

Image Segmentation

Image Segmentation



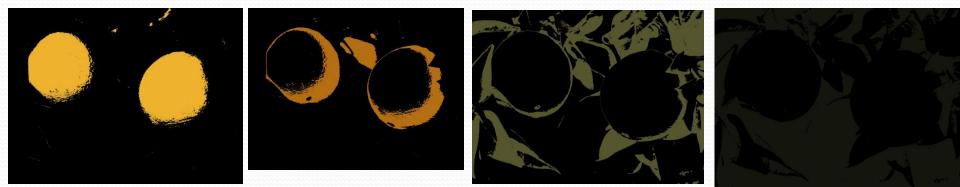
Pink/White pixel : Apple blossom

Orange pixel : Orange

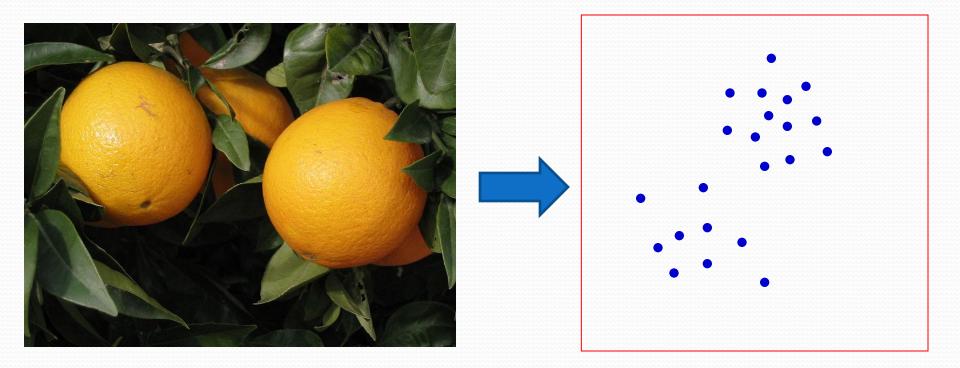
Green pixel : leaf

Image Segmentation



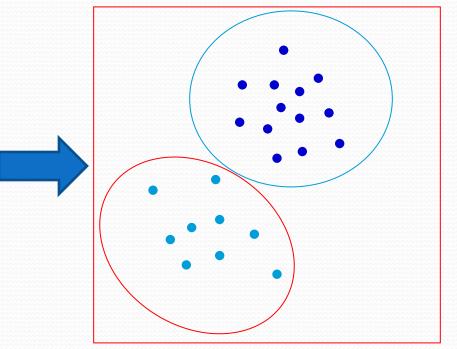


Pixels as features

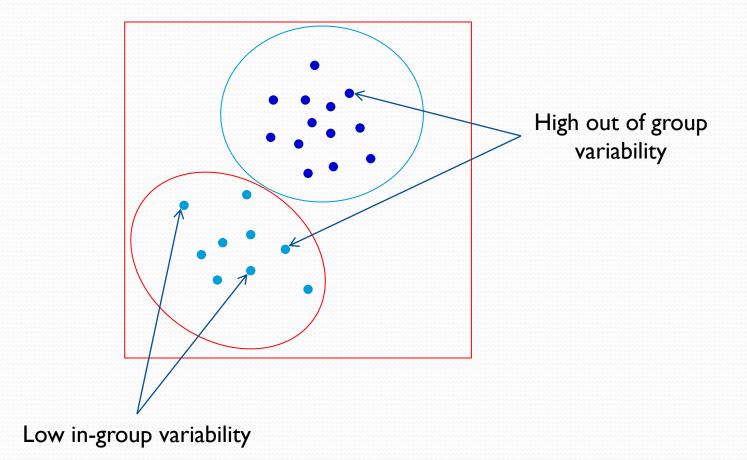


Principle of clustering: Put things that are closer to each other (in feature space) into the same group

Pixels as features



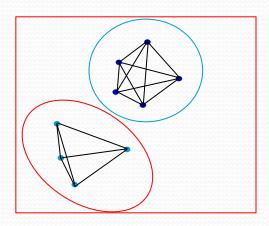
But what is a 'good' cluster?



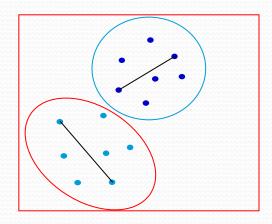
Compactness: Min(in group variability)

- Need a measure that shows how 'compact' our clusters are
- Distance based measures

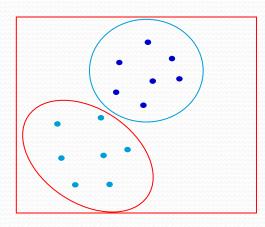
 Total distance between each element in the cluster and every other element



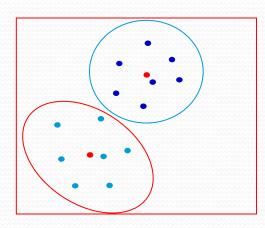
• Distance between farthest points in cluster



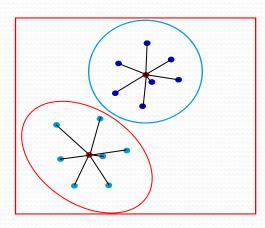
 Total distance of every element in the cluster from the Centroid in the cluster



 Total distance of every element in the cluster from the Centroid in the cluster



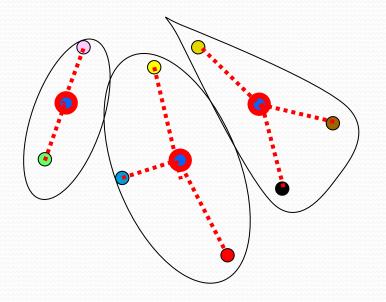
 Total distance of every element in the cluster from the Centroid in the cluster



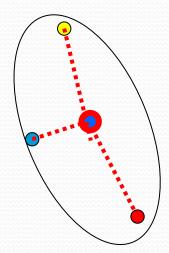
Finding clusters: K-means

K-means algorithm

Minimizes scatter: Distance from centroid

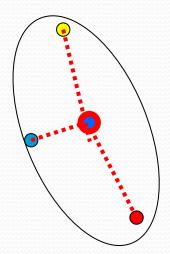


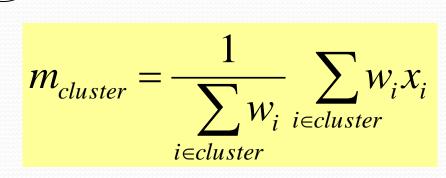
What is a 'Centroid'



 $m_{cluster} = \frac{1}{n} \sum_{i \in cluster} x_i$

What is a 'Centroid'

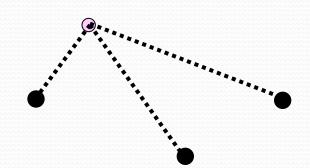




I. Initialize a set of centroids randomly

- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

•



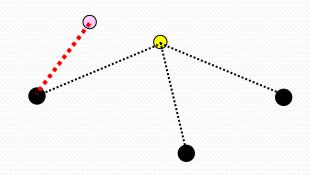
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

 $d_{cluster} = \mathbf{distance}(x, m_{cluster})$

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

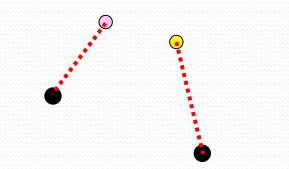
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



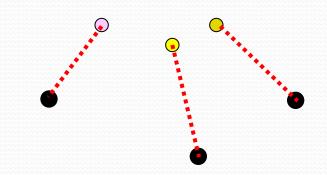
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



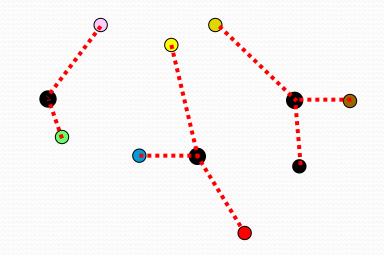
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



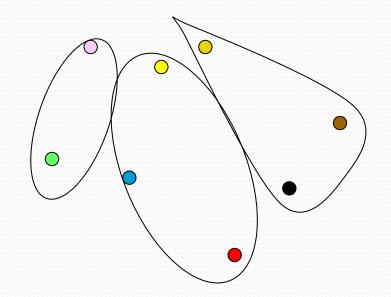
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



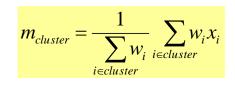
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

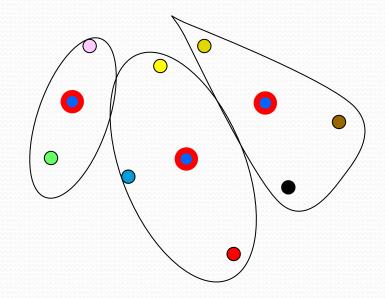
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

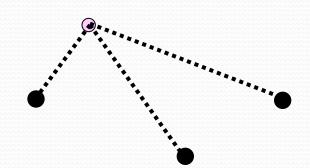
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids





- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

•



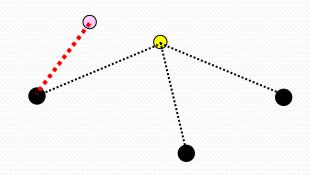
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

 $d_{cluster} = \mathbf{distance}(x, m_{cluster})$

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

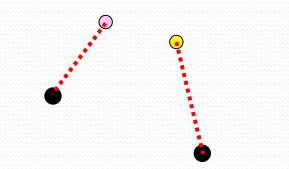
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



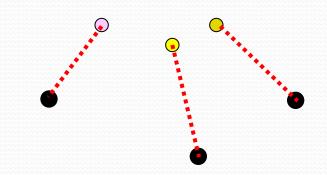
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



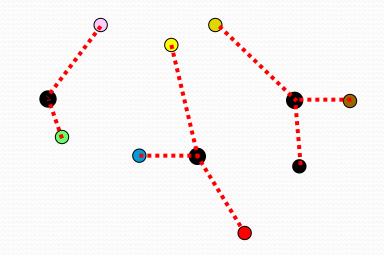
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



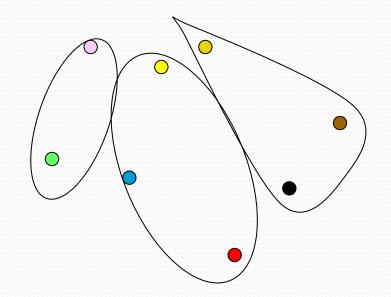
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

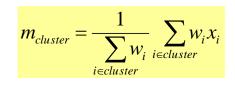


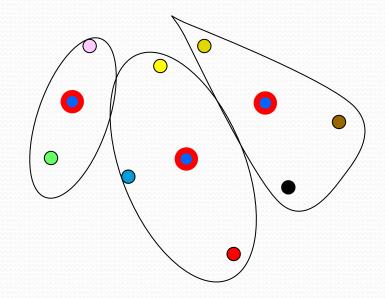
K-means

- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

 $d_{cluster} =$ **distance** $(x, m_{cluster})$

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids



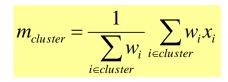


K-means

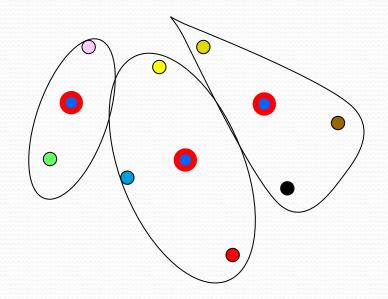
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

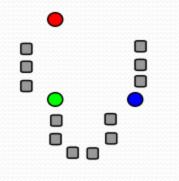
 $d_{cluster} =$ **distance** $(x, m_{cluster})$

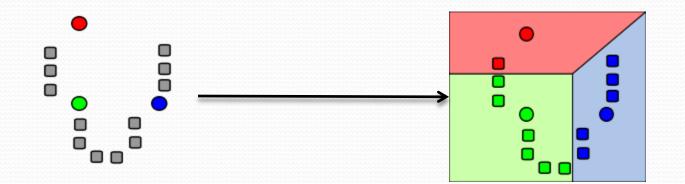
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

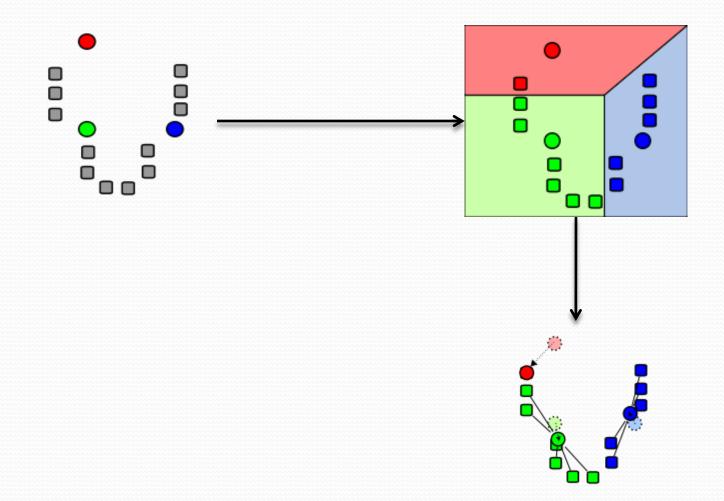


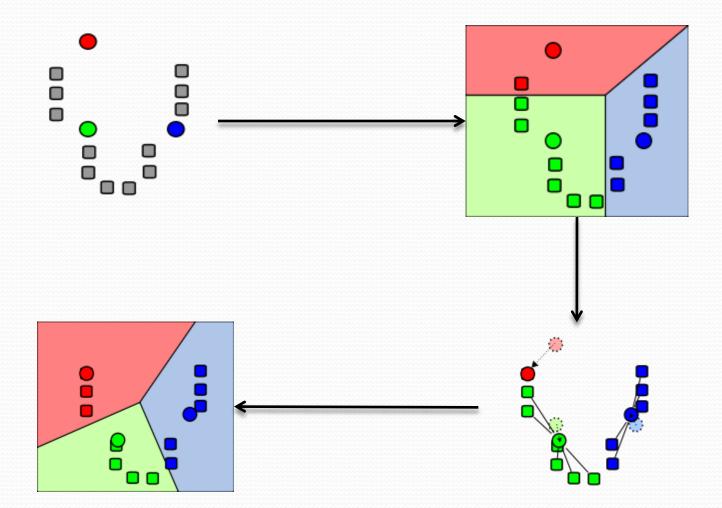
5. If not converged, go back to 2

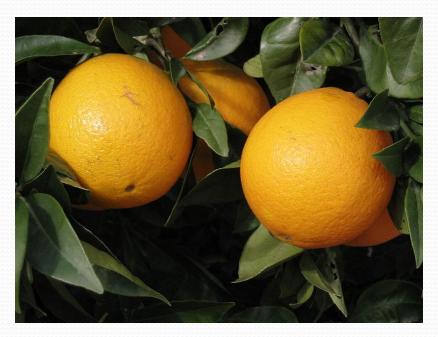


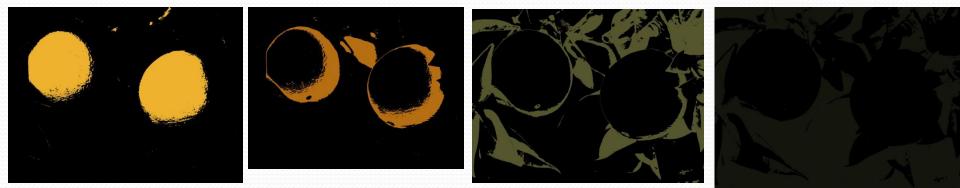


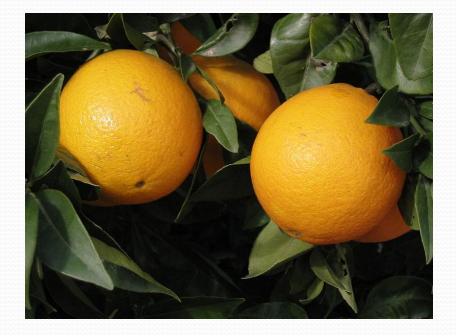






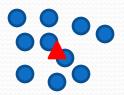


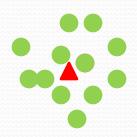


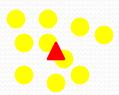


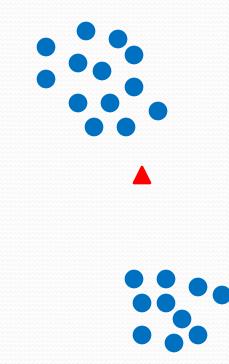
4 clusters

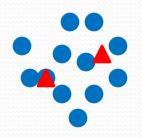
6 clusters

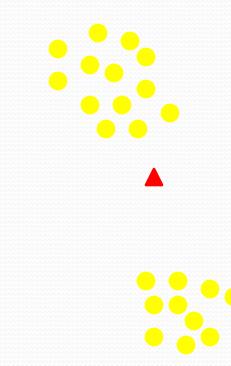






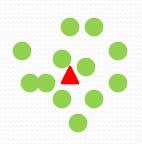




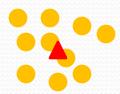




• What is K?

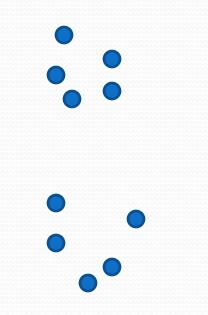




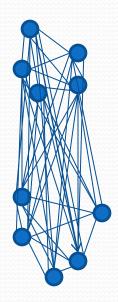


Is there an optimal clustering method?

 Compute distances between every single pair of data points and cluster on that



 Compute distances between every single pair of data points and cluster on that



- Compute distances between every single pair of data points and cluster on that
- Very very computationally expensive
 - If M data points and we want N clusters:

$$\frac{1}{M!}\sum_{i=0}^{N}(-1)^{i}\binom{N}{i}(N-i)^{M}$$

Compute goodness for every possible combination

- Compute distances between every single pair of data points and cluster on that
- Very very computationally expensive
 - If M data points and we want N clusters:

Compute goodness for every possible combination

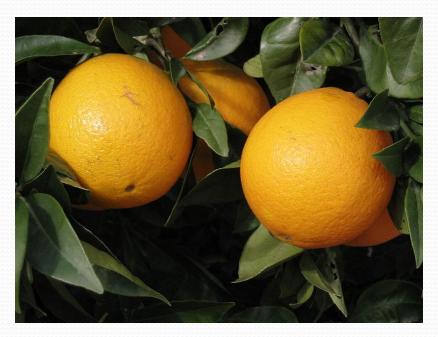
 $(-1)^{i} \binom{N}{i} (N-i)^{M}$

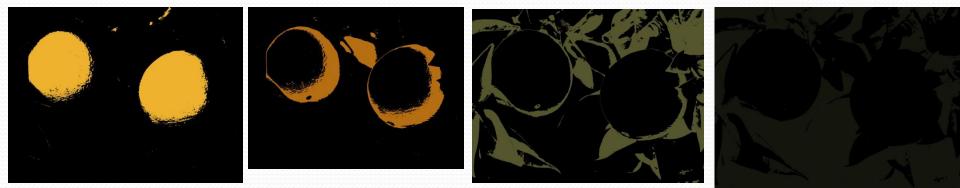
 Compute distances between every simple pair of data points and cluster on that

Ver K-means: Fast but greedy

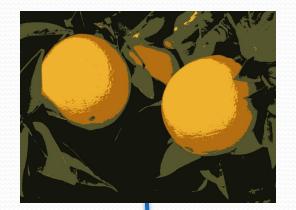
• If M-data points and we want N-clusters:

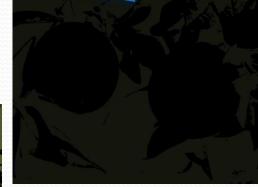
• Compute goodness for every possible combination



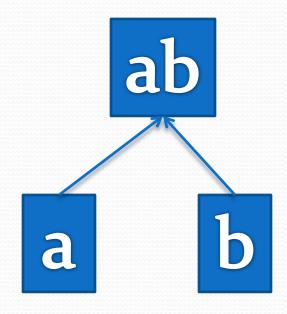


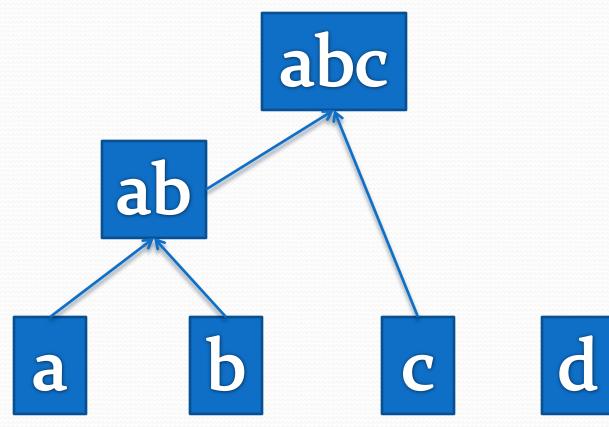
Hierarchical clustering

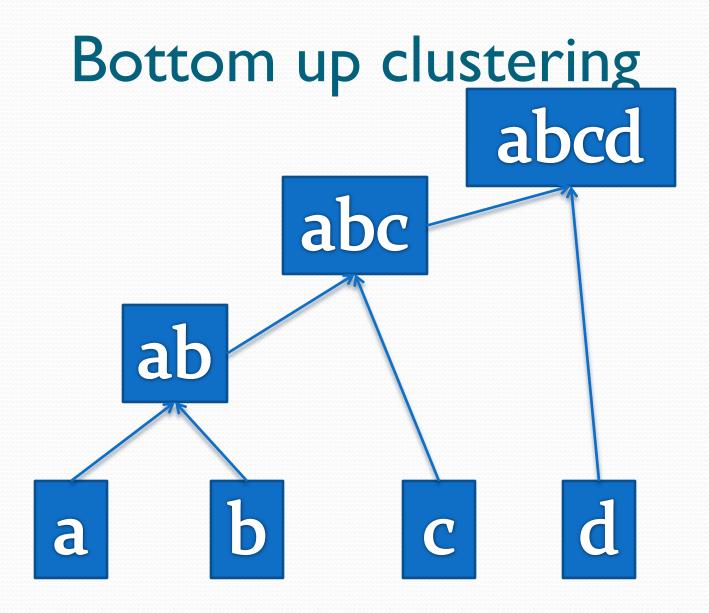




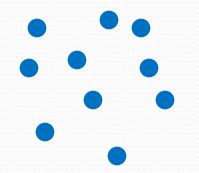
Hierarchical clustering: Bottom up

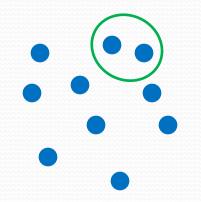


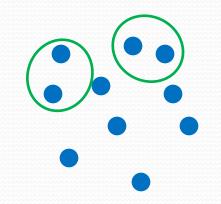


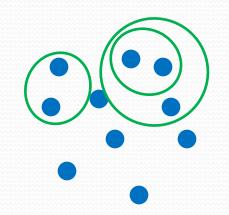


Initially, every point is its own cluster





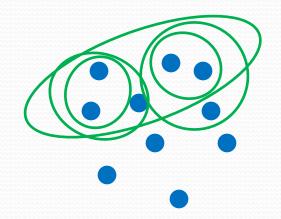




Bottom up clustering



Bottom up clustering

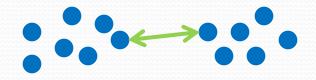


Notes about bottom up clustering

Single Link: Nearest neighbor distance

Notes about bottom up clustering

Single Link: Nearest neighbor distance



Complete link: Farthest neighbor distance

Notes about bottom up clustering

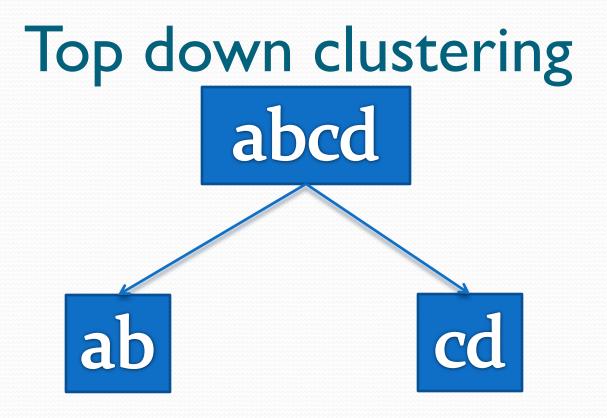
Single Link: Nearest neighbor distance

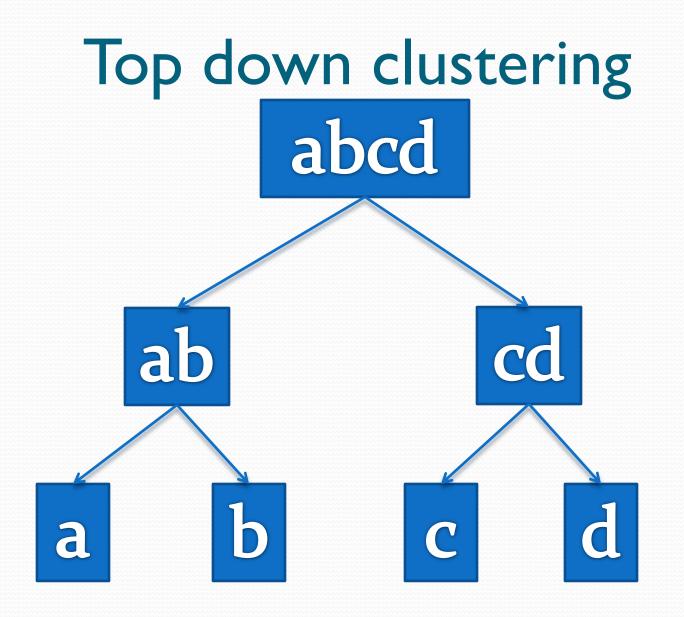
Complete link: Farthest neighbor distance

Centroid: Distance between centroids

Hierarchical clustering: Top Down

Top down clustering abcd

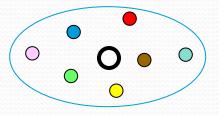




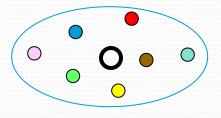
K-Means for Top–Down clustering Start with one cluster

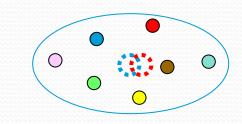
1.

- I. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids

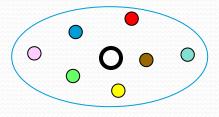


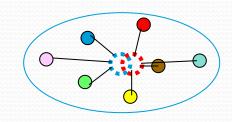
- I. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids



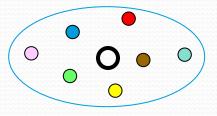


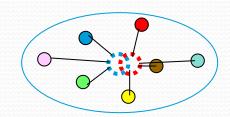
- I. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids

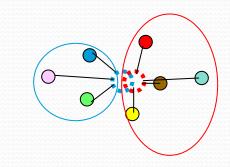




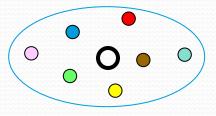
- I. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence

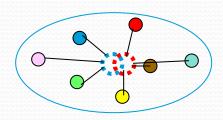


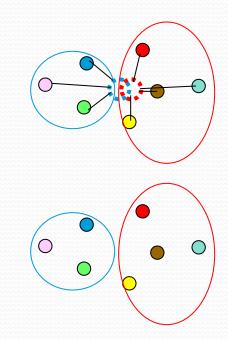




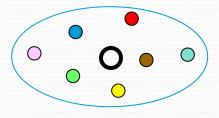
- I. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence

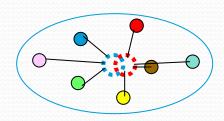


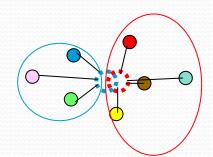


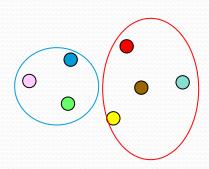


- I. Start with one cluster
- 2. Split each cluster into two:
 - Perturb centroid of cluster slightly (by < 5%) to generate two centroids
- 3. Initialize K means with new set of centroids
- 4. Iterate Kmeans until convergence
- 5. If the desired number of clusters is not obtained, return to 2



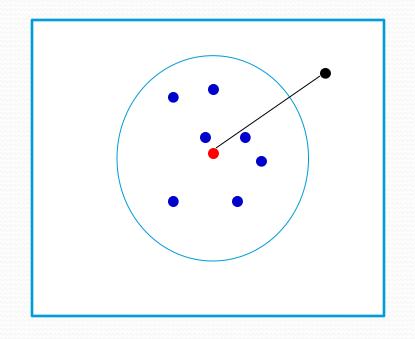




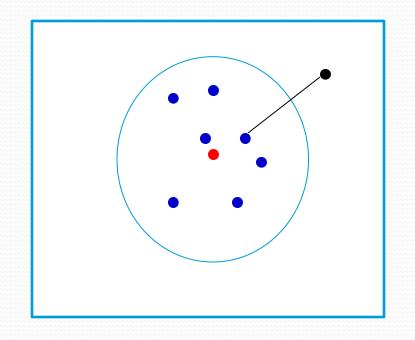


When is a data point in a cluster?

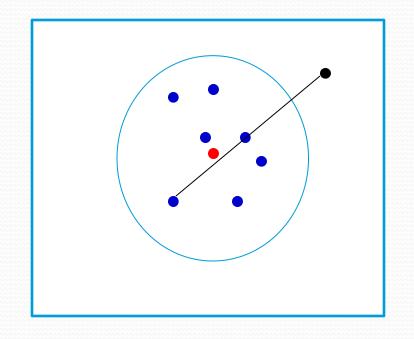
Euclidean distance from centroid



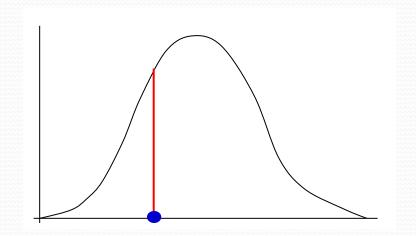
Distance from the closest point



Distance from the farthest point



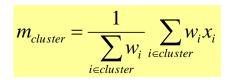
Probability of data measured on cluster distribution



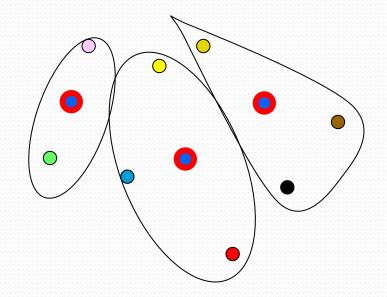
A closer look at 'Distance'

K-means

- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids



5. If not converged, go back to 2



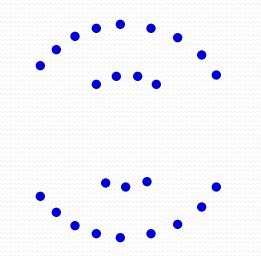
A closer look at 'Distance'

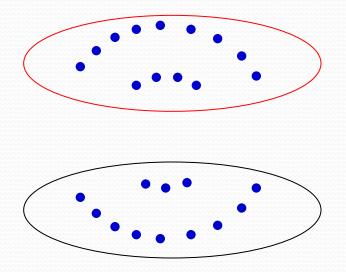
Original algorithm uses L2 norm and weight=1

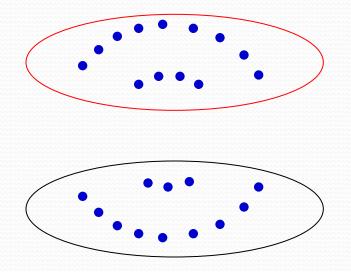
$$\mathbf{distance}_{cluster}(x, m_{cluster}) = \parallel x - m_{cluster} \parallel_2$$

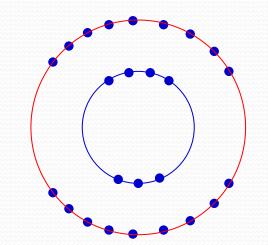
$$m_{cluster} = \frac{1}{N_{cluster}} \sum_{i \in cluster} x_i$$

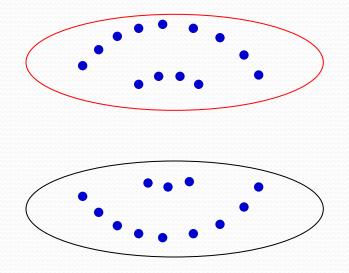
- This is an instance of generalized EM
- The algorithm is not guaranteed to converge for other distance metrics

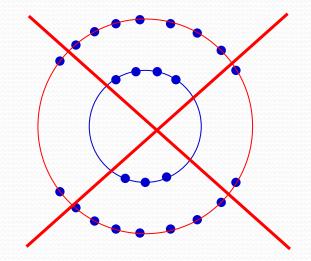




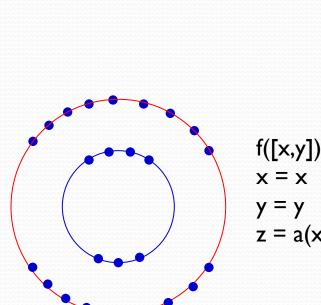




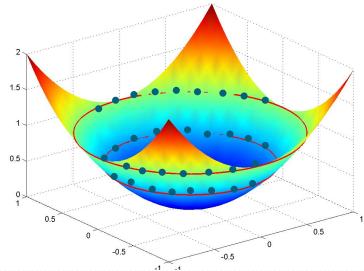


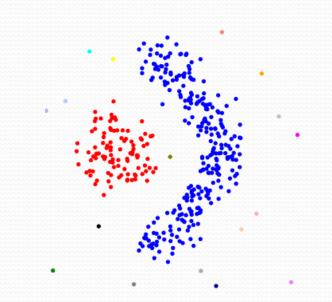


Better way: Map it to different space



$$f([x,y]) -> [x,y,z] x = x y = y z = a(x2 + y2)$$





The Kernel trick

The Kernel trick

- Transform data to higher dimensional space (even infinite!)
 - $z = \Phi(x)$

The Kernel trick

Transform data to higher dimensional space (even infinite!)

• $z = \Phi(x)$

Compute distance in higher dimensional space

•
$$d(\mathbf{x}_1, \mathbf{x}_2) = ||\mathbf{z}_1 - \mathbf{z}_2||^2 = ||\Phi(\mathbf{x}_1) - \Phi(\mathbf{x}_2)||^2$$

The cool part

- Distance in low dimensional space:
 - $||\mathbf{x}_1 \mathbf{x}_2||^2 = (\mathbf{x}_1 \mathbf{x}_2)^{\mathsf{T}}(\mathbf{x}_1 \mathbf{x}_2) = \mathbf{x}_1 \cdot \mathbf{x}_1 + \mathbf{x}_2 \cdot \mathbf{x}_2 2 \mathbf{x}_1 \cdot \mathbf{x}_2$

The cool part

- Distance in low dimensional space:
 - $||\mathbf{x}_1 \mathbf{x}_2||^2 = (\mathbf{x}_1 \mathbf{x}_2)^{\mathsf{T}}(\mathbf{x}_1 \mathbf{x}_2) = \mathbf{x}_1 \cdot \mathbf{x}_1 + \mathbf{x}_2 \cdot \mathbf{x}_2 2 \mathbf{x}_1 \cdot \mathbf{x}_2$
- Distance in high dimensional space:
 d(x₁, x₂) = ||Φ(x₁) Φ(x₂)||² = Φ(x₁). Φ(x₁) + Φ(x₂). Φ(x₂) - 2 Φ(x₁). Φ(x₂)

Note: Every term involves dot products!

Kernel function

- Kernel function is just
 - $K(\mathbf{x}_1, \mathbf{x}_2) = \Phi(\mathbf{x}_1) \cdot \Phi(\mathbf{x}_2)$

 Going back to our distance function in the high dimensional space:

•
$$d(\mathbf{x}_1, \mathbf{x}_2) = ||\Phi(\mathbf{x}_1) - \Phi(\mathbf{x}_2)||^2$$

= $\Phi(\mathbf{x}_1)$. $\Phi(\mathbf{x}_1) + \Phi(\mathbf{x}_2)$. $\Phi(\mathbf{x}_2) - 2 \Phi(\mathbf{x}_1)$. $\Phi(\mathbf{x}_2)$
= $K(\mathbf{x}_1, \mathbf{x}_1) + K(\mathbf{x}_2, \mathbf{x}_2) - 2K(\mathbf{x}_1, \mathbf{x}_2)$

Kernel functions are more efficient than dot products

Typical Kernel Functions

• Linear: $K(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathsf{T}}\mathbf{y} + c$

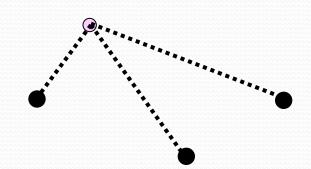
- Polynomial $K(\mathbf{x},\mathbf{y}) = (a\mathbf{x}^{\mathsf{T}}\mathbf{y} + c)^{\mathsf{n}}$
- Gaussian: $K(\mathbf{x}, \mathbf{y}) = \exp(-||\mathbf{x}-\mathbf{y}||^2/\sigma^2)$
- Exponential: $K(x,y) = \exp(-||x-y||/\lambda)$
- Several others
 - Choosing the right Kernel with the right parameters for your problem is an art

Kernel K-means

I. Initialize a set of centroids randomly

- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

•



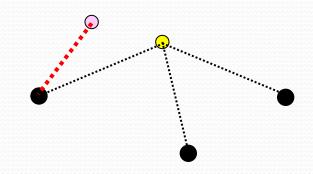
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

 $d_{cluster} = \mathbf{distance}(x, m_{cluster})$

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum

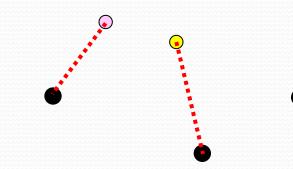
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



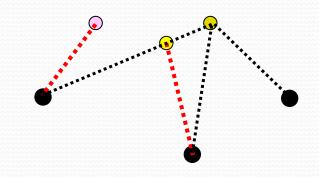
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



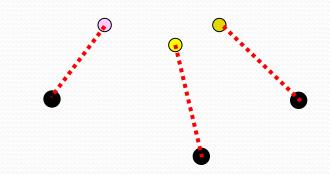
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



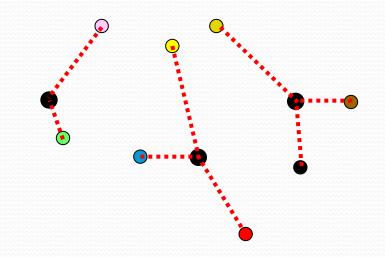
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



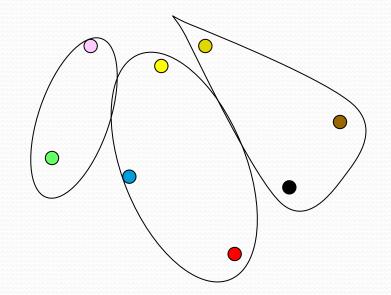
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



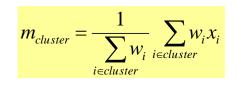
- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster

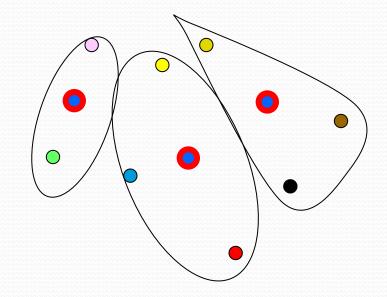
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum



- I. Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster

- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids

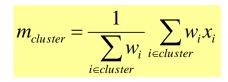




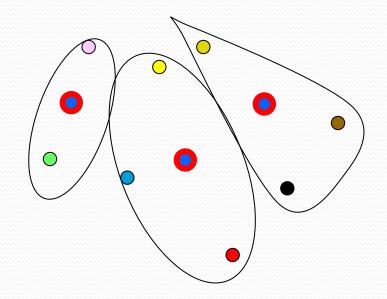
- I. Initialize a set of centroids randomly
- 2. For each data point *x*, find the distance from the centroid for each cluster

 $d_{cluster} =$ **distance** $(x, m_{cluster})$

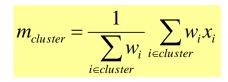
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids



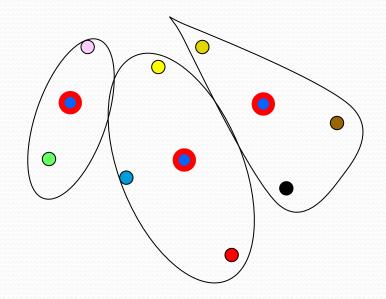
5. If not converged, go back to 2



- I. Initialize a set of centroids randomly
- 2. For each data point **x**, find the distance from the centroid for each cluster
 - $d_{cluster} = distance(x, m_{cluster})$
- 3. Put data point in the cluster of the closest centroid
 - Cluster for which **d**_{cluster} is minimum
- 4. When all data points are clustered, recompute centroids



5. If not converged, go back to 2



Distance metric

$$d(x, \text{cluster}) = \|\Phi(x) - m_{\text{cluster}}\|^2 = \left(\Phi(x) - C\sum_{i \in \text{cluster}} w_i \Phi(x_i)\right)^T \left(\Phi(x) - C\sum_{i \in \text{cluster}} w_i \Phi(x_i)\right)$$

Distance metric

$$d(x, \text{cluster}) = \|\Phi(x) - m_{\text{cluster}}\|^{2} = \left(\Phi(x) - C\sum_{i \in \text{cluster}} w_{i}\Phi(x_{i})\right)^{T} \left(\Phi(x) - C\sum_{i \in \text{cluster}} w_{i}\Phi(x_{i})\right)$$
$$= \left(\Phi(x)^{T}\Phi(x) - 2C\sum_{i \in \text{cluster}} w_{i}\Phi(x)^{T}\Phi(x_{i}) + C^{2}\sum_{i \in \text{cluster}} \sum_{j \in \text{cluster}} w_{i}w_{j}\Phi(x_{i})^{T}\Phi(x_{j})\right)$$

Distance metric

$$d(x, \text{cluster}) = \|\Phi(x) - m_{\text{cluster}}\|^{2} = \left(\Phi(x) - C\sum_{i \in \text{cluster}} w_{i}\Phi(x_{i})\right)^{T} \left(\Phi(x) - C\sum_{i \in \text{cluster}} w_{i}\Phi(x_{i})\right)$$
$$= \left(\Phi(x)^{T}\Phi(x) - 2C\sum_{i \in \text{cluster}} w_{i}\Phi(x)^{T}\Phi(x_{i}) + C^{2}\sum_{i \in \text{cluster}} \sum_{j \in \text{cluster}} w_{i}w_{j}\Phi(x_{i})^{T}\Phi(x_{j})\right)$$
$$= K(x, x) - 2C\sum_{i \in \text{cluster}} w_{i}K(x, x_{i}) + C^{2}\sum_{i \in \text{cluster}} \sum_{j \in \text{cluster}} w_{i}w_{j}K(x_{i}, x_{j})$$

Other clustering methods

- Regression based clustering
- Find a regression representing each cluster
- Associate each point to the cluster with the best regression
 - Related to kernel methods

