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ABSTRACT 
"Time is money", or so goes the old saying. Perhaps influenced by 
this aphorism, some strategies for incorporating costs in the 
analysis of software design express all costs in currency units for 
reasons of simplicity and tractability. Indeed, in theoretical 
economics all costs can, in principle, be expressed in dollars. 
Software engineering problems, however, often present situations 
in which converting all costs to a common currency is 
problematical. In this paper we pinpoint some of these situations 
and the underlying causes of the problems, and we argue that it is 
often better to treat costs as a multidimensional value, with 
dimensions corresponding to distinct types of resources. We go on 
to highlight the differences among cost dimensions that need to be 
considered when developing cost-benefit analyses, and we suggest 
mechanisms for mediating among heterogeneous cost dimensions. 

Keywords 
Cost analysis, multi-dimensional cost analysis, value-based 
software engineering. 

1. ACCOUNTING FOR COSTS IN 
SOFTWARE ENGINEERING 
Although engineers traditionally focus on the functionality of 
their designs, they are becoming increasingly away of the need to 
address total cost of developing and owning the software.. A 
common approach to cost-benefit analysis is to express all costs 
and benefits in terms of dollars. To a first approximation, 
expressing all costs in a single dimension may seem like a 
reasonable solution. In practice, however, simplistic conversions 
of costs (or benefits) can be problematical.  

Consider a military operations center, which is responsible for 
managing and directing battlefield assets during times of conflict. 
A typical operations center uses several applications that will 
demand different amounts of computer resources (e.g., bandwidth 
and CPU resources) depending on the military situation. For 
example, satellite and air reconnaissance assets can provide real-
time video coverage of the operational area, but not all the time. 
Simultaneously, communication channels stream important 
intelligence and operational information to the center’s military 
commander, but processing the messages is CPU intensive. 
Unfortunately the amount of information available to the 
commander can exceed his capacity to receive and process the 
information and affect his ability to make informed decisions.  

The value of each application, and thus the value of the 
computing resources, will depend on the current military 
situation. For example, at times the commander will need very 
detailed videos of the battlefield to make operational decisions, 

but at other times the commander will need to receive intelligence 
over communication channels and a less detailed picture of the 
battle will be adequate. Therefore, dynamic reconfiguration of the 
computing resources may be essential to making timely military 
decisions.  

The quality of service that these applications provide can be fine-
tuned through computer resource adjustments to meet the 
commander’s needs. For example, increasing frame rates and 
bandwidth allocations can enhance video imagery, but the 
resulting demand for CPU cycles to process video images can 
cause delays in message processing.  

At any given point in time, finding the optimal allocation of 
computing resources depends on the value that each application 
provides to the commander. Finding the optimal resource 
allocation ultimately requires all the alternatives to be comparable 
-- typically expressed in a common metric. However, there can be 
serious drawbacks to making these conversions too early in the 
analysis process.  

First, it is difficult to associate cost or value with a resource 
without complete information about the resource and the context 
of its use. In the example above, the value of bandwidth was 
highly dependent on the battlefield situation and weather. In some 
cases the value of the resource may be in saving lives, but in other 
situations the value of the resource may be tied to common 
economic costs, such as fuel or energy costs, which are more 
easily translated into dollars1.  

Second, a conversion between metrics may adversely affect the 
type of analysis that you can do. The value of the resource may be 
non-linear with respect to the preferences of the user (or 
commander in the example above). Converting the value of 
computing resources, such as bandwidth and CPU, to dollars 
implies that each of the resources is as finely divisible as dollars. 
Increasing the resolution of video images requires a stepwise 
increase in bandwidth before the user recognizes a difference in 
the quality of the video. As a result, calculus-based solutions may 
appear adequate to solve the problem in the abstract, when in fact 
discrete algorithms are more appropriate for the problem at hand. 

Third, conversions to a common currency can lose information 
that should affect the types of feasible solutions. Some resources 
are perishable: they are only valuable for short periods of time, 
and after that they have no residual value. Converting such a 
resource to one that is not perishable will cause important 
information to get lost in the process. In fact, the obtained result 
may not be feasible according to the original formulation of the 

                                                                 
1 Despite studies that calculate the price of an individual’s life, 

few decision makers are willing to make explicit comparisons. 
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problem.  For example, unused bandwidth is gone forever, and 
allocating bandwidth to satellite imagery when the satellites are 
not overhead is not a feasible solution. 

These problems can be avoided by using methods that recognize 
and respect the different properties of different resources. Here we 
regard cost as a multidimensional quantity, with different 
dimensions corresponding to different non-commensurable cost 
metrics.  Section 4 presents examples based on two such methods. 
One of the examples focuses on the automatic run-time 
configuration of software components based on preferences of the 
user. The second example tackles the problem of choosing the 
optimal set of countermeasures to minimize threats to a corporate 
IT infrastructure. 

 

In this paper, we contribute to understanding the problem on 
incommensurable multidimensional costs and finding solutions 
for particular projects by: 

 

x Characterizing types of costs to show their differences.  In 
Section 2 we catalog resources that are commonly used in 
analyzing costs in software development. 

x Proposing a model for treating cost as a multidimensional 
measure.  In Section 3 we present a model that explains the 
essential differences among these costs. 

x Analyzing the problems of mapping among cost dimensions.  
In Section 4 we discuss analysis techniques that carry through 
multidimensional costs. 

x Showing how to accommodate methods that require uni-
dimensional costs.  In Section 5 we generalize from the 
examples of Section 4 and  discuss ways to balance the 
information needs that require multiple dimensions with the 
analysis needs that require a single dimension. 

 

2. SOURCES OF SOFTWARE 
DEVELOPMENT AND QUALITY COSTS 
In software engineering and systems research, cost-benefit 
analyses have been used to solve cost estimation and optimization 
problems.  SAEM [2], [3] is a cost benefit analysis model that 
helps security managers choose the best set of countermeasures. 
Odyssey [9] provides runtime middleware that helps adapt 
application behavior to resource availability. The Nemesis [10] 
operating system uses shadow prices and careful accounting to 
determine optimal allocation of resources among competing 
applications.  Aura [8] aims to reduce user distraction in 
interactive computing by accounting for human attention as a 
resource.  COCOMO II [1] is a software cost estimation model 
that calculates the cost of a software project based on various 
organizational and project parameters.  The works cited consider 
costs and benefits to estimate benefit, determine optimal 
allocations, and estimate cost.  

Table 1 catalogues some of the resources that are considered by 
the analyses of the research described above. This list is 
representative rather than complete; it provides the basis for the 
examples we use in later sections. 

Table 1.  A Selection of Resources and their sources  

Cost dimension Examples, citations 

Purchase cost, currency 
(dollars, for simplicity) Classical Economics 

Staff time COCOMO [1] 

Reputation SAEM [2] 

Lives lost SAEM  

Calendar time, days COCOMO 

Bandwidth Odyssey [9], Nemesis [10] 

Battery Capacity Remaining Odyssey, Nemesis 

User attention Aura [8] 

Software application, e.g. 
Microsoft Word Aura 

3. PROPERTIES of COSTS/RESOURCES 
The introductory example motivates the need to consider separate 
resource dimensions in cost-benefit analysis. But what are some 
of the characteristics of different resources that need to be 
considered during such analyses? Further, how would these 
characteristics influence the choice of analysis technique? To help 
answer these questions, we discuss the different properties of 
some of the resources identified in Table 1, with particular focus 
on understanding how these differences can be reconciled or 
mediated.  At the end of the discussion, we summarize our 
findings in Table 2 for a sample of resources. 

x Divisibility/granularity. This property describes how dense the 
space of the resource is. Intuitively, this property indicates in 
what increments the resource can be allocated. Possible values 
are: 

o Continuous: The resource can be allocated at a very fine 
grain. Bandwidth and battery energy are resources that fit 
in this group. 

o Discrete but dense: The possible allocation points are 
many, but allocation can not be made continuously. 
Currency fits this group. 

o Sparse discrete: There are very few possible points in the 
resource space.  Editing a document with a particular 
application, e.g. Microsoft Word, falls in this category. 

The granularity of a resource can influence the choice of the 
solution method. With continuous resources and in some cases 
discrete dense resources, calculus-based solutions work well, 
especially if resource requirements can be described as closed 
formulas. Sparse discrete resources are best analyzed with 
discrete methods such as integer programming and knapsack 
algorithms. Problems with continuous and dense discrete 
resources can also be tackled using discrete solutions, at the 
expense an approximate answer. This can be a justified trade-
off if no closed-form formulas exist to describe the functions. 

x Fungibility. This property describes whether a particular 
resource can be converted to another resource. This property 
makes sense in the context of a specific problem, and with 
respect to specific other resources. For example, 
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o Complete fungibility: Common currency is fungible to 
most other resource. 

o Partial fungibility: Some interchange is possible between 
bandwidth and CPU cycles in the software runtime 
configuration problem. Consider different MPEG decoders 
using different compression algorithms. One decoder may 
be relatively bandwidth intensive, while the other may be 
CPU intensive. Availability of multiple decoders makes it 
possible to convert between bandwidth and CPU cycles. It 
is important to realize that the tradeoff is limited a few 
points. 

o No fungibility: In software cost estimation problem, it is 
well known that calendar days and staff months are not 
interchangeable. Additional staff may even lengthen 
development time. 

x Measurement Scale. This property describes the kind of scale 
that is appropriate for measuring a resource.  For example, the 
set of domestic animals (dog, cat, cow, etc) has nominal scale, 
as there is no ordering relationship between elements in that 
set.  See the Appendix for a review of measurement scales. 
Possible choices are:  

o Nominal. 

o Ordinal. 

o Integer. 

o Ratio.   

Cost-benefit analysis can sometimes be tackled by converting 
all resources to the same scale.  However, conversion among 

resources of different scales must be made only when 
conversions are justified.  See Section 4.2 for an example of 
such conversion. 

x Economies of scale. This property describes the extent to 
which a percentage increment in a resource affects the  
increment of the output of a product that uses the resource as 
input. Possible values are:  

o Superlinear Scale: (also known as positive economies of 
scale). If a percentage increment in a resource results in 
proportionately higher increase in output, then we say 
resource has superlinear scale.  Consider the problem of 
searching for a given record by its unique key in a large 
database.  As a measure of output, consider the size of the 
database (e.g., total number of records) we are able to 
search in a fixed amount of time, and as a measure of 
input, consider the size of hardware we need to have (e.g., 
CPU speed).  Recall that the binary search algorithm runs 
in time logarithmic with respect to number of items.  Thus, 
CPU size exhibits superlinear scale with respect to the 
problem size in this case, because incremental increases in 
the CPU performance dedicated to the search space result 
in increasingly proportionally larger search space covered.  

o Linear Scale: (also known as neutral economies of scale). 
The benefit of additional quantities of the resource is 
independent of the problem size.  

 

  

Table 2. Properties of Sample Resource Dimensions 
 

   Properties of Costs 

 
 

Units Measurement 
Scale Granularity Fungibility Perishability Economies 

of Scale Rival 

Purchase cost Dollars Ratio Dense Y N Linear Y 

Staff time Months Ratio Sparse  N Y Sublinear Y 

Reputation Scale Ordinal Sparse  N N N/A Y 

Lives lost Number of 
Humans Integer Sparse  N N/A N/A N/A 

Calendar time Days Ratio Sparse  N Y Depends N 

Bandwidth Mbps Ratio Continuous N Y Depends Y 

Battery Joules Ratio Continuous N N Depends Y 

Human 
attention Seconds Ordinal Sparse N N N/A Y 

C
os

t D
im

en
si

on
 

Software 
application N/A Nominal Sparse Y N N/A N 
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o Sublinear Scale: (also known as diseconomies of scale). 
If a percentage increase in resource results in 
proportionately smaller increase in output, then we say 
the resource exhibits sublinear scale.  Staff size, as input 
to software projects, exhibits slight diseconomies of 
scale (COCOMO II).  

Notice that this property only applies to resources that are 
measured on a ratio scale or that can safely be converted to 
ratio scale. 

�  Perishability. This property describes whether the resource 
will be forever lost, if not used by certain point in time. 
Possible values are perishable and non-perishable. 

o Perishable: Bandwidth is perishable.  
o Non-perishable: Battery energy is not perishable. 

Problems involving perishable and non-perishable resources 
need to introduce time into the analysis and account for 
intertemporal possibilities. Utility functions are one possible 
solution.  

�  Rival. A rival resource is such that the consumption of a unit 
or amount of a resource by one person or entity precludes the 
consumption of the same unit by another person.  

o Rival: Money, labor, bandwidth, CPU cycles.  
o Non-rival: Software application, information goods, 

calendar days. 
Efficiently allocating rival resources among multiple 
requestors is the heart of many optimization problems.   
Aggregate demand for a rival resource can not exceed total 
supply available.  Allocation analysis can be complicated 
when multiple sources of a resource are available.  For 
example, consider the problem of choosing where to run a 
particular software application, given a choice of two servers. 

4. MULTIDIMENSIONAL ANALYSIS 
TECHNIQUES 
In this section, we present two examples of techniques that 
consider multiple dimensions of costs in solving cost-benefit 
problems in practical software systems. The first analysis is 
performed at run time and helps configure software applications 
on a mobile computer. The second analysis is performed off-
line and optimizes the selection of security technologies to 
counter threats against corporate IT infrastructure.  

4.1 Value-based Software Runtime 
Configuration 
Let’ s revisit the scenario from the introduction and illustrate 
some of the problems that can result from early conversions. 
Tables 3 and 4 show hypothetical runtime operational profiles 
of the two programs described in Section 1: Messaging and 
Real-time Video. The quality level information in the first 
column is provided by the application specification. The second 
and third columns give resource usage (percentage-of-resource-
required/second) to achieve the specified quality level. The 
resource data depends on the runtime characteristics of the 
application and the data processed, which can be obtained using 
profiler tools. The value information in the fourth column is 
represents the value assessments of the battlefield commander, 
which can be obtained through elicitation interviews.  

The overall objective is to maximize the sum of the values: 
Value(Messaging) + Value(real-time video). Notice that the 
quality level is an ordinal scale: it does not make sense to say 
how much more or by what factor the next level is better than 

the previous one. A value function, which normalizes the 
commander’ s value assessments, converts the quality levels into 
a ratio scale on the basis of additional information elicited 
about the application.  Bandwidth and CPU are both perishable 
resources and cannot be stored for future use.        

Tables 3. The Operational Profiles of the Applications 
Messaging                     Real-time Video 

Q
uality 

L
evel 

C
PU

, %
 

B
W

, %
 

V
alue 

 

Q
uality 

L
evel 

C
PU

, %
 

B
W

, %
 

V
alue 

None 0 0 - �   None 0 0 - �  

Very Low 57 17 1  Bad 12 43 3 

Low 61 23 12  Acceptable 19 52 30 

Medium 72 27 55  Good 23 69 45 

High 79 29 68  Very Good 27 78 57 

Very High 98 32 75  Excellent 34 93 89 

 
One approach to solving this problem is to take as given the 
external prices of CPU and Bandwidth, and convert these to a 
common currency. Assume the cost of one percent of available 
CPU is 2 units, and that of one percent of the available 
Bandwidth is 3 units. A total of 2 * 100 + 3 * 100 = 500 units 
of total resource are available. Table 4 present the resource 
requirements in terms of the single currency.  Column 2 shows 
the cost in common currency of providing that level of quality, 
and column 3 shows the percentage of that cost.  

Tables 4. The Operational Profiles Using Common 
Currency, 500 Units Available 

Messaging                     Real-time Video 

Q
uality 

L
evel 

C
ost 

C
ost,  %

 

 

Q
uality 

L
evel 

C
ost 

C
ost, %

 

None 0 0  None 0 0 

Very Low 165 0.33  Bad 153 0.31 

Low 191 0.38  Acceptable 194 0.39 

Medium 225 0.45  Good 253 0.51 

High 245 0.49  Very Good 288 0.58 

Very High 292 0.58  Excellent 347 0.69 

 
Notice that according to Table 2, the best combination that can 
be achieved is High quality of Messaging and  Good quality of 
Real-time Video, which costs 498 units, or just under 100%, 
and is valued at 113. However, after consulting Table 3, we 
notice that CPU would be utilized at 101 percent, making that 
combination unattainable. The problem is that we have allowed 
conversion of unused Bandwidth into CPU, despite the 
inappropriateness of this conversion. Indeed, each quality point 
for either application can be obtained using only a unique CPU 
and bandwidth vector. The root of the problem is that CPU and 
bandwidth are not fungible, and our assumption of fungibility 
leads to an incorrect solution. 

Another approach to this problem is to use derivatives, e.g. a 
calculus method called Lagrange Multipliers. However, since 
the space of quality points is sparse, any kind of continuous 
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approximation is likely to yield a solution that is also not in the 
space of available quality points.  
Currently, we are investigating the use of a Multidimensional, 
Multiple-Choice 0-1 Knapsack algorithm for handling this type 
of problem [11]. The solution to that problem is similar to the 
uni-dimensional version, except that it uses a parameterized 
vector for resource prices, and it iteratively refines the value of 
the parameters to eventually determine accurate conversion 
prices.  
This technique can be extended to handle perishable resources, 
such as battery energy. In this case, intertemporal choices must 
also be considered, and an explicit function must be introduced 
to measure the value of saving energy for future use.  

4.2 Security Attribute Evaluation Method 
Traditional security risk management techniques advocate that 
security managers determine an organization’ s risk of an attack 
(a) by calculating the probable cost of the attack, i.e. riska = 
cost * p(a), where p is the probability of the attack. For example 
if a virus attack results in x hours of lost productivity, then the 
risk of the attack is typically determined as Riskvirus = x * 
average hourly wage rate * p(virus). Converting lost 
productivity to dollars appears relatively straightforward, but 
other types of attack consequences such as damaged public 
reputation or impaired quality of patient care are not as easily 
converted to dollars.  
Unfortunately, simplistic risk calculations such as the one just 
described do not capture the value that organizations place on 
different types of costs. First, security managers find it difficult 
to attach explicit financial value to intangibles, such as public 
reputation or quality of patient care. Second, even when explicit 
economic value can be assessed, business executives are often 
skeptical about the underlying assumptions and lack confidence 
in the results. For example, organizations are usually less 
concerned about lost productivity from an attack than direct 
financial loss. Therefore, techniques that preserve the value of 
the outcome may produce more convincing results.  
The Security Attribute Evaluation Method (SAEM) [2] uses 
multi-attribute decision analysis techniques to help security 
managers choose the best set of countermeasures against 
possible attacks. Although the SAEM risk assessment process 
reduces costs to a common threat index, the organization’ s 
value of each type of cost is captured as part of the threat index.  
The risk assessment cost dimensions are the most-likely types of 
consequences of a successful attack, e.g., revenue lost, staff 
hours lost, reputation damage suffered. Security managers 
determine these cost dimensions. In order to determine the best 
set of counter-measures, SAEM calculates the relative 
importance of each consequence. The method introduces value 
functions to assess the incremental importance and normalize 
consequences, and uses the SWING-weight method [5] to elicit 
the importance of each consequence. Finally, SAEM computes 
the threat index, which is essentially a common, but neutral, 
cost measure that indicates the relative costs of an attack to 
other attacks. 

5. RECONCILING 
MULTIDIMENSIONAL ANALYSIS WITH 
ONE-DIMENSIONAL TECHNIQUES 
We have argued that cost-benefit analyses often need to 
maintain multidimensional representations of costs in order to 
preserve information about qualitative differences among 
distinct types of costs. We identified some of the principal 

characteristics of costs that impede conversion to common 
units, and we showed the consequences of failing to preserve 
the distinguishing information. 
Eventually, though, we need to make decisions. To do so, we 
must be able to compare multidimensional costs. Further, some 
analysis techniques require scalar costs; the value of the 
analysis, even with loss of information, may be large enough to 
offset the information loss. 
We believe that an appropriate strategy is to preserve the 
distinctions among different costs as long as practical and to 
reduce the cost vector to a scalar when circumstances force the 
conversion. 
Consider, then that a system with N cost dimensions is being 
evaluated in an N-dimensional space, and assume for simplicity 
that the dimensions are orthogonal. Then each cost point is 
described by its cost in all the dimensions and corresponds to a 
point in space. The vector from the origin to that point 
represents that cost, and the length of that vector is one-
dimensional. The problem is, how can we establish a value for 
the length of the vector? It is clearly inappropriate to treat the 
indices for the various dimensions as if their units were 
equivalent. Instead, we believe the proper approach is to 
preserve the N-dimensional analysis as long as possible, then 
perform late binding on the conversion by assigning a 
conversion function from each dimension into some common 
units. This makes it possible to compute the vector length and 
reduce the cost vector to a scalar.  Vectors in each dimension 
can be scaled using parameterized weights, and then a common 
cost can be computed using root-mean-square as if it were 
Cartesian.  This process can be iterated several times in order to 
achieve more accurate weights.  Other approaches may be 
possible as well. 
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Appendix:  
Quick Review of Measurement Theory 
 

Not all measurements are created equal. More precise initial 
measurements enable more precise analyses and conclusions. 
Measure theory provides models that explain the differences 
and limitations.  

Most members of this community are already familiar with this 
material, but many have forgotten the terminology. As a 

reminder, measure theory recognizes a number of scales for 
classification or measurement, ordered from less to more 
powerful [[6],[7]] The table summarizes the characteristics of 
the major scales. 
Some examples of ways these scales can be abused help to 
show how the character of our data constrains the way we 
should use it:  
“The temperature in Miami is 20 degrees Celsius, the 
temperature in Pittsburgh is 10 degrees, so it’ s twice as hot in 
Miami.” Wrong. Celsius is an interval scale, and this kind of 
comparison is only valid in ratio or absolute scales. The Kelvin 
temperature scale is a ratio scale, so it’ s ok to convert to Kelvin 
and compare: “The temperature in Miami is 293 degrees 
Kelvin, the temperature in Pittsburgh is 283 degrees Kelvin, so 
it’ s 7% warmer in Miami.” 

“We surveyed the population for preferences on a scale of 
Strong Yes / Yes / OK / No / Strong No and coded the results 
on a 5-point scale with Strong Yes as 5 and Strong No as 1. 
Option A averaged 4.0, option B averaged 3.0, and option C 
averaged 2.0. Therefore option A dominated option B by as 
much as option B dominated option C.” Wrong. The 
preferences are measured on an ordinal scale, and the 
comparison requires at least an interval scale. This sort of 
comparison is especially noxious when coupled with 
comparisons of the costs of the options. This is the kind of 
problem we’ re addressing in this paper. 

 

 
 

 

 

 
 

 
 

 

Scale Intuition Preserves Example Legitimate transformations 

Nominal Simple classifica-
tion, no order 

Differences  Horse, dog, cat Any one-to-one remapping 

Ordinal Ranking according 
to criterion 

Order Tiny, small, medium, big, huge Any monotonic increasing 
remapping 

Interval Differences are 
meaningful 

Size of difference Temperature in Celsius or 
Fahrenheit 

Linear remappings with offset 
(ax+b) 

Ratio Has a zero point Ratios of values are 
meaningful 

Absolute temperature (Kelvin), 
values in currency units 

Linear remappings without 
offset (ax) 

 



 

 

 

 


