
Proceedings of the 5th International Workshop on Economics Driven Software Engineering Research (EDSER-5),

affiliated with the International Conference in Software Engineering, May 2003, Portland, OR, USA

Time is Not Money
the case for multi-dimensional accounting in value-based software engineering

 Vahe Poladian, Shawn Butler, Mary Shaw, David Garlan
{vahe.poladian, shawn.butler, mary.shaw, david.garlan}@cs.cmu.edu

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
"Time is money", or so goes the old saying. Perhaps influenced by
this aphorism, some strategies for incorporating costs in the
analysis of software design express all costs in currency units for
reasons of simplicity and tractability. Indeed, in theoretical
economics all costs can, in principle, be expressed in dollars.
Software engineering problems, however, often present situations
in which converting all costs to a common currency is
problematical. In this paper we pinpoint some of these situations
and the underlying causes of the problems, and we argue that it is
often better to treat costs as a multidimensional value, with
dimensions corresponding to distinct types of resources. We go on
to highlight the differences among cost dimensions that need to be
considered when developing cost-benefit analyses, and we suggest
mechanisms for mediating among heterogeneous cost dimensions.

Keywords
Cost analysis, multi-dimensional cost analysis, value-based
software engineering.

1. ACCOUNTING FOR COSTS IN
SOFTWARE ENGINEERING
Although engineers traditionally focus on the functionality of
their designs, they are becoming increasingly away of the need to
address total cost of developing and owning the software.. A
common approach to cost-benefit analysis is to express all costs
and benefits in terms of dollars. To a first approximation,
expressing all costs in a single dimension may seem like a
reasonable solution. In practice, however, simplistic conversions
of costs (or benefits) can be problematical.

Consider a military operations center, which is responsible for
managing and directing battlefield assets during times of conflict.
A typical operations center uses several applications that will
demand different amounts of computer resources (e.g., bandwidth
and CPU resources) depending on the military situation. For
example, satellite and air reconnaissance assets can provide real-
time video coverage of the operational area, but not all the time.
Simultaneously, communication channels stream important
intelligence and operational information to the center’s military
commander, but processing the messages is CPU intensive.
Unfortunately the amount of information available to the
commander can exceed his capacity to receive and process the
information and affect his ability to make informed decisions.

The value of each application, and thus the value of the
computing resources, will depend on the current military
situation. For example, at times the commander will need very
detailed videos of the battlefield to make operational decisions,

but at other times the commander will need to receive intelligence
over communication channels and a less detailed picture of the
battle will be adequate. Therefore, dynamic reconfiguration of the
computing resources may be essential to making timely military
decisions.

The quality of service that these applications provide can be fine-
tuned through computer resource adjustments to meet the
commander’s needs. For example, increasing frame rates and
bandwidth allocations can enhance video imagery, but the
resulting demand for CPU cycles to process video images can
cause delays in message processing.

At any given point in time, finding the optimal allocation of
computing resources depends on the value that each application
provides to the commander. Finding the optimal resource
allocation ultimately requires all the alternatives to be comparable
-- typically expressed in a common metric. However, there can be
serious drawbacks to making these conversions too early in the
analysis process.

First, it is difficult to associate cost or value with a resource
without complete information about the resource and the context
of its use. In the example above, the value of bandwidth was
highly dependent on the battlefield situation and weather. In some
cases the value of the resource may be in saving lives, but in other
situations the value of the resource may be tied to common
economic costs, such as fuel or energy costs, which are more
easily translated into dollars1.

Second, a conversion between metrics may adversely affect the
type of analysis that you can do. The value of the resource may be
non-linear with respect to the preferences of the user (or
commander in the example above). Converting the value of
computing resources, such as bandwidth and CPU, to dollars
implies that each of the resources is as finely divisible as dollars.
Increasing the resolution of video images requires a stepwise
increase in bandwidth before the user recognizes a difference in
the quality of the video. As a result, calculus-based solutions may
appear adequate to solve the problem in the abstract, when in fact
discrete algorithms are more appropriate for the problem at hand.

Third, conversions to a common currency can lose information
that should affect the types of feasible solutions. Some resources
are perishable: they are only valuable for short periods of time,
and after that they have no residual value. Converting such a
resource to one that is not perishable will cause important
information to get lost in the process. In fact, the obtained result
may not be feasible according to the original formulation of the

1 Despite studies that calculate the price of an individual’s life,

few decision makers are willing to make explicit comparisons.

 2

problem. For example, unused bandwidth is gone forever, and
allocating bandwidth to satellite imagery when the satellites are
not overhead is not a feasible solution.

These problems can be avoided by using methods that recognize
and respect the different properties of different resources. Here we
regard cost as a multidimensional quantity, with different
dimensions corresponding to different non-commensurable cost
metrics. Section 4 presents examples based on two such methods.
One of the examples focuses on the automatic run-time
configuration of software components based on preferences of the
user. The second example tackles the problem of choosing the
optimal set of countermeasures to minimize threats to a corporate
IT infrastructure.

In this paper, we contribute to understanding the problem on
incommensurable multidimensional costs and finding solutions
for particular projects by:

x Characterizing types of costs to show their differences. In
Section 2 we catalog resources that are commonly used in
analyzing costs in software development.

x Proposing a model for treating cost as a multidimensional
measure. In Section 3 we present a model that explains the
essential differences among these costs.

x Analyzing the problems of mapping among cost dimensions.
In Section 4 we discuss analysis techniques that carry through
multidimensional costs.

x Showing how to accommodate methods that require uni-
dimensional costs. In Section 5 we generalize from the
examples of Section 4 and discuss ways to balance the
information needs that require multiple dimensions with the
analysis needs that require a single dimension.

2. SOURCES OF SOFTWARE
DEVELOPMENT AND QUALITY COSTS
In software engineering and systems research, cost-benefit
analyses have been used to solve cost estimation and optimization
problems. SAEM [2], [3] is a cost benefit analysis model that
helps security managers choose the best set of countermeasures.
Odyssey [9] provides runtime middleware that helps adapt
application behavior to resource availability. The Nemesis [10]
operating system uses shadow prices and careful accounting to
determine optimal allocation of resources among competing
applications. Aura [8] aims to reduce user distraction in
interactive computing by accounting for human attention as a
resource. COCOMO II [1] is a software cost estimation model
that calculates the cost of a software project based on various
organizational and project parameters. The works cited consider
costs and benefits to estimate benefit, determine optimal
allocations, and estimate cost.

Table 1 catalogues some of the resources that are considered by
the analyses of the research described above. This list is
representative rather than complete; it provides the basis for the
examples we use in later sections.

Table 1. A Selection of Resources and their sources

Cost dimension Examples, citations

Purchase cost, currency
(dollars, for simplicity) Classical Economics

Staff time COCOMO [1]

Reputation SAEM [2]

Lives lost SAEM

Calendar time, days COCOMO

Bandwidth Odyssey [9], Nemesis [10]

Battery Capacity Remaining Odyssey, Nemesis

User attention Aura [8]

Software application, e.g.
Microsoft Word Aura

3. PROPERTIES of COSTS/RESOURCES
The introductory example motivates the need to consider separate
resource dimensions in cost-benefit analysis. But what are some
of the characteristics of different resources that need to be
considered during such analyses? Further, how would these
characteristics influence the choice of analysis technique? To help
answer these questions, we discuss the different properties of
some of the resources identified in Table 1, with particular focus
on understanding how these differences can be reconciled or
mediated. At the end of the discussion, we summarize our
findings in Table 2 for a sample of resources.

x Divisibility/granularity. This property describes how dense the
space of the resource is. Intuitively, this property indicates in
what increments the resource can be allocated. Possible values
are:

o Continuous: The resource can be allocated at a very fine
grain. Bandwidth and battery energy are resources that fit
in this group.

o Discrete but dense: The possible allocation points are
many, but allocation can not be made continuously.
Currency fits this group.

o Sparse discrete: There are very few possible points in the
resource space. Editing a document with a particular
application, e.g. Microsoft Word, falls in this category.

The granularity of a resource can influence the choice of the
solution method. With continuous resources and in some cases
discrete dense resources, calculus-based solutions work well,
especially if resource requirements can be described as closed
formulas. Sparse discrete resources are best analyzed with
discrete methods such as integer programming and knapsack
algorithms. Problems with continuous and dense discrete
resources can also be tackled using discrete solutions, at the
expense an approximate answer. This can be a justified trade-
off if no closed-form formulas exist to describe the functions.

x Fungibility. This property describes whether a particular
resource can be converted to another resource. This property
makes sense in the context of a specific problem, and with
respect to specific other resources. For example,

 3

o Complete fungibility: Common currency is fungible to
most other resource.

o Partial fungibility: Some interchange is possible between
bandwidth and CPU cycles in the software runtime
configuration problem. Consider different MPEG decoders
using different compression algorithms. One decoder may
be relatively bandwidth intensive, while the other may be
CPU intensive. Availability of multiple decoders makes it
possible to convert between bandwidth and CPU cycles. It
is important to realize that the tradeoff is limited a few
points.

o No fungibility: In software cost estimation problem, it is
well known that calendar days and staff months are not
interchangeable. Additional staff may even lengthen
development time.

x Measurement Scale. This property describes the kind of scale
that is appropriate for measuring a resource. For example, the
set of domestic animals (dog, cat, cow, etc) has nominal scale,
as there is no ordering relationship between elements in that
set. See the Appendix for a review of measurement scales.
Possible choices are:

o Nominal.

o Ordinal.

o Integer.

o Ratio.

Cost-benefit analysis can sometimes be tackled by converting
all resources to the same scale. However, conversion among

resources of different scales must be made only when
conversions are justified. See Section 4.2 for an example of
such conversion.

x Economies of scale. This property describes the extent to
which a percentage increment in a resource affects the
increment of the output of a product that uses the resource as
input. Possible values are:

o Superlinear Scale: (also known as positive economies of
scale). If a percentage increment in a resource results in
proportionately higher increase in output, then we say
resource has superlinear scale. Consider the problem of
searching for a given record by its unique key in a large
database. As a measure of output, consider the size of the
database (e.g., total number of records) we are able to
search in a fixed amount of time, and as a measure of
input, consider the size of hardware we need to have (e.g.,
CPU speed). Recall that the binary search algorithm runs
in time logarithmic with respect to number of items. Thus,
CPU size exhibits superlinear scale with respect to the
problem size in this case, because incremental increases in
the CPU performance dedicated to the search space result
in increasingly proportionally larger search space covered.

o Linear Scale: (also known as neutral economies of scale).
The benefit of additional quantities of the resource is
independent of the problem size.

Table 2. Properties of Sample Resource Dimensions

 Properties of Costs

Units Measurement
Scale Granularity Fungibility Perishability Economies

of Scale Rival

Purchase cost Dollars Ratio Dense Y N Linear Y

Staff time Months Ratio Sparse N Y Sublinear Y

Reputation Scale Ordinal Sparse N N N/A Y

Lives lost Number of
Humans Integer Sparse N N/A N/A N/A

Calendar time Days Ratio Sparse N Y Depends N

Bandwidth Mbps Ratio Continuous N Y Depends Y

Battery Joules Ratio Continuous N N Depends Y

Human
attention Seconds Ordinal Sparse N N N/A Y

C
os

t D
im

en
si

on

Software
application N/A Nominal Sparse Y N N/A N

 4

o Sublinear Scale: (also known as diseconomies of scale).
If a percentage increase in resource results in
proportionately smaller increase in output, then we say
the resource exhibits sublinear scale. Staff size, as input
to software projects, exhibits slight diseconomies of
scale (COCOMO II).

Notice that this property only applies to resources that are
measured on a ratio scale or that can safely be converted to
ratio scale.

� Perishability. This property describes whether the resource
will be forever lost, if not used by certain point in time.
Possible values are perishable and non-perishable.

o Perishable: Bandwidth is perishable.
o Non-perishable: Battery energy is not perishable.

Problems involving perishable and non-perishable resources
need to introduce time into the analysis and account for
intertemporal possibilities. Utility functions are one possible
solution.

� Rival. A rival resource is such that the consumption of a unit
or amount of a resource by one person or entity precludes the
consumption of the same unit by another person.

o Rival: Money, labor, bandwidth, CPU cycles.
o Non-rival: Software application, information goods,

calendar days.
Efficiently allocating rival resources among multiple
requestors is the heart of many optimization problems.
Aggregate demand for a rival resource can not exceed total
supply available. Allocation analysis can be complicated
when multiple sources of a resource are available. For
example, consider the problem of choosing where to run a
particular software application, given a choice of two servers.

4. MULTIDIMENSIONAL ANALYSIS
TECHNIQUES
In this section, we present two examples of techniques that
consider multiple dimensions of costs in solving cost-benefit
problems in practical software systems. The first analysis is
performed at run time and helps configure software applications
on a mobile computer. The second analysis is performed off-
line and optimizes the selection of security technologies to
counter threats against corporate IT infrastructure.

4.1 Value-based Software Runtime
Configuration
Let’ s revisit the scenario from the introduction and illustrate
some of the problems that can result from early conversions.
Tables 3 and 4 show hypothetical runtime operational profiles
of the two programs described in Section 1: Messaging and
Real-time Video. The quality level information in the first
column is provided by the application specification. The second
and third columns give resource usage (percentage-of-resource-
required/second) to achieve the specified quality level. The
resource data depends on the runtime characteristics of the
application and the data processed, which can be obtained using
profiler tools. The value information in the fourth column is
represents the value assessments of the battlefield commander,
which can be obtained through elicitation interviews.

The overall objective is to maximize the sum of the values:
Value(Messaging) + Value(real-time video). Notice that the
quality level is an ordinal scale: it does not make sense to say
how much more or by what factor the next level is better than

the previous one. A value function, which normalizes the
commander’ s value assessments, converts the quality levels into
a ratio scale on the basis of additional information elicited
about the application. Bandwidth and CPU are both perishable
resources and cannot be stored for future use.

Tables 3. The Operational Profiles of the Applications
Messaging Real-time Video

Q
uality

L
evel

C
PU

, %

B
W

, %

V
alue

Q
uality

L
evel

C
PU

, %

B
W

, %

V
alue

None 0 0 - � None 0 0 - �

Very Low 57 17 1 Bad 12 43 3

Low 61 23 12 Acceptable 19 52 30

Medium 72 27 55 Good 23 69 45

High 79 29 68 Very Good 27 78 57

Very High 98 32 75 Excellent 34 93 89

One approach to solving this problem is to take as given the
external prices of CPU and Bandwidth, and convert these to a
common currency. Assume the cost of one percent of available
CPU is 2 units, and that of one percent of the available
Bandwidth is 3 units. A total of 2 * 100 + 3 * 100 = 500 units
of total resource are available. Table 4 present the resource
requirements in terms of the single currency. Column 2 shows
the cost in common currency of providing that level of quality,
and column 3 shows the percentage of that cost.

Tables 4. The Operational Profiles Using Common
Currency, 500 Units Available

Messaging Real-time Video

Q
uality

L
evel

C
ost

C
ost, %

Q
uality

L
evel

C
ost

C
ost, %

None 0 0 None 0 0

Very Low 165 0.33 Bad 153 0.31

Low 191 0.38 Acceptable 194 0.39

Medium 225 0.45 Good 253 0.51

High 245 0.49 Very Good 288 0.58

Very High 292 0.58 Excellent 347 0.69

Notice that according to Table 2, the best combination that can
be achieved is High quality of Messaging and Good quality of
Real-time Video, which costs 498 units, or just under 100%,
and is valued at 113. However, after consulting Table 3, we
notice that CPU would be utilized at 101 percent, making that
combination unattainable. The problem is that we have allowed
conversion of unused Bandwidth into CPU, despite the
inappropriateness of this conversion. Indeed, each quality point
for either application can be obtained using only a unique CPU
and bandwidth vector. The root of the problem is that CPU and
bandwidth are not fungible, and our assumption of fungibility
leads to an incorrect solution.

Another approach to this problem is to use derivatives, e.g. a
calculus method called Lagrange Multipliers. However, since
the space of quality points is sparse, any kind of continuous

 5

approximation is likely to yield a solution that is also not in the
space of available quality points.
Currently, we are investigating the use of a Multidimensional,
Multiple-Choice 0-1 Knapsack algorithm for handling this type
of problem [11]. The solution to that problem is similar to the
uni-dimensional version, except that it uses a parameterized
vector for resource prices, and it iteratively refines the value of
the parameters to eventually determine accurate conversion
prices.
This technique can be extended to handle perishable resources,
such as battery energy. In this case, intertemporal choices must
also be considered, and an explicit function must be introduced
to measure the value of saving energy for future use.

4.2 Security Attribute Evaluation Method
Traditional security risk management techniques advocate that
security managers determine an organization’ s risk of an attack
(a) by calculating the probable cost of the attack, i.e. riska =
cost * p(a), where p is the probability of the attack. For example
if a virus attack results in x hours of lost productivity, then the
risk of the attack is typically determined as Riskvirus = x *
average hourly wage rate * p(virus). Converting lost
productivity to dollars appears relatively straightforward, but
other types of attack consequences such as damaged public
reputation or impaired quality of patient care are not as easily
converted to dollars.
Unfortunately, simplistic risk calculations such as the one just
described do not capture the value that organizations place on
different types of costs. First, security managers find it difficult
to attach explicit financial value to intangibles, such as public
reputation or quality of patient care. Second, even when explicit
economic value can be assessed, business executives are often
skeptical about the underlying assumptions and lack confidence
in the results. For example, organizations are usually less
concerned about lost productivity from an attack than direct
financial loss. Therefore, techniques that preserve the value of
the outcome may produce more convincing results.
The Security Attribute Evaluation Method (SAEM) [2] uses
multi-attribute decision analysis techniques to help security
managers choose the best set of countermeasures against
possible attacks. Although the SAEM risk assessment process
reduces costs to a common threat index, the organization’ s
value of each type of cost is captured as part of the threat index.
The risk assessment cost dimensions are the most-likely types of
consequences of a successful attack, e.g., revenue lost, staff
hours lost, reputation damage suffered. Security managers
determine these cost dimensions. In order to determine the best
set of counter-measures, SAEM calculates the relative
importance of each consequence. The method introduces value
functions to assess the incremental importance and normalize
consequences, and uses the SWING-weight method [5] to elicit
the importance of each consequence. Finally, SAEM computes
the threat index, which is essentially a common, but neutral,
cost measure that indicates the relative costs of an attack to
other attacks.

5. RECONCILING
MULTIDIMENSIONAL ANALYSIS WITH
ONE-DIMENSIONAL TECHNIQUES
We have argued that cost-benefit analyses often need to
maintain multidimensional representations of costs in order to
preserve information about qualitative differences among
distinct types of costs. We identified some of the principal

characteristics of costs that impede conversion to common
units, and we showed the consequences of failing to preserve
the distinguishing information.
Eventually, though, we need to make decisions. To do so, we
must be able to compare multidimensional costs. Further, some
analysis techniques require scalar costs; the value of the
analysis, even with loss of information, may be large enough to
offset the information loss.
We believe that an appropriate strategy is to preserve the
distinctions among different costs as long as practical and to
reduce the cost vector to a scalar when circumstances force the
conversion.
Consider, then that a system with N cost dimensions is being
evaluated in an N-dimensional space, and assume for simplicity
that the dimensions are orthogonal. Then each cost point is
described by its cost in all the dimensions and corresponds to a
point in space. The vector from the origin to that point
represents that cost, and the length of that vector is one-
dimensional. The problem is, how can we establish a value for
the length of the vector? It is clearly inappropriate to treat the
indices for the various dimensions as if their units were
equivalent. Instead, we believe the proper approach is to
preserve the N-dimensional analysis as long as possible, then
perform late binding on the conversion by assigning a
conversion function from each dimension into some common
units. This makes it possible to compute the vector length and
reduce the cost vector to a scalar. Vectors in each dimension
can be scaled using parameterized weights, and then a common
cost can be computed using root-mean-square as if it were
Cartesian. This process can be iterated several times in order to
achieve more accurate weights. Other approaches may be
possible as well.

6. ACKNOWLEDGMENTS
This research is supported by the National Science Foundation under
Grants ITR-0086003 and CCR-0113810, by the Sloan Software
Industry Center at Carnegie Mellon, by DARPA under contract
F30602-00-2-0616, and by the High Dependability Computing
Program from NASA Ames cooperative agreement NCC-2-1298.
Authors would like to thank the members of the CMU Software
Research Seminar for their critical feedback.

7. REFERENCES
[1] Barry Boehm. Software Cost Estimation with COCOMO II.

Prentice Hall PTR, New Jersey: 2000.

[2] Shawn A. Butler. Security Attribute Evaluation Method. A Cost-
Benefit Approach. Proc ICSE 2002 - Int’l Conf on Software
Engineering, 2002

[3] Shawn A. Butler and Paul Fishbeck. Multi-Attribute Risk
Assessment. Symposium on Requirements Engineering for
Information Security, 2002.

[4] Shawn A. Butler and Mary Shaw. Incorporating Nontechnical
Attributes in Multi-Attribute Analysis for Security. Proc EDSER-
4: Workshop on Economics-Driven Software Engineering
Research, 2002.

[5] Proceedings of the Workshops on Economics-Driven Software
Engineering Research, EDSER-1, -2, -3, and -4. Workshops held
in conjunction with the 21st through 24th ICSE’s: International
Conference on Software Engineering, 1999 to 2002.

[6] L. Briand, K. El-Emam, and S. Morasca. On the Application of
Measurement Theory in Software Engineering. Empirical
Software Engineering. 1(1), 1996.

 6

[7] Norman E. Fenton and Shari Lawrence Pfleeger. Software
Metrics: A Rigorous & Practical Approach, International
Thomson Computer Press, 1997.

[8] D. Garlan, D.P. Siewiorek, A. Smailagic, P. Steenkiste.. Project
Aura: Toward Distraction-Free Pervasive Computing. IEEE
Pervasive Computing 1(2), April-June, 2002.

[9] J. Flinn, M. Satyanarayanan. Energy-aware Adaptation for Mobile
Applications. Proc 17th SOSP - ACM Symposium on Operating
Systems and Principles, 1999.

[10] R. Neugebauer and D. McAuley. Congestion Prices as Feedback
Signals: An Approach to QoS Management. Proc 9th ACM
SIGOPS European Workshop, 2000.

[11] Vahe Poladian, David Garlan, and Mary Shaw. Software
Selection and Configuration in Mobile Environments: A Utility-
Based Approach. Proc EDSER-4 - Workshop on Economics-
Driven Software Engineering Research, 2002.

Appendix:
Quick Review of Measurement Theory

Not all measurements are created equal. More precise initial
measurements enable more precise analyses and conclusions.
Measure theory provides models that explain the differences
and limitations.

Most members of this community are already familiar with this
material, but many have forgotten the terminology. As a

reminder, measure theory recognizes a number of scales for
classification or measurement, ordered from less to more
powerful [[6],[7]] The table summarizes the characteristics of
the major scales.
Some examples of ways these scales can be abused help to
show how the character of our data constrains the way we
should use it:
“The temperature in Miami is 20 degrees Celsius, the
temperature in Pittsburgh is 10 degrees, so it’ s twice as hot in
Miami.” Wrong. Celsius is an interval scale, and this kind of
comparison is only valid in ratio or absolute scales. The Kelvin
temperature scale is a ratio scale, so it’ s ok to convert to Kelvin
and compare: “The temperature in Miami is 293 degrees
Kelvin, the temperature in Pittsburgh is 283 degrees Kelvin, so
it’ s 7% warmer in Miami.”

“We surveyed the population for preferences on a scale of
Strong Yes / Yes / OK / No / Strong No and coded the results
on a 5-point scale with Strong Yes as 5 and Strong No as 1.
Option A averaged 4.0, option B averaged 3.0, and option C
averaged 2.0. Therefore option A dominated option B by as
much as option B dominated option C.” Wrong. The
preferences are measured on an ordinal scale, and the
comparison requires at least an interval scale. This sort of
comparison is especially noxious when coupled with
comparisons of the costs of the options. This is the kind of
problem we’ re addressing in this paper.

Scale Intuition Preserves Example Legitimate transformations

Nominal Simple classifica-
tion, no order

Differences Horse, dog, cat Any one-to-one remapping

Ordinal Ranking according
to criterion

Order Tiny, small, medium, big, huge Any monotonic increasing
remapping

Interval Differences are
meaningful

Size of difference Temperature in Celsius or
Fahrenheit

Linear remappings with offset
(ax+b)

Ratio Has a zero point Ratios of values are
meaningful

Absolute temperature (Kelvin),
values in currency units

Linear remappings without
offset (ax)

