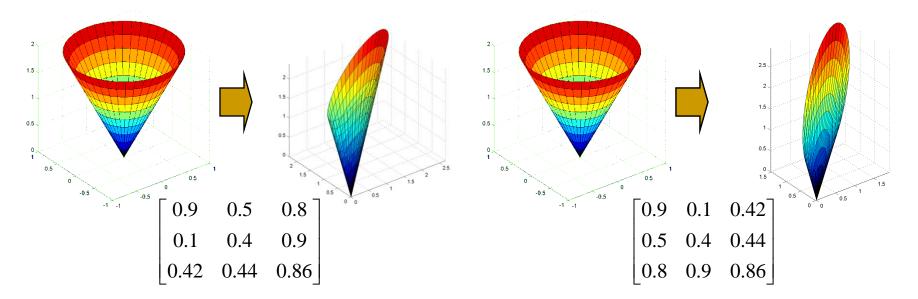
- The matrix rank is the dimensionality of the transformation of a fulldimensioned object in the original space
- The matrix can never increase dimensions
 - Cannot convert a circle to a sphere or a line to a circle
- The rank of a matrix can never be greater than the lower of its two dimensions

The Rank of Matrix



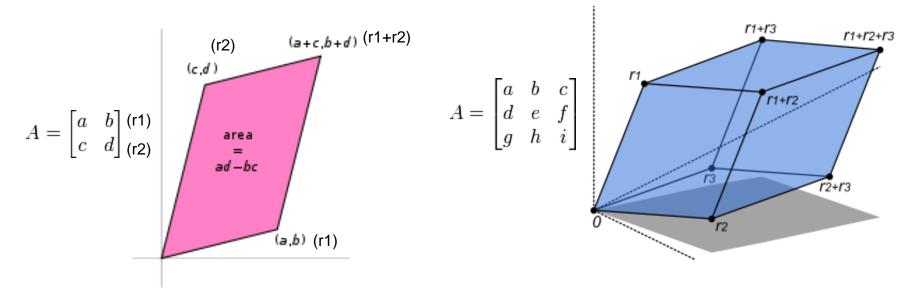
- Projected Spectrogram = P * M
 - Every vector in it is a combination of only 4 bases
- The rank of the matrix is the smallest no. of bases required to describe the output
 - E.g. if note no. 4 in P could be expressed as a combination of notes 1,2 and 3, it provides no additional information
 - Eliminating note no. 4 would give us the same projection
 - □ The rank of P would be 3!

Matrix rank is unchanged by transposition



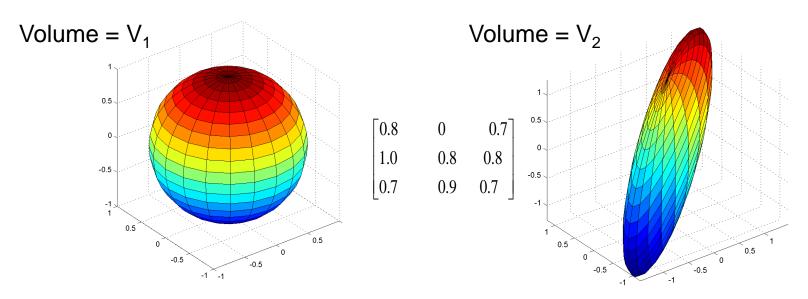
If an N-dimensional object is compressed to a K-dimensional object by a matrix, it will also be compressed to a K-dimensional object by the transpose of the matrix

Matrix Determinant



- The determinant is the "volume" of a matrix
- Actually the volume of a parallelepiped formed from its row vectors
 - Also the volume of the parallelepiped formed from its column vectors
- Standard formula for determinant: in text book

Matrix Determinant: Another Perspective



- The determinant is the ratio of N-volumes
 - \Box If V_1 is the volume of an N-dimensional object "O" in N-dimensional space
 - O is the complete set of points or vertices that specify the object
 - □ If V_2 is the volume of the N-dimensional object specified by A*O, where A is a matrix that transforms the space

$$|A| = V_2 / V_1$$

Matrix Determinants

- Matrix determinants are only defined for square matrices
 - They characterize volumes in linearly transformed space of the same dimensionality as the vectors
- Rank deficient matrices have determinant 0
 - Since they compress full-volumed N-dimensional objects into zerovolume N-dimensional objects
 - E.g. a 3-D sphere into a 2-D ellipse: The ellipse has 0 volume (although it does have area)
- Conversely, all matrices of determinant 0 are rank deficient
 - Since they compress full-volumed N-dimensional objects into zero-volume objects

Multiplication properties

- Properties of vector/matrix products
 - Associative

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

Distributive

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

NOT commutative!!!

$$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$$

- left multiplications ≠ right multiplications
- Transposition

$$(\mathbf{A} \cdot \mathbf{B})^T = \mathbf{B}^T \cdot \mathbf{A}^T$$

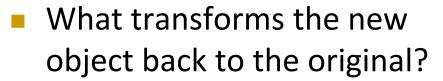
Determinant properties

- Associative for square matrices $|\mathbf{A}\cdot\mathbf{B}\cdot\mathbf{C}| = |\mathbf{A}|\cdot|\mathbf{B}|\cdot|\mathbf{C}|$
 - Scaling volume sequentially by several matrices is equal to scaling once by the product of the matrices
- Volume of sum != sum of Volumes $|(\mathbf{B} + \mathbf{C})| \neq |\mathbf{B}| + |\mathbf{C}|$
- Commutative
 - The order in which you scale the volume of an object is irrelevant

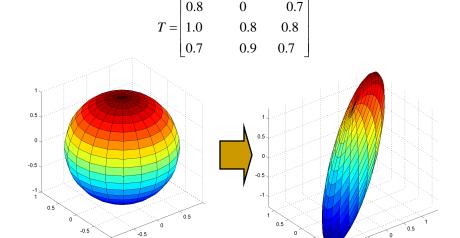
$$|\mathbf{A} \cdot \mathbf{B}| = |\mathbf{B} \cdot \mathbf{A}| = |\mathbf{A}| \cdot |\mathbf{B}|$$

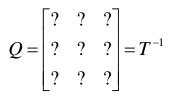
Matrix Inversion

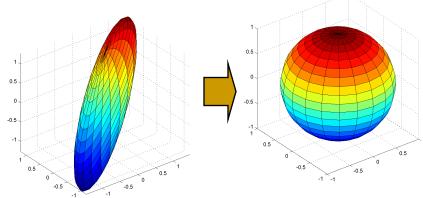
 A matrix transforms an N-dimensional object to a different N-dimensional object



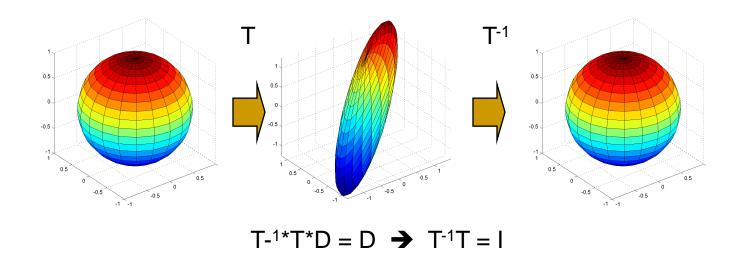
- The inverse transformation
- The inverse transformation is called the matrix inverse





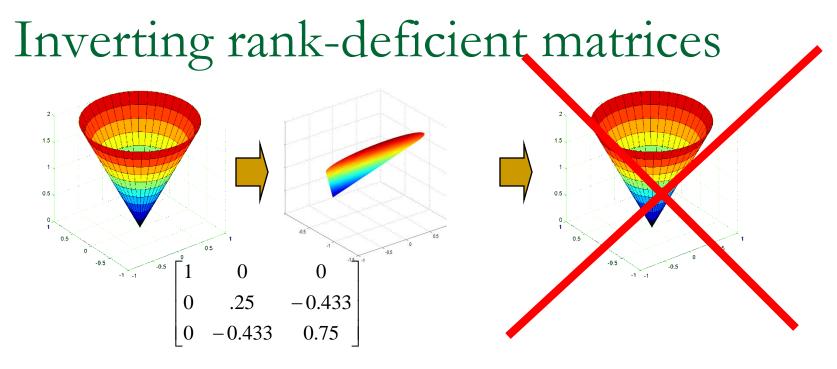


Matrix Inversion



- The product of a matrix and its inverse is the identity matrix
 - Transforming an object, and then inverse transforming it gives us back the original object

$$T*T^{-1}*D = D \rightarrow TT^{-1} = I$$



- Rank deficient matrices "flatten" objects
 - In the process, multiple points in the original object get mapped to the same point in the transformed object
- It is not possible to go "back" from the flattened object to the original object
 - Because of the many-to-one forward mapping
- Rank deficient matrices have no inverse

Revisiting Projections and Least Squares

- Projection computes a *least squared error* estimate
- For each vector V in the music spectrogram matrix
 - □ Approximation: $V_{approx} = a*note1 + b*note2 + c*note3...$

$$T = \begin{bmatrix} \mathbf{b} \\ \mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{c} \\ \mathbf{c} \end{bmatrix}$$

$$V_{approx} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

$$V_{approx} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

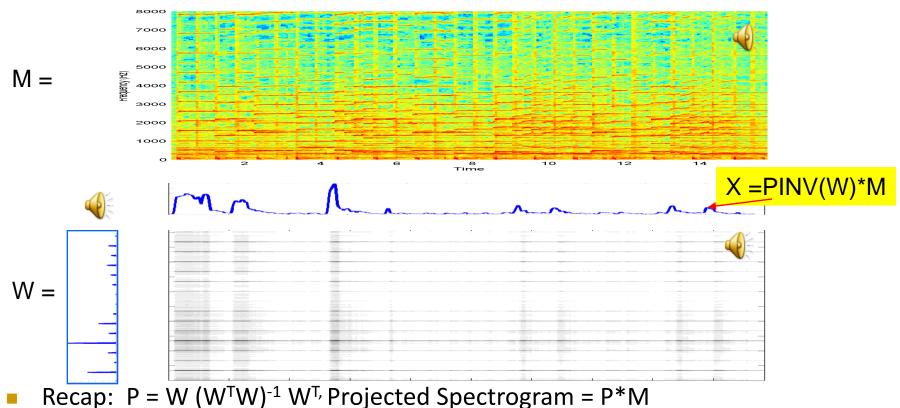
- \Box Error vector $E = V V_{approx}$
- Squared error energy for $V = e(V) = norm(E)^2$
- Projection computes V_{approx} for all vectors such that Total error is minimized
- But WHAT ARE "a" "b" and "c"?

The Pseudo Inverse (PINV)

$$V_{approx} = T \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \bigvee \times T \begin{bmatrix} a \\ b \\ c \end{bmatrix} \qquad \bigvee \begin{bmatrix} a \\ b \\ c \end{bmatrix} = PINV(T) * V$$

- We are approximating spectral vectors V as the transformation of the vector [a b c]^T
 - Note we're viewing the collection of bases in T as a transformation
- The solution is obtained using the pseudo inverse
 - □ This give us a *LEAST SQUARES* solution
 - If T were square and invertible Pinv(T) = T⁻¹, and V=V_{approx}

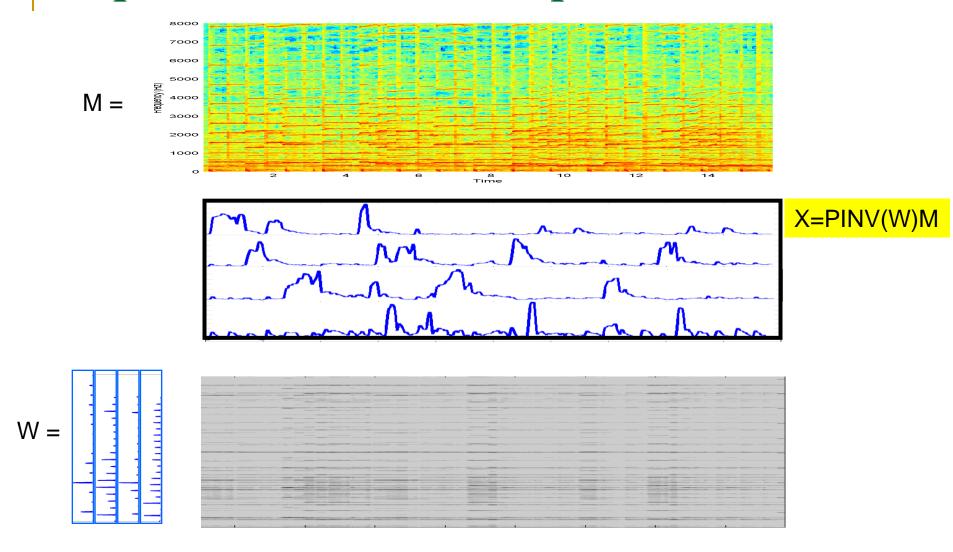
Explaining music with one note



- Necap. 1 W (W W) W 110 Jeeted Speeting and
- Approximation: M = W*X
- The amount of W in each vector = X = PINV(W)*M
- W*Pinv(W)*M = Projected Spectrogram
 - □ W*Pinv(W) = Projection matrix!!

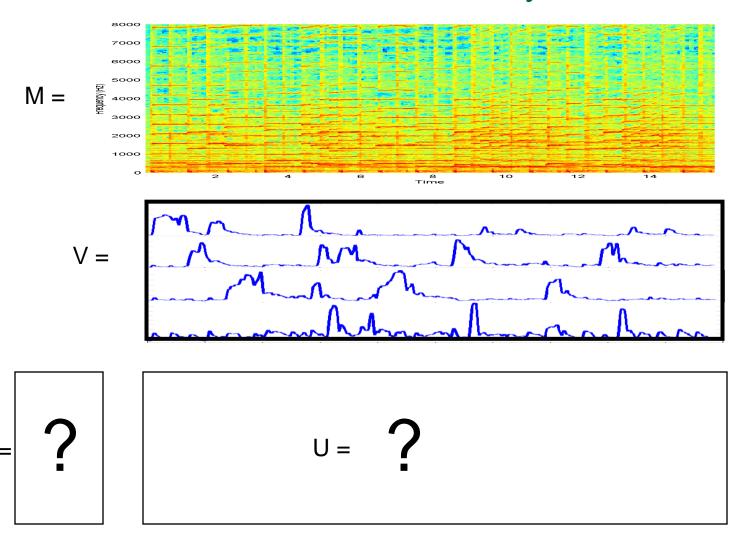
 $\mathsf{PINV}(\mathsf{W}) = (\mathsf{W}^\mathsf{T}\mathsf{W})^{-1}\mathsf{W}^\mathsf{T}$

Explanation with multiple notes



X = Pinv(W) * M; Projected matrix = W*X = W*Pinv(W)*M

How about the other way?



WV \approx M

$$W = M * Pinv(V)$$
 $U = WV$

$$U = WV$$

Pseudo-inverse (PINV)

- Pinv() applies to non-square matrices
- Pinv (Pinv (A))) = A
- A*Pinv(A)= projection matrix!
 - Projection onto the columns of A
- If A = K x N matrix and K > N, A projects N-D vectors into a higher-dimensional K-D space
 - □ Pinv(A) = NxK matrix
 - \square Pinv(A)*A = I in this case
- Otherwise A * Pinv(A) = I

Matrix inversion (division)

- The inverse of matrix multiplication
 - Not element-wise division!!
- Provides a way to "undo" a linear transformation
 - Inverse of the unit matrix is itself.
 - Inverse of a diagonal is diagonal
 - Inverse of a rotation is a (counter)rotation (its transpose!)
 - Inverse of a rank deficient matrix does not exist!
 - But pseudoinverse exists
- For square matrices: Pay attention to multiplication side!

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^{-1}, \ \mathbf{B} = \mathbf{A}^{-1} \cdot \mathbf{C}$$

If matrix not square use a matrix pseudoinverse:

$$\mathbf{A} \cdot \mathbf{B} \approx \mathbf{C}, \ \mathbf{A} = \mathbf{C} \cdot \mathbf{B}^+, \ \mathbf{B} = \mathbf{A}^+ \cdot \mathbf{C}$$

MATLAB syntax: inv(a), pinv(a)

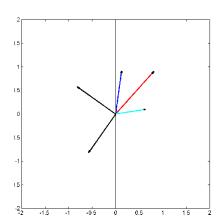
Eigenanalysis

- If something can go through a process mostly unscathed in character it is an eigen-something

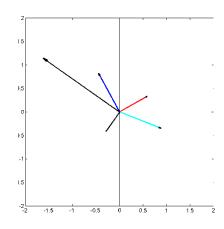
- A vector that can undergo a matrix multiplication and keep pointing the same way is an eigenvector
 - Its length can change though
- How much its length changes is expressed by its corresponding eigenvalue
 - Each eigenvector of a matrix has its eigenvalue
- Finding these "eigenthings" is called eigenanalysis

EigenVectors and EigenValues

Black vectors are eigen vectors



$$M = \begin{bmatrix} 1.5 & -0.7 \\ -0.7 & 1.0 \end{bmatrix}$$

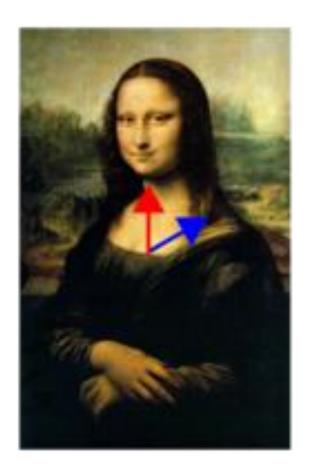


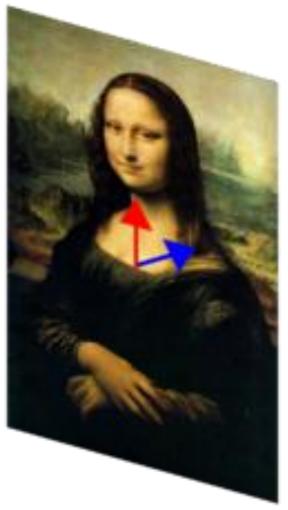
- Vectors that do not change angle upon transformation
 - They may change length

$$MV = \lambda V$$

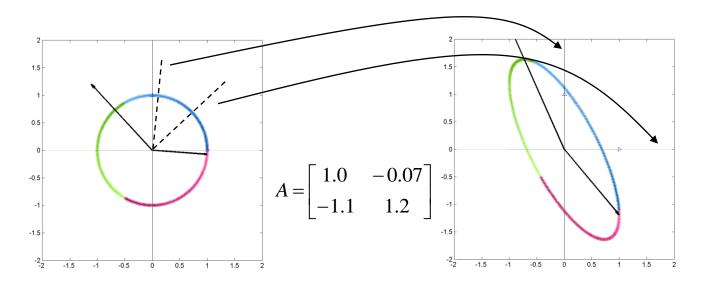
- □ V = eigen vector
- $\lambda = \text{eigen value}$
- Matlab: [V, L] = eig(M)
 - L is a diagonal matrix whose entries are the eigen values
 - V is a maxtrix whose columns are the eigen vectors

Eigen vector example



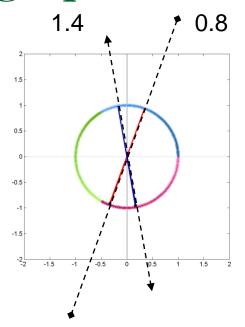


Matrix multiplication revisited



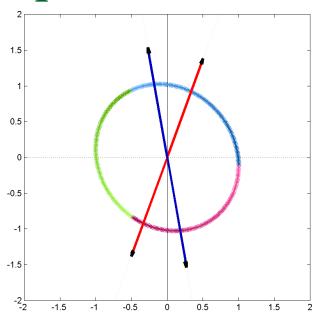
- Matrix transformation "transforms" the space
 - Warps the paper so that the normals to the two vectors now lie along the axes

A stretching operation



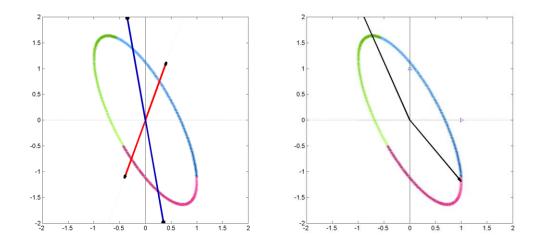
- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - The factors could be negative implies flipping the paper
- The result is a transformation of the space

A stretching operation



- Draw two lines
- Stretch / shrink the paper along these lines by factors λ_1 and λ_2
 - □ The factors could be negative implies flipping the paper
- The result is a transformation of the space

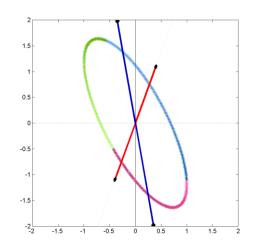
Physical interpretation of eigen vector

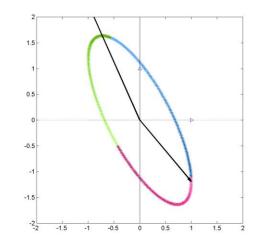


- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Physical interpretation of eigen vector

$$V = \begin{bmatrix} V_1 & V_2 \\ \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$
$$M = V\Lambda V^{-1}$$



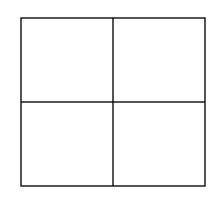


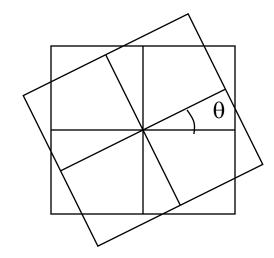
- The result of the stretching is exactly the same as transformation by a matrix
- The axes of stretching/shrinking are the eigenvectors
 - The degree of stretching/shrinking are the corresponding eigenvalues
- The EigenVectors and EigenValues convey all the information about the matrix

Eigen Analysis

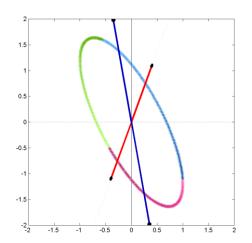
- Not all square matrices have nice eigen values and vectors
 - E.g. consider a rotation matrix

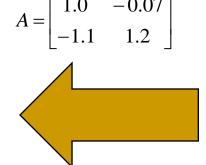
$$\mathbf{R}_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$X_{new} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

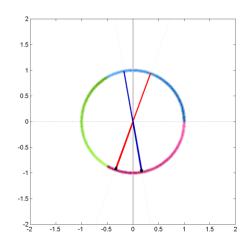




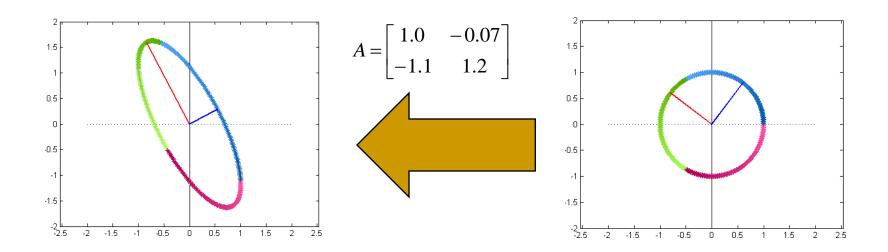
- This rotates every vector in the plane
 - No vector that remains unchanged
- In these cases the Eigen vectors and values are complex



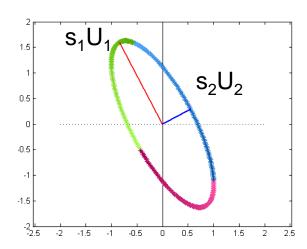




- Matrix transformations convert circles to ellipses
- Eigen vectors are vectors that do not change direction in the process
- There is another key feature of the ellipse to the left that carries information about the transform
 - Can you identify it?



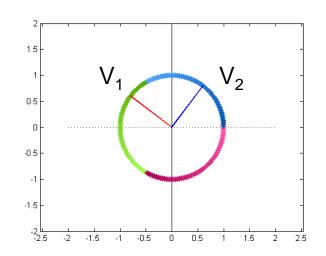
- The major and minor axes of the transformed ellipse define the ellipse
 - They are at right angles
- These are transformations of right-angled vectors on the original circle!



$$A = \begin{bmatrix} 1.0 & -0.07 \\ -1.1 & 1.2 \end{bmatrix}$$

$$A = U S V^T$$

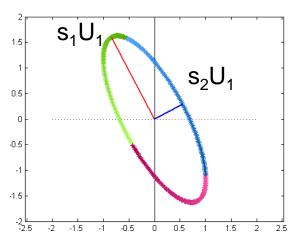
matlab: [U,S,V] = svd(A)

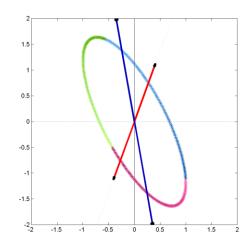


- U and V are orthonormal matrices
 - Columns are orthonormal vectors
- S is a diagonal matrix
- The right singular vectors of V are transformed to the left singular vectors in U
 - And scaled by the singular values that are the diagonal entries of S

- The left and right singular vectors are not the same
 - If A is not a square matrix, the left and right singular vectors will be of different dimensions
- The singular values are always real
- The largest singular value is the largest amount by which a vector is scaled by A
 - \square Max (|Ax| / |x|) = s_{max}
- The smallest singular value is the smallest amount by which a vector is scaled by A
 - Min (|Ax| / |x|) = s_{min}
 - This can be 0 (for low-rank or non-square matrices)

The Singular Values

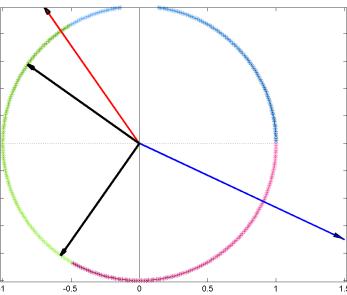




- Square matrices: The product of the singular values is the determinant of the matrix
 - This is also the product of the eigen values
 - I.e. there are two different sets of axes whose products give you the area of an ellipse
- For any "broad" rectangular matrix A, the largest singular value of any square submatrix B cannot be larger than the largest singular value of A
 - An analogous rule applies to the smallest singluar value
 - This property is utilized in various problems, such as compressive sensing

Symmetric Matrices

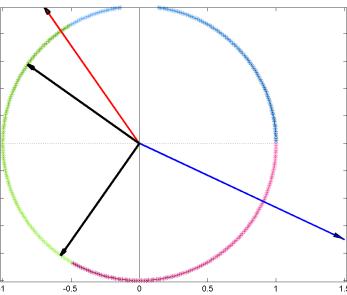
$$\begin{bmatrix} 1.5 & -0.7 \\ -0.7 & 1 \end{bmatrix}$$



- Matrices that do not change on transposition
 - Row and column vectors are identical
- The left and right singular vectors are identical
 - □ U = V
 - \Box A = U S U^T
- They are identical to the eigen vectors of the matrix

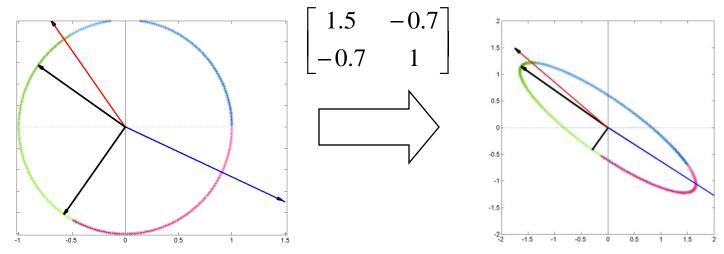
Symmetric Matrices

$$\begin{bmatrix} 1.5 & -0.7 \\ -0.7 & 1 \end{bmatrix}$$



- Matrices that do not change on transposition
 - Row and column vectors are identical
- Symmetric matrix: Eigen vectors and Eigen values are always real
- Eigen vectors are always orthogonal
 - At 90 degrees to one another

Symmetric Matrices

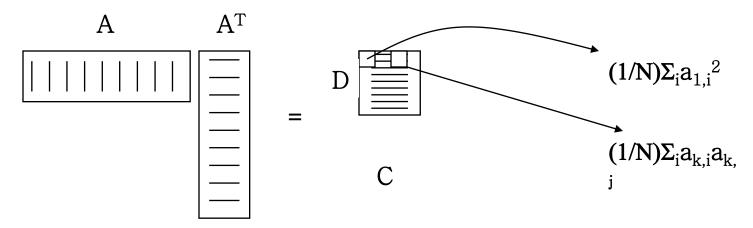


- Eigen vectors point in the direction of the major and minor axes of the ellipsoid resulting from the transformation of a spheroid
 - The eigen values are the lengths of the axes

Symmetric matrices

- Eigen vectors V_i are orthonormal
 - $\nabla V_i^T V_i = 1$
 - $\nabla_i \nabla_j = 0, i!=j$
- Listing all eigen vectors in matrix form V
 - $V^{T} = V^{-1}$
 - \Box $V^TV = I$
 - \Box $V V^T = I$
- $M V_i = \lambda V_i$
- In matrix form : $M V = V \Lambda$
 - A is a diagonal matrix with all eigen values
- $M = V \Lambda V^T$

The Correlation and Covariance Matrices



- Consider a set of column vectors represented as a DxN matrix A
- The correlation matrix is
 - \Box C = (1/N) AA^T
 - If the average value (mean) of the vectors in A is 0, C is called the covariance matrix
 - covariance = correlation + mean * mean^T
- Diagonal elements represent average of the squared value of each dimension
 - Off diagonal elements represent how two components are related
 - How much knowing one lets us guess the value of the other

51

Correlation / Covariance Matrix

$$C = V\Lambda V^{T}$$

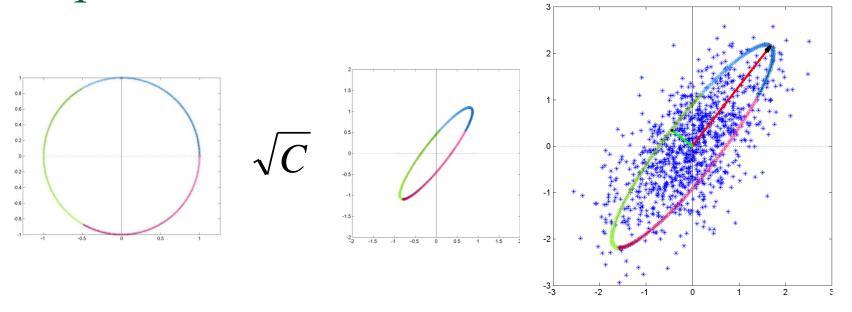
$$Sqrt(C) = V.Sqrt(\Lambda).V^{T}$$

$$Sqrt(C).Sqrt(C) = V.Sqrt(\Lambda).V^{T}V.Sqrt(\Lambda).V^{T}$$

$$= V.Sqrt(\Lambda).Sqrt(\Lambda)V^{T} = V\Lambda V^{T} = C$$

- The correlation / covariance matrix is symmetric
 - □ Has orthonormal eigen vectors and real, non-negative eigen values
- The square root of a correlation or covariance matrix is easily derived from the eigen vectors and eigen values
 - The eigen values of the square root of the covariance matrix are the square roots of the eigen values of the covariance matrix
 - These are also the "singular values" of the data set

Square root of the Covariance Matrix

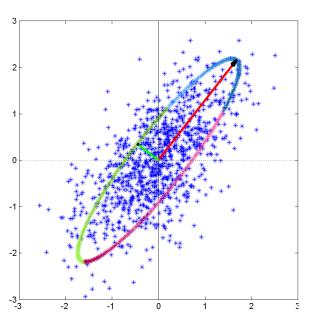


- The square root of the covariance matrix represents the elliptical scatter of the data
- The eigenvectors of the matrix represent the major and minor axes

The Correlation Matrix

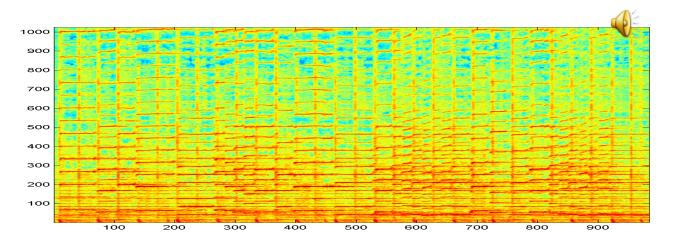
Any vector $V = a_{V,1}$ * eigenvec1 + $a_{V,2}$ *eigenvec2 + ...

 Σ_{V} $a_{V,i}$ = eigenvalue(i)



- Projections along the N eigen vectors with the largest eigen values represent the N greatest "energy-carrying" components of the matrix
- Conversely, N "bases" that result in the least square error are the N best eigen vectors

An audio example



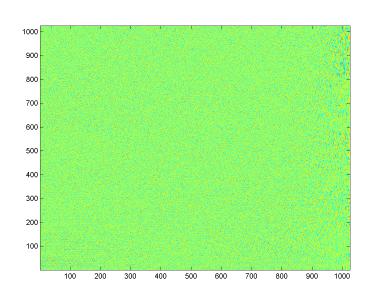
- The spectrogram has 974 vectors of dimension 1025
- The covariance matrix is size 1025 x 1025
- There are 1025 eigenvectors

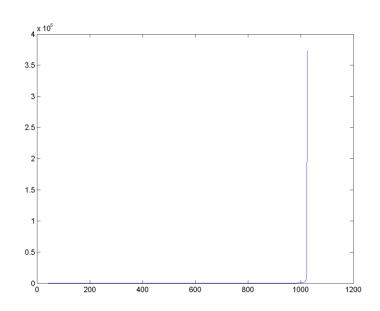
Eigen Reduction

$$M = spectrogram$$
 1025x1000
 $C = M.M^{T}$ 1025x1025
 $V = 1025x1025$ $[V, L] = eig(C)$
 $V_{reduced} = [V_{1} . . . V_{25}]$ 1025x25
 $M_{lowdim} = Pinv(V_{reduced})M$ 25x1000
 $M_{reconstructed} = V_{reduced}M_{lowdim}$ 1025x1000

- Compute the Correlation
- Compute Eigen vectors and values
- Create matrix from the 25 Eigen vectors corresponding to 25 highest Eigen values
- Compute the weights of the 25 eigenvectors
- To reconstruct the spectrogram compute the projection on the 25 eigen vectors

Eigenvalues and Eigenvectors

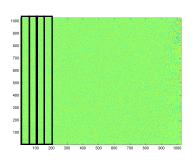


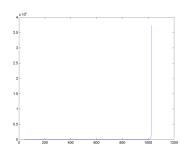


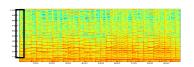
- Left panel: Matrix with 1025 eigen vectors
- Right panel: Corresponding eigen values
 - Most eigen values are close to zero
 - The corresponding eigenvectors are "unimportant"

$$M = spectrogram$$
 $C = M.M^{T}$
 $[V, L] = eig(C)$

Eigenvalues and Eigenvectors





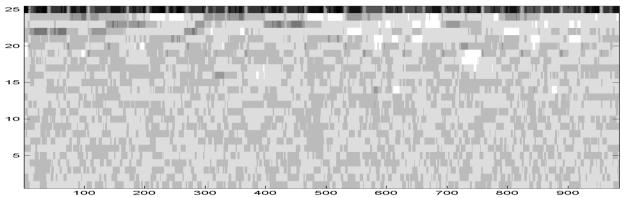


Vec = a1 *eigenvec1 + a2 * eigenvec2 + a3 * eigenvec3 ...

- The vectors in the spectrogram are linear combinations of all 1025 eigen vectors
- The eigen vectors with low eigen values contribute very little
 - The average value of a_i is proportional to the square root of the eigenvalue
 - Ignoring these will not affect the composition of the spectrogram

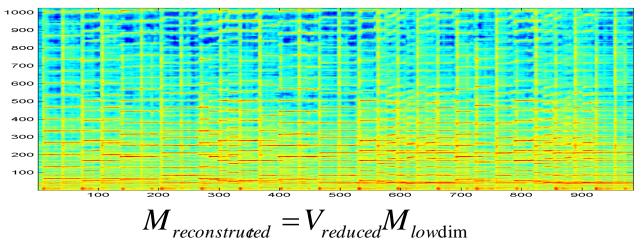
An audio example

$$\begin{aligned} V_{reduced} &= [V_1 \quad . \quad . \quad V_{25}] \\ M_{low \text{dim}} &= Pinv(V_{reduced})M \end{aligned}$$



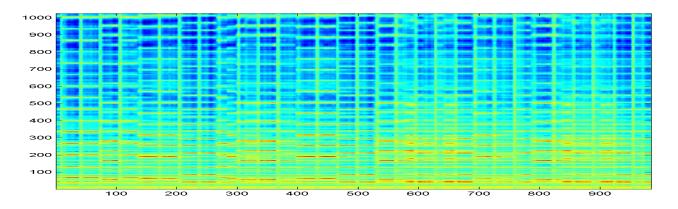
- The same spectrogram projected down to the 25 eigen vectors with the highest eigen values
 - Only the 25-dimensional weights are shown
 - The weights with which the 25 eigen vectors must be added to compose a least squares approximation to the spectrogram

An audio example



- The same spectrogram constructed from only the 25 eigen vectors with the highest eigen values
 - Looks similar
 - With 100 eigenvectors, it would be indistinguishable from the original
 - Sounds pretty close
 - □ But now sufficient to store 25 numbers per vector (instead of 1024)

With only 5 eigenvectors



- The same spectrogram constructed from only the 5 eigen vectors with the highest eigen values
 - Highly recognizable

Correlation vs. Covariance Matrix

Correlation:

- The N eigen vectors with the largest eigen values represent the N greatest "energy-carrying" components of the matrix
- Conversely, N "bases" that result in the least square error are the N best eigen vectors
 - Projections onto these eigen vectors retain the most energy in the data.

Covariance:

- the N eigen vectors with the largest eigen values represent the N greatest "variance-carrying" components of the matrix
- Conversely, N "bases" that retain the maximum possible variance are the N best eigen vectors

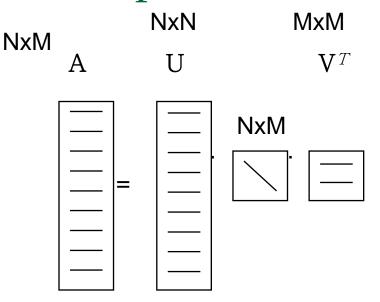
Eigenvectors, Eigenvalues and Covariances

- The eigenvectors and eigenvalues (singular values) derived from the correlation matrix are important
- Do we need to actually compute the correlation matrix?
 - No
- Direct computation using Singular Value Decomposition

SVD vs. Eigen decomposition

- Singluar value decomposition is analogous to the eigen decomposition of the correlation matrix of the data
 - \square SVD: D = U S V^T
 - \square DD^T = U S V^T V S U^T = U S² U^T
- The "left" singluar vectors are the eigen vectors of the correlation matrix
 - Show the directions of greatest importance
- The corresponding singular values are the square roots of the eigen values of the correlation matrix
 - Show the importance of the eigen vector

Thin SVD, compact SVD, reduced SVD



- Thin SVD: Only compute the first N columns of U
 - □ All that is required if N < M</p>
- Compact SVD: Only the left and right singular vectors corresponding to non-zero singular values are computed

Why bother with eigens/SVD

- Can provide a unique insight into data
 - Strong statistical grounding
 - Can display complex interactions between the data
 - Can uncover irrelevant parts of the data we can throw out
- Can provide basis functions
 - A set of elements to compactly describe our data
 - Indispensable for performing compression and classification
- Used over and over and still perform amazingly well

Eigenfaces
Using a linear transform of the above "eigenvectors" we can compose various faces

Making vectors and matrices in MATLAB

Make a row vector:

$$a = [1 \ 2 \ 3]$$

Make a column vector:

$$a = [1;2;3]$$

Make a matrix:

$$A = [1 \ 2 \ 3; 4 \ 5 \ 6]$$

Combine vectors

$$A = [b c] \text{ or } A = [b;c]$$

Make a random vector/matrix:

$$r = rand(m, n)$$

Make an identity matrix:

$$I = eye(n)$$

Make a sequence of numbers

$$c = 1:10 \text{ or } c = 1:0.5:10 \text{ or } c = 100:-2:50$$

Make a ramp

$$c = linspace(0, 1, 100)$$
 $c = linspace(0, 1, 100)$

Indexing

- To get the i-th element of a vector a(i)
- To get the *i*-th *j*-th element of a matrix A(i,j)
- To get from the i-th to the j-th element a(i:j)
- To get a sub-matrix

```
A(i:j,k:1)
```

To get segments

```
a([i:j k:l m])
```

Arithmetic operations

Addition/subtraction

$$C = A + B \text{ or } C = A - B$$

Vector/Matrix multiplication

$$C = A * B$$

- Operant sizes must match!
- Element-wise operations
 - Multiplication/division

$$C = A \cdot * B \text{ or } C = A \cdot / B$$

Exponentiation

$$C = A.^B$$

Elementary functions

$$C = \sin(A) \text{ or } C = \operatorname{sqrt}(A), \dots$$

Linear algebra operations

Transposition

```
C = A'
```

- \Box If A is complex also conjugates use C = A.' to avoid that
- Vector norm

```
norm(x) (also works on matrices)
```

Matrix inversion

```
C = inv(A) if A is square
```

$$C = pinv(A)$$
 if A is not square

- A might not be invertible, you'll get a warning if so
- Eigenanalysis

$$[u,d] = eig(A)$$

- u is a matrix containing the eigenvectors
- d is a diagonal matrix containing the eigenvalues
- Singular Value Decomposition

$$[u,s,v] = svd(A) \text{ or } [u,s,v] = svd(A,0)$$

- "thin" versus regular SVD
- s is diagonal and contains the singular values

Plotting functions

1-d plots

plot(x)

- if x is a vector will plot all its elements
- If x is a matrix will plot all its column vectors

bar(x)

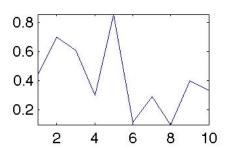
- Ditto but makes a bar plot
- 2-d plots

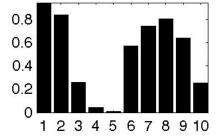
imagesc(x)

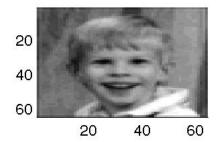
plots a matrix as an image

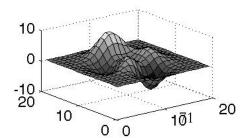
surf(x)

makes a surface plot









4 Sep 2012

11-755/18-797

Getting help with functions

- The help function
 - Type help followed by a function name
- Things to try

```
help help
help +
help eig
help svd
help plot
help bar
help imagesc
help surf
help ops
help matfun
```

Also check out the tutorials and the mathworks site