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Administrivia

 Project teams?
 By the end of the month..

 Project proposals?
 Please send proposals to Prasanna,  and cc me.
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Administrivia
 Basics of probability: Will not be covered

 Very nice lecture by Aarthi Singh

 http://www.cs.cmu.edu/~epxing/Class/10701/Lecture/lecture2.pdf

 Another nice lecture by Paris Smaragdis

 http://courses.engr.illinois.edu/cs598ps/CS598PS/Topics_and_Materials.html
 Look for Lecture 2

 Amazing number of resources on the web

 Things to know:

 Basic probability, Bayes rule

 Probability distributions over discrete variables

 Probability density and Cumulative density over continuous variables
 Particularly Gaussian densities

 Moments of a distribution

 What is independence

 Nice to know
 What is maximum likelihood estimation

 MAP estimation
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Representing an Elephant
 It was six men of Indostan, 

To learning much inclined, 
Who went to see the elephant, 
(Though all of them were blind), 
That each by observation 
Might satisfy his mind.

 The first approached the elephant, 
And happening to fall 
Against his broad and sturdy side, 
At once began to bawl: 
"God bless me! But the elephant 
Is very like a wall!“

 The second, feeling of the tusk, 
Cried: "Ho! What have we here, 
So very round and smooth and sharp? 
To me 'tis very clear, 
This wonder of an elephant 
Is very like a spear!“

 The third approached the animal, 
And happening to take 
The squirming trunk within his hands, 
Thus boldly up and spake: 
"I see," quoth he, "the elephant 
Is very like a snake!“

 The fourth reached out an eager hand, 
And felt about the knee. 
"What most this wondrous beast is like 
Is might plain," quoth he; 
"Tis clear enough the elephant 
Is very like a tree."

 The fifth, who chanced to touch the ear, 
Said: "E'en the blindest man 
Can tell what this resembles most: 
Deny the fact who can, 
This marvel of an elephant 
Is very like a fan.“

 The sixth no sooner had begun 
About the beast to grope, 
Than seizing on the swinging tail 
That fell within his scope, 
"I see," quoth he, "the elephant 
Is very like a rope.“

 And so these men of Indostan
Disputed loud and long, 
Each in his own opinion 
Exceeding stiff and strong. 
Though each was partly right, 
All were in the wrong.
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Representation

 Describe these images

 Such that a listener can 
visualize what you are 
describing

 More images
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Still more images

How do you describe them?
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Sounds

 Sounds are just sequences of numbers

 When plotted, they just look like blobs

 Which leads to “natural sounds are blobs”

 Or more precisely, “sounds are sequences of numbers that, when plotted, 
look like blobs”

 Which wont get us anywhere
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Representation

 Representation is description

 But in compact form

 Must describe the salient characteristics of the data

 E.g. a pixel-wise description of the two images here will be 
completely different

 Must allow identification, comparison, storage, 
reconstruction..

A A
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Representing images

 The most common element in the image: background

 Or rather large regions of relatively featureless shading

 Uniform sequences of numbers
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Image =
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Representing images using a “plain” image

 Most of the figure is a more-or-less uniform shade

 Dumb approximation – a image is a block of uniform shade

 Will be mostly right!

 How much of the figure is uniform?

 How? Projection

 Represent the images as vectors and compute the projection of the image on the 

“basis”
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Adding more bases

 Lets improve the approximation

 Images have some fast varying regions

 Dramatic changes

 Add a second picture that has very fast changes

 A checkerboard where every other pixel is black and the rest are white
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Adding still more bases

 Regions that change with different speeds
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Getting closer at 625 bases!
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Representation using checkerboards

 A “standard” representation

 Checker boards are the same regardless of what picture you’re trying 
to describe

 As opposed to using “nose shape” to describe faces and “leaf colour” to 
describe trees.

 Any image can be specified as (for example) 
0.8*checkerboard(0) + 0.2*checkerboard(1) + 0.3*checkerboard(2) ..

 The definition is sufficient to reconstruct the image to some degree

 Not perfectly though
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What about sounds?

 Square wave equivalents of checker boards
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Projecting sounds
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Why checkerboards are great bases
 We cannot explain one checkerboard 

in terms of another

 The two are orthogonal to one another!

 This means that we can find out the 

contributions of individual bases 

separately

 Joint decompostion with multiple bases 

with give us the same result as 

separate decomposition with each of 

them

 This never holds true if one basis can 

explain another
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Checker boards are not good bases

 Sharp edges

 Can never be used to explain rounded curves
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Sinusoids ARE good bases

 They are orthogonal

 They can represent rounded shapes nicely

 Unfortunately, they cannot represent sharp corners
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What are the frequencies of the sinusoids

 Follow the same format as 

the checkerboard:

 DC

 The entire length of the signal 

is one period

 The entire length of the signal 

is two periods.

 And so on..

 The k-th sinusoid:

 F(n) = sin(2pkn/L)

 L is the length of the signal

 k is the number of periods in L 

samples
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How many frequencies in all?

 A max of L/2 periods are possible

 If we try to go to (L/2 + X) periods, it ends up being identical to having (L/2 – X) 

periods

 With sign inversion

 Example for L = 20

 Red curve = sine with 9 cycles (in a 20 point sequence)

 Y(n) = sin(2p9n/20)

 Green curve = sine with 11 cycles in 20 points

 Y(n) = -sin(2p11n/20)

 The blue lines show the actual samples obtained

 These are the only numbers stored on the computer

 This set is the same for both sinusoids
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How to compose the signal from sinusoids

 The sines form the vectors of the projection matrix

 Pinv() will do the trick as usual
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How to compose the signal from sinusoids
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 Pinv() will do the trick as usual
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Interpretation..

 Each sinusoid’s amplitude is adjusted until it gives 

us the least squared error

 The amplitude is the weight of the sinusoid

 This can be done independently for each sinusoid

13 Sep 2011 23



11-755 / 18-797

Interpretation..

 Each sinusoid’s amplitude is adjusted until it gives 

us the least squared error

 The amplitude is the weight of the sinusoid

 This can be done independently for each sinusoid

13 Sep 2011 24



11-755 / 18-797

Interpretation..

 Each sinusoid’s amplitude is adjusted until it gives 

us the least squared error

 The amplitude is the weight of the sinusoid

 This can be done independently for each sinusoid

13 Sep 2011 25



11-755 / 18-797

Interpretation..

 Each sinusoid’s amplitude is adjusted until it gives 

us the least squared error

 The amplitude is the weight of the sinusoid

 This can be done independently for each sinusoid
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Sines by themselves are not enough

 Every sine starts at zero

 Can never represent a signal that is non-zero in the first 

sample!

 Every cosine starts at 1

 If the first sample is zero, the signal cannot be represented! 
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The need for phase

 Allow the sinusoids to move!

 How much do the sines shift?

....)/2sin()/2sin()/2sin( 332211  ppp NknwNknwNknwsignal

Sines are shifted:
do not start with
value = 0
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Determining phase

 Least squares fitting: move the sinusoid left / right, and 
at each shift, try all amplitudes
 Find the combination of amplitude and phase that results in the 

lowest squared error

 We can still do this separately for each sinusoid
 The sinusoids are still orthogonal to one another
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Determining phase

 Least squares fitting: move the sinusoid left / right, and 
at each shift, try all amplitudes
 Find the combination of amplitude and phase that results in the 

lowest squared error

 We can still do this separately for each sinusoid
 The sinusoids are still orthogonal to one another
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The problem with phase

 This can no longer be expressed as a simple linear algebraic equation

 The phase is integral to the bases

 I.e. there’s a component of the basis itself that must be estimated!

 Linear algebraic notation can only be used if the bases are fully known

 We can only (pseudo) invert a known matrix
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Complex Exponential to the rescue

 The cosine is the real part of a complex exponential

 The sine is the imaginary part

 A phase term for the sinusoid becomes a multiplicative 
term for the complex exponential!!
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Complex Exponents to handle phase
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Complex exponentials are well behaved

 Like sinusoids, a complex exponential of one 
frequency can never explain one of another

 They are orthogonal

 They represent smooth transitions

 Bonus: They are complex

 Can even model complex data!

 They can also model real data

 exp(j x ) + exp(-j x) is real
 cos(x) + j sin(x)  + cos(x) – j sin(x) = 2cos(x)
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Complex Exponential Bases: Algebraic 

Formulation

 Note that SL/2+x = conjugate(SL/2-x) for real s
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Shorthand Notation

 Note that SL/2+x = conjugate(SL/2-x)
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A quick detour

 Real Orthonormal matrix:

 XXT = X XT = I

 But only if all entries are real

 The inverse of X is its own transpose

 Definition: Hermitian

 XH = Complex conjugate of XT

 Conjugate of a number a + ib = a – ib

 Conjugate of exp(ix) = exp(-ix)

 Complex Orthonormal matrix

 XXH = XH X = I

 The inverse of a complex orthonormal matrix is its own Hermitian
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W-1 = WH
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 Its inverse is its own Hermitian

 W-1 = WH

13 Sep 2011
40



11-755 / 18-797

Doing it in matrix form

 Because W-1 = WH
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The Discrete Fourier Transform

 The matrix to the right is called the “Fourier 
Matrix”

 The weights (S0, S1. . Etc.) are called the Fourier 
transform
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The Inverse Discrete Fourier Transform

 The matrix to the left is the inverse Fourier matrix

 Multiplying the Fourier transform by this matrix gives us 
the signal right back from its Fourier transform
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The Fourier Matrix

 Left panel: The real part of the Fourier matrix

 For a 32-point signal

 Right panel: The imaginary part of the Fourier matrix

13 Sep 2011 44



11-755 / 18-797

The FAST Fourier Transform

 The outcome of the transformation with the Fourier matrix is the 

DISCRETE FOURIER TRANSFORM (DFT)

 The FAST Fourier transform is an algorithm that takes advantage of 

the symmetry of the matrix to perform the matrix multiplication really 

fast

 The FFT computes the DFT

 Is much faster if the length of the signal can be expressed as 2N
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Images

 The complex exponential is two dimensional

 Has a separate X frequency and Y frequency

 Would be true even for checker boards!

 The 2-D complex exponential must be unravelled to 
form one component of the Fourier matrix

 For a KxL image, we’d have K*L bases in the matrix
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Typical Image Bases

 Only real components of bases shown
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The Fourier Transform and Perception: 

Sound

 The Fourier transforms 

represents the signal 

analogously to a bank of 

tuning forks

 Our ear has a bank of 

tuning forks

 The output of the Fourier 

transform is perceptually 

very meaningful

+

FT

Inverse FT13 Sep 2011 48
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Symmetric signals

 If a signal is (conjugate) symmetric around L/2, the Fourier coefficients are real!

 A(L/2-k) exp(-j f(L/2-k)) + A(L/2+k) exp(-jf(L/2+k)) is always real if

A(L/2-k) = conjugate(A(L/2+k))

 We can pair up samples around the center all the way; the final summation term is always real

 Overall symmetry properties

 If the signal is real, the FT is (conjugate) symmetric

 If the signal is (conjugate) symmetric, the FT is real

 If the signal is real and symmetric, the FT is real and symmetric

*
*

**
*
*

**

****
* *

*

**
*

*

*

****
*

Contributions from points equidistant from L/2

combine to cancel out imaginary terms
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The Discrete Cosine Transform

 Compose a symmetric signal or image

 Images would be symmetric in two dimensions

 Compute the Fourier transform

 Since the FT is symmetric, sufficient to store only half the coefficients 
(quarter for an image)

 Or as many coefficients as were originally in the signal / image
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DCT

 Not necessary to compute a 2xL sized FFT
 Enough to compute an L-sized cosine transform

 Taking advantage of the symmetry of the problem

 This is the Discrete Cosine Transform
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Representing images

 Most common coding is the DCT

 JPEG: Each 8x8 element of the picture is converted using a DCT

 The DCT coefficients are quantized and stored

 Degree of quantization = degree of compression

 Also used to represent textures etc for pattern recognition and other 
forms of analysis

DCT

Multiply by

DCT matrix
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Representing images..

 DCT of small segments
 8x8
 Each image becomes a matrix of DCT vectors

 DCT of the image
 This is a data agnostic transform representation
 Or data-driven representations..

DCT

Npixels / 64 columns
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Returning to Eigen Computation

 A collection of faces

 All normalized to 100x100 pixels

 What is common among all of them?

 Do we have a common descriptor?

17 Sep 2012 54



11755/18797

A least squares typical face

 Can we do better than a blank screen to find the most common portion of faces?

 The first checkerboard; the zeroth frequency component..

 Assumption: There is a “typical” face that captures most of what is common to 

all faces

 Every face can be represented by a scaled version of a typical face

 What is this face?

 Approximate every face f as f = wf V

 Estimate V to minimize the squared error

 How? 

 What is V?

The typical face
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A collection of least squares typical faces

 Assumption: There are a set of K “typical” faces that captures most of all faces

 Approximate every face f as f = wf,1 V1+ wf,2 V2 + wf,3 V3 +.. + wf,k Vk

 V2 is used to “correct” errors resulting from using only V1

 So the total energy in wf,2 (S wf,2
2) must be lesser than the total energy in wf,1 (S wf,1

2) 

 V3 corrects errors remaining after correction with V2

 The total energy in wf,3 must be lesser than that even in wf,2

 And so on..

 V = [V1 V2 V3]

 Estimate V to minimize the squared error

 How? 

 What is V?
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A recollection

M = 

W = 

V=PINV(W)*M

?U = 
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How about the other way?

 W = M * Pinv(V)

M = 

W = ??

V = 

U = 
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How about the other way?

 W V \approx = M

M = 

W = ??

V = 

U = 

?
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Eigen Faces!

 Here W, V and U are ALL unknown and must be determined

 Such that the squared error between U and M is minimum

 Eigen analysis allows you to find W and V such that U = WV has the least 
squared error with respect to the original data M

 If the original data are a collection of faces, the columns of W represent the 
space of eigen faces.

M = Data Matrix

U = Approximation

V

W
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Eigen faces

 Lay all faces side by side in vector form to form a matrix
 In my example: 300 faces. So the matrix is 10000 x 300

 Multiply the matrix by its transpose
 The correlation matrix is 10000x10000

M = Data Matrix

M
T

=
 T

ra
n
s
p
o

s
e
d

D
a
ta

 M
a
tr

ix

Correlation=

10000x300

300x10000

10000x10000
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Eigen faces

 Compute the eigen vectors
 Only 300 of the 10000 eigen values are non-zero

 Why?

 Retain eigen vectors with high eigen values (>0)
 Could use a higher threshold

[U,S] = eig(correlation)
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Eigen Faces

 The eigen vector with the highest eigen value is the first typical 

face

 The vector with the second highest eigen value is the second 

typical face.

 Etc.





















U

e
ig

e
n
fa

c
e
1

e
ig

e
n

fa
c
e

2

eigenface1
eigenface2

eigenface3

17 Sep 2012 63



11755/18797

Representing a face

 The weights with which the eigen faces must be 
combined to compose the face are used to 
represent the face!

= w1 +  w2 +  w3

Representation                               =     [w1 w2 w3 …. ]T
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The Energy Compaction Property

 The first K Eigen faces (for any K) represent the best possible 

way to represent the data

 In an L2 sense

 Sf Sk wf,k
2 cannot be lesser for an other set of “typical” faces

 Almost by definition

 This was the requirement posed in our “least squares” estimation.
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SVD instead of Eigen

 Do we need to compute a 10000 x 10000 correlation matrix and then 

perform Eigen analysis?

 Will take a very long time on your laptop

 SVD

 Only need to perform “Thin” SVD. Very fast

 U = 10000 x 300

 The columns of U are the eigen faces!

 The Us corresponding to the “zero” eigen values are not computed

 S = 300 x 300

 V = 300 x 300

M = Data Matrix

10000x300

U=10000x300
S=300x300 V=300x300

=
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NORMALIZING OUT 

VARIATIONS
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Images: Accounting for variations

 What are the obvious differences in the 

above images

 How can we capture these differences

 Hint – image histograms..
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Images -- Variations

 Pixel histograms: what are the differences
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Normalizing Image Characteristics

 Normalize the pictures

 Eliminate lighting/contrast variations

 All pictures must have “similar” lighting

 How?

 Lighting and contrast are represented in the image histograms:
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Histogram Equalization

 Normalize histograms of images

 Maximize the contrast

 Contrast is defined as the “flatness” of the histogram

 For maximal contrast, every greyscale must happen as frequently as every other 

greyscale

 Maximizing the contrast: Flattening the histogram

 Doing it for every image ensures that every image has the same constrast

 I.e. exactly the same histogram of pixel values

 Which should be flat

0 255
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Histogram Equalization

 Modify pixel values such that histogram becomes “flat”.

 For each pixel
 New pixel value = f(old pixel value)

 What is f()?

 Easy way to compute this function: map cumulative 
counts
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Cumulative Count Function

 The histogram (count) of a pixel value X is the number of 
pixels in the image that have value X
 E.g. in the above image, the count of pixel value 180 is about 110

 The cumulative count at pixel value X is the total number 
of pixels that have values in the range 0 <= x <= X
 CCF(X) =  H(1) + H(2) + .. H(X) 
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Cumulative Count Function

 The cumulative count function of a uniform 
histogram is a line

 We must modify the pixel values of the image 
so that its cumulative count is a line
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Mapping CCFs

 CCF(f(x)) -> a*f(x)   [or a*(f(x)+1) if pixels can take value 0]
 x = pixel value

 f() is the function that converts the old pixel value to a new 
(normalized) pixel value

 a = (total no. of pixels in image) / (total no. of pixel levels)
 The no. of pixel levels is 256 in our examples

 Total no. of pixels is 10000 in a 100x100 image

Move x axis levels around until the plot to the left

looks like the plot to the right
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Mapping CCFs

 For each pixel value x:
 Find the location on the red line that has the closet Y value 

to the observed CCF at x 
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Mapping CCFs

 For each pixel value x:
 Find the location on the red line that has the closet Y value 

to the observed CCF at x 

x1

x2

f(x1) = x2

x3

x4

f(x3) = x4

Etc.
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Mapping CCFs

 For each pixel in the image to the left

 The pixel has a value x

 Find the CCF at that pixel value CCF(x)

 Find x’ such that CCF(x’) in the function to the right equals 

CCF(x)

 x’ such that CCF_flat(x’) = CCF(x)

 Modify the pixel value to x’

Move x axis levels around until the plot to the left

looks like the plot to the right
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Doing it Formulaically

 CCFmin is the smallest non-zero value of CCF(x)

 The value of the CCF at the smallest observed pixel value

 Npixels is the total no. of pixels in the image

 10000 for a 100x100 image

 Max.pixel.value is the highest pixel value

 255 for 8-bit pixel representations


















 valuepixelMax

CCFNpixels

CCFxCCF
roundxf ..

)(
)(

min

min
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Or even simpler

 Matlab:

 Newimage = histeq(oldimage)
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Histogram Equalization

 Left column: Original image

 Right column: Equalized image

 All images now have similar contrast levels
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Eigenfaces after Equalization

 Left panel : Without HEQ

 Right panel: With HEQ

 Eigen faces are more face like..

 Need not always be the case
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Detecting Faces in Images
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Detecting Faces in Images

 Finding face like patterns
 How do we find if a picture has faces in it

 Where are the faces?

 A simple solution:
 Define a “typical face”

 Find the “typical face” in the image
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Finding faces in an image

 Picture is larger than the “typical face”

 E.g. typical face is 100x100, picture is 600x800

 First convert to greyscale

 R + G + B

 Not very useful to work in color
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Finding faces in an image

 Goal .. To find out if and where images that 

look like the “typical” face occur in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each 

location in the picture

17 Sep 2012 94



11755/18797

Finding faces in an image

 Try to “match” the typical face to each 

location in the picture
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Finding faces in an image

 Try to “match” the typical face to each location in 
the picture

 The “typical face” will explain some spots on the 
image much better than others

 These are the spots at which we probably have a face!
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How to “match”

 What exactly is the “match”

 What is the match “score”

 The DOT Product

 Express the typical face as a vector

 Express the region of the image being evaluated as a vector
 But first histogram equalize the region

 Just the section being evaluated, without considering the rest of the image

 Compute the dot product of the typical face vector and the “region” 
vector
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What do we get

 The right panel shows the dot product a various 
loctions

 Redder is higher

 The locations of peaks indicate locations of faces!
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What do we get

 The right panel shows the dot product a various loctions
 Redder is higher

 The locations of peaks indicate locations of faces!

 Correctly detects all three faces
 Likes George’s face most

 He looks most like the typical face

 Also finds a face where there is none!
 A false alarm
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Scaling and Rotation Problems

 Scaling

 Not all faces are the same size

 Some people have bigger faces

 The size of the face on the image 
changes with perspective

 Our “typical face” only represents 
one of these sizes

 Rotation

 The head need not always be 
upright!

 Our typical face image was upright
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Solution

 Create many “typical faces”
 One for each scaling factor
 One for each rotation

 How will we do this?

 Match them all

 Does this work
 Kind of .. Not well enough at all
 We need more sophisticated models
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Face Detection: A Quick Historical Perspective

 Many more complex methods
 Use edge detectors and search for face like patterns
 Find “feature” detectors (noses, ears..) and employ them in complex 

neural networks..

 The Viola Jones method
 Boosted cascaded classifiers

 Next in the program..
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