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Understanding (and Predicting) Data 

 Many different data streams around us 
 

 We process, understand and respond 
 

 What is the response based on? 
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 The data we observed 

 Underlying characteristics that we inferred 
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Understanding (and Predicting) Data 

 Many different data streams around us 
 

 We process, understand and respond 
 

 What is the response based on? 

 The data we observed 

 Underlying characteristics that we inferred 
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Modeled using latent variables 



Examples 

 Stock Market 
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From Yahoo! Finance 

Market sentiment as a latent variable? 



Examples 

 Sports 
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What skills in players should be valued? 

Sidenote: For anyone interested, Baseball as a Markov Chain 

http://www.pankin.com/markov/intro.htm


Examples 

 Many audio applications use latent variables 

 Signal Separation 

 Voice Modification 

 Music Analysis 

 Music and Speech Generation 
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A Strange Observation 

The pitch of female Indian playback singers 

is on an ever-increasing trajectory 
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 Sarah McDonald (Holy Cow): “.. shrieking…” 
 

 Khazana.com: “.. female Indian movie 

playback singers who can produce ultra high 

frequncies which only dogs can hear clearly..”  
 

 www.roadjunky.com: “.. High pitched female 

singers doing their best to sound like they 

were seven years old ..” 
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Comments on the high-pitched singing 

http://www.roadjunky.com/
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A Strange Observation 

The pitch of female Indian playback singers 

is on an ever-increasing trajectory 
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A Disturbing Observation 

The pitch of female Indian playback singers 

is on an ever-increasing trajectory 
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Lets Fix the Song 

 The pitch is unpleasant 

 The melody isn’t bad 

 Modify the pitch, but retain melody 
 

 Problem: 

 Cannot just shift the pitch: will destroy the music 

 The music is fine, leave it alone 

 Modify the singing pitch without affecting the 

music 
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“Personalizing” the Song 

 Separate the vocals from the background music 

 Modify the separated vocals, keep music unchanged 
 

 Separation need not be perfect 

 Must only be sufficient to enable pitch modification of 

vocals 

 Pitch modification is tolerant of low-level artifacts 

 For octave level pitch modification artifacts can be undetectable. 
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Separation example 
Dayya Dayya original (only vocalized regions) 

Dayya Dayya separated music 

Dayya Dayya separated vocals 
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Some examples 

 Example 1: Vocals shifted down by 4 semitonesExample 2: 

Gender of singer partially modified 
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Some examples 

 Example 1: Vocals shifted down by 4 semitones 

 Example 2: Gender of singer partially modified 

Oct 2, 2012 16 



Techniques Employed 

 Signal separation 

 Employed a simple latent-variable based 

separation method 

 Voice modification 

 Equally simple techniques 

 Will consider the underlying methods over 

next few lectures 
 

 Extensive use of Expectation Maximization 
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Learning Distributions for Data 

 Problem: Given a collection of examples from some data, 

estimate its distribution 

 Basic ideas of Maximum Likelihood and MAP estimation can be 

found in Aarti/Paris’ slides 

 Pointed to in a previous class 

 Solution: Assign a model to the distribution 

 Learn parameters of model from data 

 Models can be arbitrarily complex 

 Mixture densities, Hierarchical models. 

 

 Learning can be done using Expectation Maximization 
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A Thought Experiment 

 A person shoots a loaded dice repeatedly 

 You observe the series of outcomes 

 You can form a good idea of how the dice is loaded 

 Figure out what the probabilities of the various numbers are for dice 

 P(number) = count(number)/sum(rolls) 

 This is a maximum likelihood estimate 

 Estimate that makes the observed sequence of numbers most probable 

6 3 1 5 4 1 2 4 … 
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Generative Model 

 The data are generated by draws from the 

distribution 

 I.e. the generating process draws from the distribution 
 

 Assumption: The distribution has a high probability 

of generating the observed data 

 Not necessarily true 
 

 Select the distribution that has the highest 

probability of generating the data 

 Should assign lower probability to less frequent 

observations and vice versa 
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The Multinomial Distribution 

 A probability distribution over a discrete 

collection of items is a Multinomial 
 

 

 

 E.g. the roll of dice 

 X : X in (1,2,3,4,5,6) 

 

 Or the toss of a coin 

 X : X in (head, tails) 

)()set discrete a  tobelongs :( XPXXP 
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Maximum Likelihood Estimation: Multinomial 

 Probability of generating (n1, n2, n3, n4, n5, n6) 

 

 

 

 Find p1,p2,p3,p4,p5,p6 so that the above is maximized 
 

 Alternately maximize 

 

 
 

 Log() is a monotonic function 

 argmaxx f(x) =  argmaxx log(f(x)) 

 

 Solving for the probabilities gives us 

 Requires constrained optimization to  

ensure probabilities sum to 1 
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Segue:  Gaussians 

 Parameters of a Gaussian:  

 Mean m, Covariance Q 
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Maximum Likelihood: Gaussian 

 Given a collection of observations (X1, X2,…), 

estimate mean m and covariance Q 

 
 

 

 

 

 Maximizing w.r.t m and Q gives us 
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Laplacian 

 Parameters: Mean m, scale b (b > 0) 
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Maximum Likelihood: Laplacian 

 Given a collection of observations (x1, x2,…), 

estimate mean m and scale b 
 

 

 

 

 Maximizing w.r.t m and b gives us 
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Dirichlet 

 Parameters are as 
 Determine mode and curvature 

 Defined only of probability vectors 
 X = [x1 x2 .. xK], Si xi = 1,  xi >= 0 for all i 
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K=3. Clockwise from top left: 
α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4) 

(from wikipedia) 

log of the density as we change α from  
α=(0.3, 0.3, 0.3) to (2.0, 2.0, 2.0),  
keeping all the individual αi's equal to  
each other. 
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Maximum Likelihood: Dirichlet 

 Given a collection of observations (X1, X2,…), 

estimate a 
 

 

 

 No closed form solution for as. 

 Needs gradient ascent 
 

 Several distributions have this property: the ML 

estimate of their parameters have no closed 

form solution 
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Continuing the Thought Experiment 

 Two persons shoot loaded dice repeatedly 

 The dice are differently loaded for the two of them 

 We observe the series of outcomes for both persons 
 

 How to determine the probability distributions of the two dice? 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 … 
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Estimating Probabilities 

 Observation: The sequence of 

numbers from the two dice 

  As indicated by the colors, we 

know who rolled what number 
 

 

 

 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6…  
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Estimating Probabilities 

 Observation: The sequence of 

numbers from the two dice 

  As indicated by the colors, we 

know who rolled what number 

 

 Segregation: Separate the 

blue observations from the red 

 

 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6…  

6 5 2 4 2 1 3 6 1.. 4 1 3 5 2 4 4 2 6.. 

Collection of “blue” 

numbers 

Collection of “red” 

numbers 
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Estimating Probabilities 
 Observation: The sequence of 

numbers from the two dice 

  As indicated by the colors, we 

know who rolled what number 

 

 Segregation: Separate the blue 

observations from the red 
 

  From each set compute 

probabilities for each of the 6 

possible outcomes 

 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6…  

6 5 2 4 2 1 3 6 1.. 4 1 3 5 2 4 4 2 6.. 

rolls observed ofnumber  total

rolled number was  timesof no.
)( numberP

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6
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A Thought Experiment 

 Now imagine that you cannot observe the dice yourself 

 Instead there is a “caller” who randomly calls out the outcomes 

 40% of the time he calls out the number from the left shooter, and 60% of the 

time, the one from the right (and you know this) 
 

 At any time, you do not know which of the two he is calling out 

 How do you determine the probability distributions for the two dice? 

6 4 1 5 3 2 2 2 … 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 … 
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A Thought Experiment 

 How do you now determine the probability 

distributions for the two sets of dice … 
 

 .. If you do not even know what fraction of time the 

blue numbers are called, and what fraction are red?  

6 4 1 5 3 2 2 2 … 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 … 
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A Mixture Multinomial 

 The caller will call out a number X in any given callout IF 

 He selects “RED”, and the Red die rolls the number X 

 OR 

 He selects “BLUE” and the Blue die rolls the number X 

 

 P(X) = P(Red)P(X|Red) + P(Blue)P(X|Blue) 

 E.g. P(6) = P(Red)P(6|Red) + P(Blue)P(6|Blue) 

 

 A distribution that combines (or mixes) multiple 

multinomials is a mixture multinomial 

 



Z
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Mixture Distributions 

 Mixture distributions mix several component distributions 

 Component distributions may be of varied type 

 Mixing weights must sum to 1.0 

 Component distributions integrate to 1.0 

 Mixture distribution integrates to 1.0 
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Maximum Likelihood Estimation 

 For our problem: 

 Z = color of dice 

 

 

 Maximum likelihood solution: Maximize 

 
 

 No closed form solution (summation inside log)!  

 In general ML estimates for mixtures do not have a 

closed form 

 USE EM! 
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Expectation Maximization 

 It is possible to estimate all parameters in this setup 

using the Expectation Maximization (or EM) algorithm 
 

 First described in a landmark paper by Dempster, Laird 

and Rubin 

 Maximum Likelihood Estimation from incomplete data, 

via the EM Algorithm, Journal of the Royal Statistical 

Society, Series B, 1977 
 

 Much work on the algorithm since then 
 

 The principles behind the algorithm existed for several 

years prior to the landmark paper, however. 
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Expectation Maximization 

 Iterative solution 
 

 Get some initial estimates for all parameters 

 Dice shooter example: This includes probability 

distributions for dice AND the probability with which 

the caller selects the dice 
 

 Two steps that are iterated: 

 Expectation Step: Estimate statistically, the values 

of unseen variables 

 Maximization Step: Using the estimated values of 

the unseen variables as truth, estimates of the 

model parameters 
Oct 2, 2012 39 



EM: The auxiliary function 

 EM iteratively optimizes the following 

auxiliary function 

 Q(q, q’) = SZ P(Z|X,q’) log(P(Z,X | q)) 
 

 Z are the unseen variables 

 Assuming Z is discrete (may not be) 

 q’ are the parameter estimates from the 

previous iteration 

 q are the estimates to be obtained in the 

current iteration 
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Expectation Maximization as counting 

 Hidden variable: Z 

 Dice: The identity of the dice whose number has been called out 
 

 If we knew Z for every observation, we could estimate all terms 

 By adding the observation to the right bin 
 

 Unfortunately, we do not know Z – it is hidden from us! 

 

 Solution:  FRAGMENT THE OBSERVATION 

Collection of “blue” 

numbers 

Collection of “red” 

numbers 

6 

.. .. 
Collection of “blue” 

numbers 

Collection of “red” 

numbers 

6 

.. .. 
Collection of “blue” 

numbers 

Collection of “red” 

numbers 

6 

6 6 

6 6 
6 .. 6 .. 

Instance from blue dice Instance from red dice Dice unknown 
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Fragmenting the Observation 

 EM is an iterative algorithm 

 At each time there is a current estimate of parameters 

 The “size” of the fragments is proportional to the a 

posteriori probability of the component distributions 

 The a posteriori probabilities of the various values of Z are 

computed using Bayes’ rule: 

 

 

 

 Every dice gets a fragment of size P(dice | number) 
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Expectation Maximization 

 Hypothetical Dice Shooter Example: 

 We obtain an initial estimate for the probability distribution of the 

two sets of dice (somehow):   

 

 

 

 

 

 We obtain an initial estimate for the probability with which the 

caller calls out the two shooters (somehow) 
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Expectation Maximization 

 Hypothetical Dice Shooter Example: 

 Initial estimate:   

 P(blue) = P(red) = 0.5 

 P(4 | blue) = 0.1, for P(4 | red) =  0.05 

 

 Caller has just called out 4 

 Posterior probability of colors:  

025.05.005.0)()|4()4|( CCredZPredZXCPXredP 

05.05.01.0)()|4()4|( CCblueZPblueZXCPXblueP 

67.0)4X|blue(P   ;33.0)4X|red(P  :gNormalizin 
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Expectation Maximization 
6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6 
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Expectation Maximization 

 Every observed roll of the dice 

contributes to both “Red” and 

“Blue” 
 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6 
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Expectation Maximization 

 Every observed roll of the dice 

contributes to both “Red” and 

“Blue” 
 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6 

6 (0.8) 6 (0.2) 
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Expectation Maximization 

 Every observed roll of the dice 

contributes to both “Red” and 

“Blue” 
 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6 

6 (0.8), 6 (0.2), 4 (0.33) 4 (0.67) 
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Expectation Maximization 

 Every observed roll of the dice 

contributes to both “Red” and 

“Blue” 
 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6 

6 (0.8), 6 (0.2), 4 (0.33), 4 (0.67), 

5 (0.33), 5 (0.67), 
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Expectation Maximization 

 Every observed roll of the dice 

contributes to both “Red” and 

“Blue” 
 

6 4 5 1 2 3 4 5 2 2 1 4 3 4 6 2 1 6 

6 (0.8), 4 (0.33), 

5 (0.33), 1 (0.57), 

2 (0.14), 3 (0.33), 

4 (0.33), 5 (0.33), 

2 (0.14), 2 (0.14), 

1 (0.57), 4 (0.33), 

3 (0.33), 4 (0.33), 

6 (0.8), 2 (0.14), 

1 (0.57), 6 (0.8) 

6 (0.2), 4 (0.67), 

5 (0.67), 1 (0.43), 

2 (0.86), 3 (0.67), 

4 (0.67), 5 (0.67), 

2 (0.86), 2 (0.86), 

1 (0.43), 4 (0.67), 

3 (0.67), 4 (0.67), 

6 (0.2), 2 (0.86), 

1 (0.43), 6 (0.2) 
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Expectation Maximization 

 Every observed roll of the dice 

contributes to both “Red” and “Blue” 
 

 Total count for “Red” is the sum of 

all the posterior probabilities in the 

red column 

 7.31 
 

 Total count for “Blue” is the sum of 

all the posterior probabilities in the 

blue column 

 10.69 
 

 Note: 10.69 + 7.31 = 18 = the total 

number of instances 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 

7.31 10.69 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Red: 

 Total count for 1:  1.71 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 

7.31 10.69 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Red: 

 Total count for 1:  1.71 

 Total count for 2:  0.56 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Red: 

 Total count for 1:  1.71 

 Total count for 2:  0.56 

 Total count for 3:  0.66 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Red: 

 Total count for 1:  1.71 

 Total count for 2:  0.56 

 Total count for 3:  0.66 

 Total count for 4:  1.32 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Red: 

 Total count for 1:  1.71 

 Total count for 2:  0.56 

 Total count for 3:  0.66 

 Total count for 4:  1.32 

 Total count for 5:  0.66 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Red: 

 Total count for 1:  1.71 

 Total count for 2:  0.56 

 Total count for 3:  0.66 

 Total count for 4:  1.32 

 Total count for 5:  0.66 

 Total count for 6:  2.4 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Red: 
 Total count for 1:  1.71 

 Total count for 2:  0.56 

 Total count for 3:  0.66 

 Total count for 4:  1.32 

 Total count for 5:  0.66 

 Total count for 6:  2.4 

 

 Updated probability of Red dice: 
 P(1 | Red) = 1.71/7.31 = 0.234 

 P(2 | Red) = 0.56/7.31 = 0.077 

 P(3 | Red) = 0.66/7.31 = 0.090 

 P(4 | Red) = 1.32/7.31 = 0.181 

 P(5 | Red) = 0.66/7.31 = 0.090 

 P(6 | Red) = 2.40/7.31 = 0.328 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Blue” : 10.69 

 Blue: 

 Total count for 1:  1.29 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Blue” : 10.69 

 Blue: 

 Total count for 1:  1.29 

 Total count for 2:  3.44 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Blue” : 10.69 

 Blue: 

 Total count for 1:  1.29 

 Total count for 2:  3.44 

 Total count for 3:  1.34 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Blue” : 10.69 

 Blue: 

 Total count for 1:  1.29 

 Total count for 2:  3.44 

 Total count for 3:  1.34 

 Total count for 4:  2.68 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Blue” : 10.69 

 Blue: 

 Total count for 1:  1.29 

 Total count for 2:  3.44 

 Total count for 3:  1.34 

 Total count for 4:  2.68 

 Total count for 5:  1.34 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Blue” : 10.69 

 Blue: 

 Total count for 1:  1.29 

 Total count for 2:  3.44 

 Total count for 3:  1.34 

 Total count for 4:  2.68 

 Total count for 5:  1.34 

 Total count for 6:  0.6 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Blue” : 10.69 

 Blue: 

 Total count for 1:  1.29 

 Total count for 2:  3.44 

 Total count for 3:  1.34 

 Total count for 4:  2.68 

 Total count for 5:  1.34 

 Total count for 6:  0.6 

 

 Updated probability of Blue dice: 

 P(1 | Blue) = 1.29/11.69 = 0.122 

 P(2 | Blue) = 0.56/11.69 = 0.322 

 P(3 | Blue) = 0.66/11.69 = 0.125 

 P(4 | Blue) = 1.32/11.69 = 0.250 

 P(5 | Blue) = 0.66/11.69 = 0.125 

 P(6 | Blue) = 2.40/11.69 = 0.056 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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Expectation Maximization 

 Total count for “Red” : 7.31 

 Total count for “Blue” : 10.69 

 Total instances = 18  

 Note 7.31+10.69 = 18 

 We also revise our estimate for the 

probability that the caller calls out 

Red or Blue 

 i.e the fraction of times that he 

calls Red and the fraction of times 

he calls Blue 

 

 P(Z=Red) = 7.31/18 = 0.41 

 P(Z=Blue) = 10.69/18 = 0.59 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 
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The updated values 

 P(Z=Red) = 7.31/18 = 0.41 

 P(Z=Blue) = 10.69/18 = 0.59 

Called P(red|X) P(blue|X) 

6 .8 .2 

4 .33 .67 

5 .33 .67 

1 .57 .43 

2 .14 .86 

3 .33 .67 

4 .33 .67 

5 .33 .67 

2 .14 .86 

2 .14 .86 

1 .57 .43 

4 .33 .67 

3 .33 .67 

4 .33 .67 

6 .8 .2 

2 .14 .86 

1 .57 .43 

6 .8 .2 

 Probability of Blue dice: 

 P(1 | Blue) = 1.29/11.69 = 0.122 

 P(2 | Blue) = 0.56/11.69 = 0.322 

 P(3 | Blue) = 0.66/11.69 = 0.125 

 P(4 | Blue) = 1.32/11.69 = 0.250 

 P(5 | Blue) = 0.66/11.69 = 0.125 

 P(6 | Blue) = 2.40/11.69 = 0.056 

 Probability of Red dice: 

 P(1 | Red) = 1.71/7.31 = 0.234 

 P(2 | Red) = 0.56/7.31 = 0.077 

 P(3 | Red) = 0.66/7.31 = 0.090 

 P(4 | Red) = 1.32/7.31 = 0.181 

 P(5 | Red) = 0.66/7.31 = 0.090 

 P(6 | Red) = 2.40/7.31 = 0.328 

THE UPDATED VALUES CAN BE USED TO REPEAT THE 

PROCESS. ESTIMATION IS AN ITERATIVE PROCESS 
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The Dice Shooter Example 

1. Initialize P(Z),  P(X | Z) 

2. Estimate P(Z | X) for each Z, for each called out number 

• Associate X with each value of Z, with weight P(Z | X) 

3. Re-estimate P(X | Z) for every value of X and Z 

4. Re-estimate P(Z) 

5. If not converged, return to 2 

6 3 1 5 4 1 2 4 … 4 4 1 6 3 2 1 2 … 

6 4 1 5 3 2 2 2 … 
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In Squiggles 

 Given a sequence of observations O1, O2, .. 

 NX is the number of observations of number X 

 Initialize P(Z), P(X|Z) for dice Z and numbers X 

 Iterate: 

 For each number X: 
 

 

 Update: 
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Solutions may not be unique 

 The EM algorithm will give us one of many solutions, 
all equally valid! 
 The probability of 6 being called out: 

 

 

 Assigns Pr as the probability of 6 for the red die 

 Assigns Pb as the probability of 6 for the blue die 

 

 The following too is a valid solution 

 

 

 Assigns 1.0 as the a priori probability of the red die 

 Assigns 0.0 as the probability of the blue die 

 The solution is NOT unique 

br PPbluePredPP aa  )|6()|6()6(

  anythingPPP br 0.00.1)6(  a
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A More Complex Model 

 Gaussian mixtures are often good models for 

the distribution of multivariate data 

 Problem: Estimating the parameters, given a 

collection of data 
11755/18797 

  Q
Q

Q 

k

kk

T

k

k

d
k

kk XX
kP

XNkPXP )()(5.0exp
||)2(

)(
),;()()( 1 mm


m

Oct 2, 2012 71 



Gaussian Mixtures: Generating model 

 The caller now has two Gaussians 

 At each draw he randomly selects a Gaussian, by 

the mixture weight distribution 

 He then draws an observation from that Gaussian 

 Much like the dice problem (only the outcomes are 

now real numbers and can be anything) 

 Q
k

kkXNkPXP ),;()()( m
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Estimating GMM with complete information 

 Observation: A collection of 

numbers drawn from a mixture 

of 2 Gaussians 

  As indicated by the colors, we 

know which Gaussian 

generated what number 

 

 Segregation: Separate the blue 

observations from the red 
 

 From each set compute 

parameters for that Gaussian 

 

6.1 1.4 5.3 1.9 4.2 2.2 4.9 0.5  …  

6.1  5.3  4.2  4.9 .. 1.4  1.9  2.2  0.5 .. 

N

N
redP red)(

  


Q
redi

T

rediredi

red

red

redi

i

red

red XX
N

X
N

mmm
11
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Fragmenting the observation 

 The identity of the Gaussian is not known! 

 Solution:  Fragment the observation 

 Fragment size proportional to a posteriori 

probability 

Collection of “blue” 

numbers 

Collection of “red” 

numbers 

4.2 

4.2 4.2 

4.2 .. 4.2 .. 

Gaussian  unknown 

 Q
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Expectation Maximization 

 Initialize P(k), mk and Qk for both 

Gaussians 

 Important how we do this 

 Typical solution: Initialize means 

randomly, Qk as the global covariance 

of the data and P(k) uniformly 

 Compute fragment sizes for each 

Gaussian, for each observation 

Number P(red|X) P(blue|X) 

6.1 .81 .19 

1.4 .33 .67 

5.3 .75 .25 

1.9 .41 .59 

4.2 .64 .36 

2.2 .43 .57 

4.9 .66 .34 

0.5 .05 .95 

 Q

Q
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Expectation Maximization 

 Each observation contributes 
only as much as its fragment 
size to each statistic 

 Mean(red) =   
(6.1*0.81 + 1.4*0.33 + 5.3*0.75 + 
1.9*0.41 + 4.2*0.64 + 2.2*0.43 + 
4.9*0.66 + 0.5*0.05 ) / 
(0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 
0.43 + 0.66 + 0.05) 
= 17.05 / 4.08 = 4.18 

Number P(red|X) P(blue|X) 

6.1 .81 .19 

1.4 .33 .67 

5.3 .75 .25 

1.9 .41 .59 

4.2 .64 .36 

2.2 .43 .57 

4.9 .66 .34 

0.5 .05 .95 

4.08 3.92 

 Var(red) = ((6.1-4.18)2*0.81 + (1.4-4.18)2*0.33 +  
                   (5.3-4.18)2*0.75 + (1.9-4.18)2*0.41 +  
                   (4.2-4.18)2*0.64 + (2.2-4.18)2*0.43 +  
                   (4.9-4.18)2*0.66 + (0.5-4.18)2*0.05 ) / 
               (0.81 + 0.33 + 0.75 + 0.41 + 0.64 + 0.43 + 0.66 + 0.05) 

8

08.4
)( redP
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EM for Gaussian Mixtures 

1. Initialize P(k), mk and Qk for all Gaussians 

2. For each observation X compute a posteriori 

probabilities for all Gaussian 

 
 

 

3. Update mixture weights, means and variances 

for all Gaussians 

 

 

4. If not converged, return to 2 
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EM estimation of Gaussian Mixtures 

 An Example 

Histogram of 4000 

instances of a randomly 

generated data 

Individual parameters 

of a two-Gaussian 

mixture estimated by EM 

Two-Gaussian mixture 

estimated by EM 
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Expectation Maximization 

 The same principle can be extended to mixtures of other 

distributions. 

 

 E.g. Mixture of Laplacians:  Laplacian parameters become 

 

 

 

 

 

 In a mixture of Gaussians and Laplacians, Gaussians  use the 

Gaussian update rules, Laplacians use the Laplacian rule 
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Expectation Maximization 

 The EM algorithm is used whenever proper statistical 

analysis of a phenomenon requires the knowledge of a 

hidden or missing variable (or a set of hidden/missing 

variables) 

 The hidden variable is often called a “latent” variable 

 

 Some examples: 

 Estimating mixtures of distributions 

 Only data are observed. The individual distributions and mixing 

proportions must both be learnt. 

 Estimating the distribution of data, when some attributes are 

missing 

 Estimating the dynamics of a system, based only on observations 

that may be a complex function of system state 
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Solve this problem: 

 Caller rolls a dice and flips a coin 

 He calls out the number rolled if the coin 

shows head 

 Otherwise he calls the number+1 

 Determine p(heads) and p(number) for the 

dice from a collection of ouputs 
 

 Caller rolls two dice 

 He calls out the sum 

 Determine P(dice) from a collection of ouputs 
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The dice and the coin 

 Unknown: Whether it was head or tails 

Oct 2, 2012 11755/18797 82 

4 

4 3 

4. 3 

Heads or tail? 

.. 

“Heads” count 
“Tails” count 



The two dice 

 Unknown: How to partition the number 

 Countblue(3) += P(3,1 | 4) 

 Countblue(2) += P(2,2 | 4) 

 Countblue(1) += P(1,3 | 4) 
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Fragmentation can be hierarchical 

 E.g. mixture of mixtures 

 Fragments are further fragmented.. 

 Work this out 
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More later 

 Will see a couple of other instances of the 

use of EM 

 Work out HMM training 

 Assume state output distributions are multinomials 

 Assume they are Gaussian 

 Assume Gaussian mixtures 
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