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Component Analysis for PR & HS

• Computer Vision & Image Processing
– Structure from motion.

– Spectral graph methods for segmentation.

– Appearance and shape models.

– Fundamental matrix estimation and calibration.

– Compression.

– Classification.

– Dimensionality reduction and visualization.

• Signal Processing
– Spectral estimation, system identification (e.g. Kalman filter), sensor 

array processing (e.g. cocktail problem, eco cancellation), blind source 
separation, -

• Computer Graphics
– Compression (BRDF), synthesis,-

• Speech, bioinformatics, combinatorial problems.
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Structure from motion

Component Analysis for PR & HS
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Spectral graph methods for segmentation.
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• Computer Vision & Image Processing
– Structure from motion.

– Spectral graph methods for segmentation.

– Appearance and shape models.

– Fundamental matrix estimation and calibration.

– Compression.

– Classification.

– Dimensionality reduction and visualization.

• Signal Processing
– Spectral estimation, system identification (e.g. Kalman filter), sensor 

array processing (e.g. cocktail problem, eco cancellation), blind source 
separation, -

• Computer Graphics
– Compression (BRDF), synthesis,-

• Speech, bioinformatics, combinatorial problems.

Appearance and shape models

Component Analysis for PR & HS
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• Computer Vision & Image Processing
– Structure from motion.

– Spectral graph methods for segmentation.

– Appearance and shape models.

– Fundamental matrix estimation and calibration.

– Compression.

– Classification.

– Dimensionality reduction and visualization.

• Signal Processing
– Spectral estimation, system identification (e.g. Kalman filter), sensor 

array processing (e.g. cocktail problem, eco cancellation), blind source 
separation, -

• Computer Graphics
– Compression (BRDF), synthesis,-

• Speech, bioinformatics, combinatorial problems.

Dimensionality reduction and visualization

Component Analysis for PR & HS
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• Computer Vision & Image Processing
– Structure from motion.
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cocktail problem

Component Analysis for PR & HS
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Independent Component Analysis (ICA)
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Why CA for PR & HS?

• Learn from high dimensional data and few samples.
– Useful for dimensionality reduction specially when functions are 

smooth.

features  samples  

• Efficient methods  O(    d            n<  <n2    )

(Everitt,1984)

• Easy to formulate, to solve and to extend

– Non-linearities (Kernel methods) (Scholkopf & Smola,2002; Shawe-Taylor & 

Cristianini,2004)

– Probabilistic (latent variable models)

– Multi-factorial (tensors) (Paatero & Tapper, 1994 ;O’Leary & Peleg,1983; 
Vasilescu & Terzopoulos,2002; Vasilescu & Terzopoulos,2003)

– Exponential family PCA (Gordon,2002; Collins et al. 01)

• Natural geometric interpretation
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Are CA methods popular/useful/used?

• Still work to do

– Results 1 - 10 of about 83,000 for “Spanish crisis"

– Results 1 - 10 of about 287,000,000 for "Britney Spears"

• About 28% of CVPR-07 papers use CA.

• Google:
– Results 1 - 10 of about 1,870,000 for "principal component

analysis".

– Results 1 - 10 of about 506,000 for "independent component
analysis"

– Results 1 - 10 of about 273,000 for "linear discriminant
analysis"

– Results 1 - 10 of about 46,100 for "negative matrix

factorization"

– Results 1 - 10 of about 491,000 for "kernel methods"
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Outline

• Introduction (15 min)

• Generative models  (40 min)
– (PCA, k-means, spectral clustering, NMF, ICA, MDS)

• Discriminative models  (40 min)
– (LDA, SVM, OCA, CCA)

• Standard extensions of linear models (30 min)
– (Kernel methods, Latent variable models, Tensor 

factorization )

• Unified view (20 min)

Generative models  (40 min)
(PCA, k-means, spectral clustering, NMF, ICA, MDS)
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Generative models

• Principal Component Analysis/Singular Value 
Decomposition

• Non-Negative Matrix Factorization

• Independent Component Analysis

• K-means and spectral clustering

• Multi-dimensional Scaling

BCD ≈
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Principal Component Analysis (PCA)

• PCA finds the directions of maximum variation of the data

• PCA decorrelates the original variables

(Pearson, 1901; Hotelling, 1933;Mardia et al., 1979; Jolliffe, 1986; Diamantaras, 1996)
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PCA
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maximum variation of the signal is given by the eigenvectors
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Snap-shot method & SVD
• If d>>n (e.g., images 100*100 vs. 300 samples) no DDT.

• DDT and DTD have the same eigenvalues (energy) and 

related eigenvectors (by D). 

• B is a linear combination of the data!

• [α,L]=eig(DTD)   B=D α(diag(diag(L))) -0.5
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Error function for PCA

(Eckardt & Young, 1936; Gabriel & Zamir, 1979; Baldi & Hornik, 1989; Shum et al., 

1995; De la Torre & Black, 2003a)

• Not unique solution: kk×− ℜ∈= RBCCBRR 1 (De la Torre 2012)
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• PCA minimizes the following function: 

(Baldi & Hornik, 1989)
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PCA/SVD in Computer Vision
• PCA/SVD has been applied to:

– Recognition (eigenfaces:Turk & Pentland, 1991; Sirovich & Kirby, 1987; Leonardis & 
Bischof, 2000; Gong et al., 2000; McKenna et al., 1997a)

– Parameterized motion models (Yacoob & Black, 1999; Black et al., 2000; Black, 
1999; Black & Jepson, 1998)

– Appearance/shape models (Cootes & Taylor, 2001; Cootes et al., 1998; Pentland 
et al., 1994; Jones & Poggio, 1998; Casia & Sclaroff, 1999; Black & Jepson, 1998; Blanz & 
Vetter, 1999; Cootes et al., 1995; McKenna et al., 1997; de la Torre et al., 1998b; de la 
Torre et al., 1998b)

– Dynamic appearance models (Soatto et al., 2001; Rao, 1997; Orriols & Binefa, 
2001; Gong et al., 2000)

– Structure from Motion (Tomasi & Kanade, 1992; Bregler et al., 2000; Sturm & 
Triggs, 1996; Brand, 2001)

– Illumination based reconstruction (Hayakawa, 1994)

– Visual servoing (Murase & Nayar, 1995; Murase & Nayar, 1994)

– Visual correspondence (Zhang et al., 1995; Jones & Malik, 1992)

– Camera motion estimation (Hartley, 1992; Hartley & Zisserman, 2000)

– Image watermarking (Liu & Tan, 2000)

– Signal processing (Moonen & de Moor, 1995)

– Neural approaches (Oja, 1982; Sanger, 1989; Xu, 1993)

– Bilinear models (Tenenbaum & Freeman, 2000; Marimont & Wandell, 1992)

– Direct extensions (Welling et al., 2003; Penev & Atick, 1996)
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Generative models

• Principal Component Analysis/Singular Value 
Decomposition

• Non-Negative Matrix Factorization

• Independent Component Analysis

• K-means and spectral clustering

• Multi-dimensional Scaling

BCD ≈
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“Intercorrelations among 

variables are the bane of the 

multivariate researcher’s struggle 

for meaning”
Cooley and Lohnes, 1971
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Part-based representation

�The firing rates of neurons are never negative

� Independent representations

NMF & ICA
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Non-negative Matrix Factorization (NMF)

• Positive factorization.

• Leads to part-based representation.

0||||)( ≥−= CB,BCDCB, FE

(Lee & Seung, 1999)



6

Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR

NMF

• Multiplicative algorithm can be interpreted as 

diagonally rescaled gradient descent
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Independent Component Analysis (ICA)

• We need more than second order statistics to represent 

the signal
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ICA

• Look for si that are independent

• PCA finds uncorrelated variables

• For Gaussian distributions independence and 

uncorrelated is the same

• Uncorrelated E(sisj)= E(si)E(sj)

• Independent  E(g(si)f(sj))= E(g(si))E(f(sj)) for any non-

linear f,g

1−≈=≈= BWWDSCBCD

(Hyvrinen et al., 2001)

PCA ICA

S=(1,0)

S=(0,1)

S=(0.5, 0.5)

S=(-0.5, -0.5)
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ICA vs PCA
(Hyvrinen et al., 2001)
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Many optimization criteria

• Minimize high order moments: e.g. kurtosis

kurt(W) = E{s4} -3(E{s2}) 2

• Many other information criteria.
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(Olhausen & Field, 1996)

(Chennubhotla & Jepson, 2001b; Zou et al., 2005; dAspremont et al., 2004;)

• Also an error function:

• Other sparse PCA.

WDS =
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Basis of natural images
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Denoising 

Original

image Noisy Image

(30% noise)

Denoise

(Wiener filter) ICA

Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR 34

Generative models

• Principal Component Analysis/Singular Value 
Decomposition

• Non-Negative Matrix Factorization

• Independent Component Analysis

• K-means and spectral clustering

• Multi-dimensional Scaling

BCD ≈
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The clustering problem

• Partition the data set in c-disjoint “clusters” of data points.
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• Number of possible partitions

• NP-hard and approximate algorithms (k-means, hierarchical 

clustering, mog, -)
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K-means

F
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Spectral Clustering

37

Affinity Matrix

(Dhillon et al., ‘04,  Zass & Shashua, 2005; Ding et al., 2005, De la Torre et al ‘06)

Eigenvectors
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Generative models

• Principal Component Analysis/Singular Value 
Decomposition

• Non-Negative Matrix Factorization

• Independent Component Analysis

• K-means and spectral clustering

• Multi-dimensional Scaling

BCD ≈
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Multi-Dimensional Scaling (MDS)

• MDS takes a matrix of pair-wise distances and finds 

an embedding that preserves the inter-point 

distances.

39

Pair-wise distances 

of US cities

Spatial layout  of cities 

in an embedded space
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MDS (III)
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Outline

• Introduction (15 min)

• Generative models  (40 min)
– (PCA, k-means, spectral clustering, NMF, ICA, MDS)

• Discriminative models  (40 min)
– (LDA, SVM, OCA, CCA)

• Standard extensions of linear models (30 min)
– (Kernel methods, Latent variable models, Tensor 

factorization )

• Unified view (20 min)
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Discriminative models

• Linear Discriminant Analysis (LDA)

• Support Vector Machines (SVM)

• Oriented Component Analysis (OCA)

• Canonical Correlation Analysis (CCA)
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Linear Discriminant Analysis (LDA)

• Optimal linear dimensionality reduction if classes are 

Gaussian with equal covariance matrix.
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Support Vector Machines (SVM)

• Linear classifier 

45

denotes +1

denotes -1

How would you 

classify this data?

• Infinite amount lines classify the data well, but which is 

the best?

)()( bsignf T += xwx
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Large margin linear classifier 

“safe zone”

• The linear discriminant 

function with the maximum 

margin is the best

Margin

x1

x2

denotes +1

denotes -1

• Why is the best?

– Robust to outliers and 

shown to improve 

generalization

• The margin with is:
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Large margin linear classifier 

“safe zone”

• The linear discriminant 

function with the maximum 

margin is the best
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SVM formulation

• But what if we have error or non-linear decision boundaries.

x1

x2

• Slack variables ξi can be added 

To allow misclassification of difficult

or noisy data points
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SVM is a regularized network

• In the noiseless case, LDA on the support vectors is 

equivalent to SVM (Shashua 99)

• SVM classifier can be also optimized in the primal 

without constraints: 
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Other classifiers 

• Several other loss-functions for other classifiers (e.g., 

logistic regression, Adaboost) 

50
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Discriminative Models

• Linear Discriminant Analysis (LDA)

• Support Vector Machines (SVM)

• Oriented Component Analysis (OCA)

• Canonical Correlation Analysis (CCA)
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Oriented Component Analysis (OCA)

• Generalized eigenvalue problem:

• boca is steered by the distribution of noise.
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OCA for face recognition
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Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR 54

Canonical Correlation Analysis (CCA)

• Perform PCA independently and learn a mapping

PCA PCA

• Independent dimensionality reduction between set can loose 
signals with small energy but highly correlated
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Canonical Correlation Analysis (CCA)

• Learn relations between multiple data sets? (e.g. find 

features in one set related to another data set)

• Given two sets                                       , CCA finds the pair 

of directions wx and wy that maximize the correlation 

between the projections (assume zero mean data)
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• Several ways of optimizing it:

• An stationary point of r is the solution to CCA.
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Virtual avatars with CCA
(De la Torre & Black 2001)
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Outline

• Introduction (15 min)

• Generative models  (40 min)
– (PCA, k-means, spectral clustering, NMF, ICA, MDS)

• Discriminative models  (40 min)
– (LDA, SVM, OCA, CCA)

• Standard extensions of linear models (30 min)
– (Kernel methods, Latent variable models, Tensor 

factorization )

• Unified view (20 min)
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Linear methods fail

58

• Data points in a non-linear manifold

• There is no good linear mapping to map to a plane

• Linear methods only rotate/translate/scale the data
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Linear methods fail 
• Learning a non-linear representation for classification

Cos close to 0

Cos close to -1

Cos close to 1
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Linear methods not enough

• Linear methods:
– Unique optimal solutions

– Fast learning algorithms

– Better statistical analysis

• Problem:
– Insufficient capacity. Minsky and Pappert  pointed out in their books 

Perceptrons

– Neural networks adding non-linear layers (e.g., MLP). Solve the 

capacity problem but hard to train and local minima. 

60

• Kernel methods:
– Use linear techniques but work in a high-dimensional space. 

)(xx Φ→
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Kernel methods

• The kernel defines an implicit mapping (usually high dimensional)

from the input to feature space, so the data becomes linearly

separable.

• Computation in the feature space can be costly because it is

(usually) high dimensional

– The feature space can be infinite-dimensional!

Feature spaceInput space
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Kernel methods (II)
• Suppose φ(.) is given as follows

• An inner product in the feature space is

• So, if we define the kernel function as follows, there is no 
need to carry out φ(.) explicitly

• This use of kernel function to avoid carrying out φ(.) 
explicitly is known as the kernel trick. In any linear 
algorithm that can be expressed by inner products can be 
made nonlinear by going to the feature space
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Kernel PCA
(Scholkopf et al., 1998)
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Kernel PCA (II)

• Eigenvectors of the cov. Matrix in feature space.

• Eigenvectors lie in the span of data in feature space.                          
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Outline
• Introduction (5 min)

• Generative models  (20 min)
– (PCA, k-means, spectral clustering, NMF, ICA, MDS)

• Discriminative models  (20 min)
– (LDA, SVM, OCA, CCA)

• Standard extensions of linear models (15 min)
– (Kernel methods, Latent variable models, Tensor 

factorization )

• Unified view (15 min)

• Extended generative models (50 min)
– RPCA, PaCA, ACA

• Extended discriminative models (1 hour)
– MODA, Parda, CTW, seg-SVM

Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR 66

Factor Analysis
• A Gaussian distribution on the coefficients and noise is 

added to PCA� Factor Analysis.

• Inference (Roweis & Ghahramani, 1999;Tipping & Bishop, 1999a)
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Ppca
• If                   PPCA.

• If            is equivalent to PCA. TTTT
BBBBBB

11 )()(0 −− =Ψ+→ε

d

TE Iηη ε==Ψ )(

0→ε

• Probabilistic visual learning (Moghaddam & Pentland, 1997;)


































∑

=

Σ

=

Σ

== −

−

=

−−+−−−Σ−−

∏
∫

=

−−

2

)(

2

)(

1

2
1

2

2

1

2

1
2

)()()(
2

1

2

1
2

)()(
2

1

)2()2()2()2(

)()()(

2

1

2

11

kdk

i

i

d

c

dd

eeee
dppp

k

i i

i
TT

πρλπππ

ρ
ε

λε
d

µdIBBµdµdµd T

ccc|dd

i

T

i dBc =

Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR 68

More on PPCA

• Tracking (Yang et al., 1999; Yang et al., 2000a; Lee et al., 2005; de la Torre et 

al., 2000b)

• Recognition/Detection (Moghaddam et al., 2000; Shakhnarovich & 

Moghaddam, 2004; Everingham & Zisserman, 2006)

• PCA for the exponential family (collins et al., 2001)

(Tipping & Bishop, 1999b; Black et al., 1998; Jebara et al., 1998)

• Extension to mixtures of Ppca (mixture of subspaces).
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Outline
• Introduction (5 min)

• Generative models  (20 min)
– (PCA, k-means, spectral clustering, NMF, ICA, MDS)

• Discriminative models  (20 min)
– (LDA, SVM, OCA, CCA)

• Standard extensions of linear models (15 min)
– (Kernel methods, Latent variable models, Tensor 

factorization )

• Unified view (15 min)

• Extended generative models (50 min)
– RPCA, PaCA, ACA

• Extended discriminative models (1 hour)
– MODA, Parda, CTW, seg-SVM
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Tensor faces
(Vasilescu & Terzopoulos, 2002; Vasilescu & Terzopoulos, 2003)

views
illuminations

expressions

people
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Eigenfaces
• Facial images (identity change)

• Eigenfaces bases vectors capture the variability in facial 

appearance (do not decouple pose, illumination, -)
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Data Organization
• Linear/PCA: Data Matrix

– R
pixels x images

– a matrix of image vectors

• Multilinear: Data Tensor

– R
people x views x illums x express x pixels

– N-dimensional matrix

– 28 people, 45 images/person

– 5 views, 3 illuminations, 

3 expressions per person
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N-Mode SVD Algorithm

N = 3
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PCA:

TensorFaces:



18

Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR 75

TensorFaces

Mean Sq. Err. = 409.15

3 illum + 11 people param.

33 basis vectors

PCA

Mean Sq. Err. = 85.75

33 parameters

33 basis vectors

Strategic Data Compression = 

Perceptual Quality

Original

176 basis vectors

TensorFaces

6 illum + 11 people param.

66 basis vectors

• TensorFaces data reduction in illumination space primarily 

degrades illumination effects (cast shadows, highlights)

• PCA has lower mean square error but higher perceptual error
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Outline

• Introduction (15 min)

• Generative models  (40 min)
– (PCA, k-means, spectral clustering, NMF, ICA, MDS)

• Discriminative models  (40 min)
– (LDA, SVM, OCA, CCA)

• Standard extensions of linear models (30 min)
– (Kernel methods, Latent variable models, Tensor 

factorization )

• Unified view (20 min)
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The fundamental equation of CA
(De la Torre & Kanade 06, De la Torre 2012)

Fc

T

rE ||)(||),(0 WBAWBA Ψ−Γ=

Weights

for rows

Weights

for columns

Regression

matrices

Given two datasets                                   : nxnd and ×× ℜ∈ℜ∈ XD

XD

AB

)(θ)(ϕ

C
C

77 Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR

Properties of the cost function

• E0(A,B) has a unique global minimum (Baldi  and Hornik-89). 

• Closed form solutions for A and B are:
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Principal Component Analysis (PCA)

• PCA finds the directions
of maximum variation of
the data based on linear
correlation.

(Pearson, 1901; Hotelling, 1933;Mardia et al., 1979; Jolliffe, 1986; Diamantaras, 1996)

• Kernel PCA finds the
directions of maximum
variation of the data in
the feature space.
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PCA-Kernel PCA

• The primal problem:

Fc
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TTT
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• Error function for KPCA: (Eckardt & Young, 1936; Gabriel & Zamir, 1979; Baldi

& Hornik, 1989; Shum et al., 1995; de la Torre & Black, 2003a)

• The dual problem:
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Error function for LDA
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• d>>n an UNDETERMINED system of equations! (over-fitting)

(de la Torre & Kanade, 2006)
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• CCA is the same as LDA changing the label matrix by a 

new set X
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Canonical Correlation Analysis (CCA)

















=

0...0

1...0

0...1
TG

c=
cl
a
ss
e
s

n=samples

82



20

Machine Perception of Human Behavior with CA F. De la Torre/J. Cohn PAVIS school on CV and PR

K-means

Fc

T

rE ||)(||),(0 WBADWBA Ψ−=
(Ding et al., ‘02, Torre et al ‘06)
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Normalized cuts

Fc

T

rE ||)(||),(0 WBAΓWBA Ψ−=

)(DΓ ϕ=)](...)()([ 21 ndddΓ ϕϕϕ=

(Dhillon et al., ‘04,  Zass & Shashua, 2005; Ding et al., 2005, De la Torre et al ‘06)

Affinity Matrix

Normalized Cuts 
(Shi & Malik ’00)

Ratio-cuts
(Hagen & Kahng  ’02)
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Other Connections

• The LS-KRRR  (E0) is also the generative model for:

– Laplacian Eigenmaps, Locality Preserving projections, MDS, 

Partial least-squares, -.

• Benefits of LS framework:

– Common framework to understand difference and communalities 

between different CA methods (e.g. KPCA, KLDA, KCCA, Ncuts)

– Better understanding of normalization factors and 

generalizations

– Efficient numerical optimization less than θ(n3) or θ(d3), where n 

is number of samples and d dimensions 
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